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Abstract

Consider a plane curve B defined as the projection of the intersection of two analytic surfaces
in R3 or as the apparent contour of a surface. In general, B has node or cusp singular points
and thus is a singular curve. Our main contribution is the computation of a data structure
answering point location queries with respect to the subdivision of the plane induced by B. This
data structure is composed of an approximation of the space curve together with a topological
representation of its projection B. Since B is a singular curve, it is challenging to design a
method only based on reliable numerical algorithms.

In a recent work, the authors show how to describe the set of singularities of B as regular
solutions of a so-called ball system suitable for a numerical subdivision solver. Here, the space
curve is first enclosed in a set of boxes with a certified path-tracker to restrict the domain where
the ball system is solved. Boxes around singular points are then computed such that the correct
topology of the curve inside these boxes can be deduced from the intersections of the curve
with their boundaries. The tracking of the space curve is then used to connect the smooth
branches to the singular points. The subdivision of the plane induced by B is encoded as an
extended planar combinatorial map allowing point location. We experimented our method and
show that our reliable numerical approach can handle classes of examples that are not reachable
by symbolic methods.

Keywords: Singular curve topology, point location algorithm, geometric approximation
Acknowledgments: This research was supported by the ANR JCJC SingCAST (ANR-13-JS02-0006).

1 Introduction

Let C be a smooth space curve defined as the intersection of two analytic surfaces P = Q = 0, with P,Q real
analytic functions in x, y, z. We aim at computing, in a compact domain B0 ⊂ R2, the geometry and the
topology of B = π(x,y)(C) where π(x,y) : R3 → R2 denotes the projection in the (x, y)-plane. In general, B is
not smooth and has singular points, i.e. points where B has no well defined tangent direction. Generically,
the only singular points of a projected curve are transversal crossings of two branches of the curve, called
nodes. A special occurrence of our problem is the case where Q = Pz, the derivative of P with respect to z. B
is then called the apparent contour of the surface P = 0 and generic singular points of B are nodes and cusps,
i.e. projections of points where C has a vertical tangent. Fig. 1 shows, for a torus P = 0, its intersection
with the surface Pz = 0 in bold line and its apparent contour that has cusp and node singularities.
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Figure 1: Left: a torus P = 0, in bold line the curve P = Pz = 0, its apparent contour, and a zoom zone.
Right: a zoom, with preimages by the projection of cusp and node singularities.

By computing the geometry of B in B0, we mean being able to draw B∩B0 with an arbitrary precision.
To reach this goal, we use a certified interval path tracker to compute a sequence of boxes (i.e. multi-
dimensional extensions of intervals) of width as small as desired, such that each box intersects C and their
union encloses C. The projection of these boxes is thus a geometric approximation of the plane curve B.

We want our topological encoding to be able to answer location queries, that is, given p ∈ B0 \ B,
find the face of B0 \ B to which p belongs. Such queries can be answered by considering a combinatorial
encoding of the embedding of the projected curve, i.e. the subdivision of B0 induced by the curve B. We use
Combinatorial Maps (CMaps) and their extensions to the non-connected case, the eXtended Planar Maps
(XPMaps), to encode embeddings of plane curves. In a first step, we focus on singularities and isolate the
singular points of B in boxes of width as small as desired. Then the second step is to compute the topology
in these isolating boxes. Finally the tracking of the space curve is used to connect the singular points and
construct the representation of the embedding.

The work presented here is a first step toward the computation of the topology with reliable approximated
geometry of the apparent contour of a smooth algebraic or analytic variety of Rn. Such a variety arises
naturally in the design of parallel or cable mechanisms, and its apparent contour represents the boundary
of the workspace of such a mechanism [Mer00]. The encoding of the topology and the geometry we propose
can thus be seen as a reliable tool to validate a robot configuration, to check if the clearance with respect
to special configurations is large enough, or to check whether during a motion the robot passes through a
singularity or not.

The paper is organized as follows. Section 2 describes how the curve C is enclosed by tracking. Section 3
recalls the encoding of singularities of B by the ball system and shows how the enclosure of C is used to
restrict its solving domain. For an apparent contour, an algorithm is presented to determine the type, node
or cusp, of a singularity isolated with the ball system. Section 4 is dedicated to the computation of the local
topology at special points, i.e singular points and x-extreme points. Section 5 explains the construction of
the XPMap representing the embedding of the curve B. Section 6 reports experiments on the implementation
of our numerical approach. The remaining of this section presents previous work, details our contributions,
defines formally our geometric and topological representations and recalls basics about reliable numerical
interval solvers.

1.1 Previous work

State-of-the-art symbolic methods that compute the topology of plane real curves defined by polynomials
are based on the Cylindrical Algebraic Decomposition and use resultant and sub-resultant theory to isolate
critical points [Hon96, MPS+06]. One advantage of these methods is that they can handle any type of
singularities of the curve. The drawbacks are their high complexity as a function of the degree of the curve
and the global aspect of the approach: computing the topology in the whole plane or in a small box have
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almost the same cost.
Numerical methods together with interval arithmetic are able to compute and certify the topology of a

non-singular curve [MGGJ13,KX94,PV04]. One advantage is the local aspect of the approach: the topology
can be computed in a small box and the smaller the box the faster the computation. However they fail near
any singular point of the curve. Isolating singularities of a planar curve f(x, y) = 0 with a numerical method
is a challenge since the set of singular points is described by the non-square system f = ∂f

∂x
= ∂f

∂y
= 0,

and singularities are not necessarily regular solutions of this system. The latter system can be translated
into a square system using combinations of its equations with first derivatives [Ded06], and non-regular
solutions can be handled through deflation systems [OWM83,LVZ06], but the resulting systems are usually
still overdetermined.

We are not aware of a numerical algorithm that can certify in practice the computation of the topology
of any singular curves, but several promising approaches have been presented. The subdivision approach
presented by [BCGY12] is an extension to the singular case of the one by [PV04] relying on global non-
adaptive separation bounds for algebraic systems. This approach can theoretically certify the topology of
any singular curve, but due to these worst-case bounds, this algorithm cannot be practical. A numerical
algebraic geometric approach is presented by [LBSW07] using irreducible decomposition, generic projection
and plane sweep, deflation and homotopy to compute the topology of a singular curve in any codimension.
Even if this work has been implemented by [BHSW13]1, the certification of all the algorithm steps appears
as a challenge. The numerical approach by [CDTF+13], based on Bezoutian and eigenvalue computation,
can handle singular curves but even if multiprecision gives accurate results no certification is provided.

Instead of designing a general numerical method able to handle any singular curve, an alternative is to
focus on restricted classes of singular curves. A natural example is when the plane curve to be studied is the
projection of a smooth space curve living in higher dimension. According to the classification of singularities
of mappings (see [Whi55, AVGZ88, Dem00] for example), it appears that the generic singularities of such a
projected curve are only transversal intersections of two branches, and in the case of the apparent contour
of a surface, ordinary cusps also occur. From an algorithmic point of view, the authors of [DL14] use these
elements to derive an algorithm isolating the singularities arising in generic mappings from R2 to R2. Our
problem of isolating the singularities of the projection of a generic algebraic space curve was investigated
in [IMP17]. The authors use resultant and sub-resultant theory to represent the singularities as the solutions
of a regular bivariate system suited to a branch and bound solving approach. To overcome the drawbacks
of resultant and sub-resultant, [IMP15] studies the geometric configurations of the space curve that induce
singularities on the projected curve, and describes them as the regular solutions of a four dimensional system.

1.2 Detailed overview

Our main contribution is the computation of a data structure allowing to locate a point with respect to the
projection of a smooth space curve. Our data structure is the union of a geometric approximation of the
space curve, and a topological representation of its projection.

For the geometric approximation of the space curve C and thus its projection B, we compute a sequence
of 3-dimensional boxes (Ci)

m
i=1 enclosing all the connected components of C, that is C ⊂

⋃m
i=1 Ci. We use

a reliable numerical solver (Algo. 1) to find intersections of the curve with the boundary of the input box
and at least one point on each connected component of C using a critical point method. We then use these
points as starting points for a tracking algorithm (Specified in Algo. 2 and detailed in Appendix A) which is
an adapted version of the one in [MGGJ13]. Since we want to only use numerical algorithms, we must avoid
some degenerate configurations for the systems of critical points and boundary points. Such assumptions,
stated in Section 2.1, are satisfied for generic curves and projections.

For the topological representation, the basic numerical tools are the reliable numerical solver and tracker
already used for the geometric approximation. It is worth noting that while the topology of the space curve
C is directly given by the connected components of boxes enclosing it, the topology of the plane curve B
has little to do with its enclosure by the projection of the box enclosure of C. The general idea is first

1See also www.bertinireal.com.

3

www.bertinireal.com


to isolate the singularities and critical points of the plane curve B, and then to refine the boxes around
those special points until the topology inside these boxes is trivial. Finally, we use smooth path tracking to
connect the singularities and the critical points. Since we use numerical algorithms we require assumptions
in Sections 3.1 and 4.2, that are generically satisfied.

The first step is to isolate the singularities of the plane curve B. In a previous work [IMP15], we have
shown how the singularities can be described as the regular solutions of a so-called ball system involving 4
equations in 4 unknowns. The ball system could be solved in R4 with a reliable numerical solver, however
in four dimensions, this global subdivision approach becomes costly. To overcome this issue, we use the box
enclosure of the space curve to restrict the solving domain of the ball system.

The second step is to compute witness boxes for the singularities and critical points of B, that is isolating
boxes such that the topology of the curve inside these boxes can be deduced from the intersections of the
curve with their boundaries. A special care is devoted to the refinement of boxes such that the intersections
of the curve with their boundaries do not eventually occur at the corners.

The last step uses the tracking of the space curve to connect its smooth branches to the witness boxes
of the singular and critical points and thus compute a combinatorial map for each connected component.
The construction of the extended planar map encoding the embedding of B is incremental on the connected
components. The point location algorithm is based on a vertical ray shooting principle but eventually needs
to compute intersections of the space curve C with planes.

We implemented the presented algorithms and tested them to compute the topology of apparent contours
of algebraic surfaces of degrees up to 15. Our experiments show that our method can handle classes of
examples not reachable by symbolic methods and that multi-precision arithmetic is needed for such difficult
examples. More specifically, for the isolation of the singularities, the efficiency of our approach to restrict
the solving domain of the ball system is demonstrated.

1.3 Notations and definitions

In this paper we call real intervals connected sets [a, b] with a, b ∈ R ∪ {±∞} and a ≤ b. Lowercase
boldface letters denote real intervals and uppercase boldface letters boxes, that are vectors of intervals.
Let x be a real interval, l(x) denotes its lower bound, u(x) its upper bound and w(x) its width defined
as u(x) − l(x) if x is bounded, ∞ otherwise. If x is bounded, m(x) denotes its midpoint. If ε ∈ R+, εx

holds for [m(x) − εw(x)
2 ,m(x) + εw(x)

2 ]. Let X = (x1, . . . ,xn) be a box, ∂X denotes the boundary of X
and i(X) = X \ ∂X its interior. The width w(X) is defined as max1≤i≤nw(xi) and the midpoint m(x) as
(m(x1), . . . ,m(xn)) if X is bounded. If ε ∈ R+, εX holds for (εx1, . . . , εxn).

Uppercase letters denotes sets of boxes. A domain of Rn is a set defined as X \ (
⋃

Y∈Y i(Y)) where X is
a box of Rn and Y a possibly empty set of boxes of Rn. If X is a domain of Rn, ∂X denotes its boundary.

For a real analytic function P in the variables x1, . . . , xn, Pxi
denotes its partial derivative with respect

to xi, and Pxixj
its derivative with respect to xi and xj . Let P1, . . . , Pn be n real analytic functions in

x1, . . . , xn, a solution x of P1 = . . . = Pn = 0 is regular if the jacobian matrix A = [(Pi)xj
] evaluated in x

has full rank, otherwise x is singular.
Cursive letters denotes sets of points. We mostly work with points, boxes and curves in R2, R3 or R4.

We use the following naming scheme: objects in R2 are named with the letter B, in R3 with the letter C and
in R4 with the letter D.

A graph is a triple G = (V,E, I) where V,E are two finite sets which elements are respectively called
vertices and edges and I : E → V ×V is called the incidence relation of G. G is directed (resp. non-directed)
if images of edges by I are seen as couples (resp. pairs).

1.4 Geometrical and topological representations

Our first goal is to compute a geometrical approximation of the projected curve B in a box B0. Let us
formalize this notion as follows.
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Figure 2: Left: a δ-approximation of C in B0×R, and a δ-approximation of B in B0. Right: an embedding
of the graph G for the apparent contour of a torus. Black circles represent the points associated to the
vertices of G, and thick curves the curves associated with its edges. Thin lines represent the boundary of
B0.
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Figure 3: An XPMap encoding the topology of the apparent contour of the torus in B0. Each edge is
represented by a pair of half-edges which is a cycle of the permutation α. Curved arrows around vertices
represent cycles of the permutation ϕ.
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Definition 1 (δ-approximation). Let X be a subset of Rn. A sequence of boxes (Xi)
m
i=1 is a δ-approximation

of X if X ⊂
⋃m
i=1 Xi and for all 1 ≤ i ≤ m, w(Xi) ≤ δ and X ∩Xi 6= ∅.

We will consider in particular δ-approximations of C in C0 = B0 × R or in a domain C0. Obviously
the projection of a δ-approximation of C in C0 is a δ-approximation of B in B0, in particular it yields a
drawing of B with the guarantee that any point of the drawing is at most at distance δ from the original
curve. Left part of Fig. 2 represents a δ-approximation of the curve C in C0 for the example of the torus,
and its projection.

We also want to encode the topology of the curve B ∩B0 as an embedding of a graph G to be able to
answer location queries for points of B0. This is achieved by computing a set V of vertices representing
points of the curve with at least one vertex per connected component and such that (B ∩ B0) \ V is a set
of smooth curves identified as the set E of edges. Right part of Fig. 2 shows an embedding of such a graph
G when B ∩ B0 is the apparent contour of the torus. The embedding of G defined by B ∩ B0 is encoded
by an extended planar map. More precisely, each connected component of (B ∩B0) ∪ ∂B0 is encoded by a
combinatorial map and the inclusion of a component in a face of another is encoded by the extended map.
We thus recall the definition of these combinatorial structures.

Definition 2 ( [LZ13, Köt02]). A Combinatorial Map (CMap) is a triple (H,σ, α) where H is a set of
half-edges, σ is a permutation on H and α an involution on H.

An edge of G is associated with a cycle of α, and a vertex to a cycle of σ. Cycles of σ encode counter-
clockwise orderings of outgoing half-edges around vertices. The cycles of the permutation ϕ = σ−1 ◦ α
describe the faces of the combinatorial map. All such face cycles are in counter-clockwise order but one
which is called the exterior face of the combinatorial map.

When (B∩B0)∪∂B0 has several connected components, it remains to encode the containment relationship
between the exterior face of each CMap within a non-exterior face of another CMap. [Köt02] proposes a
combinatorial structure, called eXtended Planar Map (XPMap) to represent such a relationship. Let σ|Hi

(resp. α|Hi) denotes the restriction of the permutation σ (resp. α) defined on H to elements of a subset
Hi ⊆ H.

Definition 3 ( [Köt02]). An eXtended Planar Map (XPMap) is a tuple (H,H0, σ, α, ext, cont) where H =
H1 ∪ . . .∪Hn′

is the union of pairwise disjoint non empty sets of half-edge, H0 is an empty set of half-edges
representing the infinite face, (Hi, σ|Hi , α|Hi) are CMaps for all 1 ≤ i ≤ n′, ext is a relation that labels one
face of each CMap (Hi, σ|Hi , α|Hi) as the exterior face, and cont is a relation that assigns each exterior face
to one non-exterior face of a CMap (Hi, σ|Hi , α|Hi) or to the infinite face.

In our case, the infinite face is R2, Fig. 3 shows an XPMap characterizing (B∩B0)∪∂B0 as an embedding
of the apparent contour of the torus. The cycle f1 = (h+13, h

+
14) is the exterior face of the connected component

of (B ∩B0) ∪ ∂B0 containing ∂B0. This exterior face f1 is contained in the infinite face f0 creating a hole
in it. More gererally, any non-infinite face of an XPMap can be described by exactly one clockwise cycle
of half-edges and possibly several inner counter-clockwise cycles of half-edges corresponding to the exterior
face of the CMaps it contains.

1.5 Interval arithmetic tools

The certification of our algorithms is based on interval arithmetic (see [Neu90,Kea96,MKC09,Sta95]), that is
a way of computing with intervals (which endpoints are floating numbers) instead of computing with floating
numbers, while carefully handling rounding to overcome numerical approximations that naturally occur with
floating number arithmetic.

1.5.1 Interval arithmetic

Usual arithmetic operations such as additions, multiplications and so on can be extended to intervals and
boxes. Letting ∗ being an operator and ~ its interval extension, one has X ~ Y ⊇ {x ∗ y|x ∈ X, y ∈ Y}.
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Algorithm 1 IsolateSols(S,X0,δ)

Input: A bounded box X0 of Rn, a system S of n analytic functions in n unknowns with only
regular solutions in X0, the Krawczyk operator KS , a non-negative real number δ.

Output: Two sets Xsol,Xind of boxes such that:

• boxes of Xsol ∪Xind are pairwise disjoint,

• x ∈ X0 is a solution of S ⇒ ∃X ∈ Xsol ∪Xind s.t. x ∈ X,

• X ∈ Xsol ⇒ X ⊂ i(X0) and KS(X) ⊂ i(X),

• X ∈ Xind ⇒ X ∩ ∂X0 6= ∅ and KS(X) ⊂ i(X) and w(X) < δ.

If P1 is an analytic function and X a box, the evaluation of P1 over X results in an interval Y that
satisfies Y ⊇ {P1(x)|x ∈ X}, and in general Y strictly includes the range of values, that is Y over-estimates
{P1(x)|x ∈ X}. As a consequence, if 0 /∈ Y then one can certify that P does not vanish in X.

1.5.2 Criteria for existence and uniqueness of solutions

Let P1, . . . , Pn be n analytic functions in n unknowns, S = {P1 = 0, . . . , Pn = 0} the associated system of
equations. A box X ⊂ Rn isolates a solution of S if there exists a unique x ∈ X such that P1(x) = . . . =
Pn(x) = 0.

Several criteria can be found in the interval arithmetic literature that certify existence and uniqueness
of a solution of S in a box, see for instance [Neu90, Kea96, MKC09, Sta95]. Most of them are based on the
Brouwer fixed point theorem and use interval Newton operators that contract a box around a solution.

Letting F be the multivariate function with components P1, . . . , Pn and X an interval of Rn, interval
Newton operators are of the form N(X) = y −V, where y ∈ X, and V is a box containing solutions of the
linear system J(X)v = F (y) where J(X) is the interval evaluation of the jacobian matrix of F . Among other
interval Newton operators is the Krawczyk operator [Kra69, Kea96] that takes y as the middle of X and
an approximate inverse of the derivative of F in y to determine the box V. Let us note KS the Krawczyk
operator for the system S, and recall that i(X) is the interior of X. Important results about the Krawczyk
operator are:

• KS(X) ⊂ i(X) ⇒ X contains a unique solution of S and the sequence X(0) = X, X(i+1) = KS(X(i))
converges asymptotically quadratically to this solution.

• KS(X) ∩X = ∅ ⇒ there is no solution of S in X.

1.5.3 Reliable numerical isolation

Interval evaluation, Krawczyk operator and bisection of boxes can be used together to design a simple reliable
numerical method to isolate all solutions of S in a given initial box X0. Such methods are described for
instance in [Neu90, Kea96, MKC09, Sta95] and called interval branch and bound algorithms or subdivision
methods. These algorithms successfully isolate all the solutions of S in a bounded domain provided they are
regular and in the interior of the domain. Note that in the case of a polynomial system it is possible to extend
such branch and bound methods to unbounded initial domains, see [Neu90, Section 5.6] or [Sta95, Section
5.10].

In the following, we consider the procedure IsolateSols with the specifications given in Algorithm 1.
We briefly explain the output of this algorithm and refer to [Imb16] for more details. The algorithm does
not identify solutions that are exactly on the boundary of the input domain X0 and uses δ-inflation. A
consequence is that a solution on ∂X0 can only be isolated in a box containing a part of the boundary in
its interior; the refinement of such a box is stopped thanks to the threshold on the width δ and the box is
output in Xind. Similarly, for a regular solution not on, but near the boundary (even outside X0), that is

7



at distance less than δ from ∂X0, the algorithm may return a box in Xind. On the other hand, with the
additional assumption that there is no solution on the boundary, setting δ = 0 certifies the isolation of all
solutions in the domain X0 or in other words that Xind is empty.

2 Enclosing the space curve C
In this section, we introduce Algo. 3 computing a δ-approximation of C. This goal is achieved by first finding
at least one point on each connected component of C and then using these points as initial points for a
certified path tracker. Let us first introduce the notions of x or y-critical points and boundary points.

Definition 4. A point p ∈ C is x-critical if the x component of the tangent of C at p vanishes. The x-critical
points of C are the solutions of the system P = Q = R = 0, where R = PyQz − PzQy. Similarly, p ∈ C is
y-critical if it is the solution of the system P = Q = R′ = 0 where R′ = PxQz − PzQx.

Definition 5. Let C be a box or a domain of R3, a point of C ∩ ∂C is called a boundary point.

Isolating boxes for boundary points and x-critical points of C are computed with the procedure IsolateSols

defined in Algo. 1. We introduce the notion of implicit points to manipulate a point known as the unique
solution of a system S in a box C = x× y × z.

Definition 6. Let P,Q define the curve C, E ∈ R[x, y, z] and S be the system P = Q = E = 0. The couple
(C, S) is an implicit point of C if KS(C) ⊂ i(C). Let p be the unique solution of S in C, we say that p is
implicitly defined by (C, S).

In the special case where E = x − x0 with x0 ∈ R, we say that (x0 × y × z, S) is an implicit point of C
if KS0(y × z) ⊂ i(y × z), where S0 = {P (x0, y, z) = Q(x0, y, z) = 0}. Similarly, in the special case where
E = y− y0 with y0 ∈ R, we say that (x× y0 × z, S) is an implicit point of C if KS0

(x× z) ⊂ i(x× z), where
S0 = {P (x, y0, z) = Q(x, y0, z) = 0}.

In Sec. 2.2, we characterize a connected component of C ∩C0: it is diffeomorphic either to a circle and
contains at least two x-critical points, or to [0, 1] and its extremities are boundary points. We also show how
to obtain these points as implicit points. In Sec. 2.3, we present the specifications of Algo. 2, our certified
path tracker and in Sec. 2.4, Algo. 3 computing a δ-approximation of C. In Sec. 2.1, we state the assumptions
allowing our approach being correct and terminating.

2.1 Assumptions

Recall that B0 = (x0,y0) and C0 = B0 × R. We define the following assumptions on P,Q and C:

(A1) The curve C is smooth above the box B0.

(A2) C is compact over B0 and z0 is a bounded interval such that C ⊂ B0 × z0.

(A3) P (x∗, y, z) = Q(x∗, y, z) = 0 has finitely many regular solutions when x∗ = l(x0) or u(x0), y ∈ y0 and
z ∈ R.

P (x, y∗, z) = Q(x, y∗, z) = 0 has finitely many regular solutions when y∗ = l(y0) or u(y0), x ∈ x0 and
z ∈ R.

(A4) P = Q = R = 0 has finitely many regular solutions in C0, and no solution in ∂C0.

(A5) Over a point of ∂B0, P = Q = 0 has only one solution and no solution above its corners.

8



2.2 Connected components of C ∩C0 and initial boxes

The following proposition characterizes the topology of the connected components of C ∩C0.

Proposition 7. Assuming (A1), the connected components of C ∩C0 are smooth one dimensional manifolds
possibly with boundary. In addition, assuming (A2) and (A3), any connected component Ck of C∩C0 satisfies
at least one of the following statements:

(a) Ck has exactly two boundary points,

(b) Ck has at least two x-critical points.

Proof. The first part of the proposition is straightforward. One dimensional manifolds are diffeomorphic
either to ]0, 1[, or to ]0, 1], or to [0, 1], or to a circle. Let Ck be a connected component of C. From
assumption (A2), it is compact, hence it is diffeomorphic either to [0, 1], or to a circle. Suppose first Ck has
an intersection with ∂C0. From (A3), this intersection is a point, hence Ck is diffeomorphic to [0, 1] and has
a second intersection with ∂C0. Suppose now that Ck does not intersect ∂C0. Hence it is diffeomorphic to
a circle and, since it is compact, it has minimum and maximum x-coordinates. Assertion (b) follows.

As a direct consequence of Prop. 7, the following corollary gives a constructive characterization of a set
containing at least one point on each connected component of C ∩C0.

Corollary 8. Consider the following systems of equations:

(S1) P (l(x0), y, z) = Q(l(x0), y, z) = 0, for y ∈ y0 and z ∈ R.

(S2) P (u(x0), y, z) = Q(u(x0), y, z) = 0, for y ∈ y0 and z ∈ R.

(S3) P (x, l(y0), z) = Q(x, l(y0), z) = 0, for x ∈ x0 and z ∈ R.

(S4) P (x, u(y0), z) = Q(x, u(y0), z) = 0, for x ∈ x0 and z ∈ R.

(S5) P (x, y, z) = Q(x, y, z) = R(x, y, z) = 0, for (x, y, z) ∈ C0.

Assuming (A3), (A4), the set of solutions of S1, . . . , S4 is finite and is the set of boundary points of C ∩C0,
the set of solutions of S5 is finite and is the set of x-critical points of C ∩C0. Then assuming (A2), the set
of solutions of S1, . . . , S5 is a finite set of points in B0 × z0 containing at least one point on each connected
component of C.

The solutions of S5 are obtained by calling IsolateSols(S5,B0 × z0,0); from assumption (A4) this
process terminates and the outputs Csol,Cind are such that Cind = ∅ (since S5 has no solution on ∂C0)
and Csol contains boxes isolating the solutions of S5. For each solution C ∈ Csol, the implicit point (C, S5)
defines an x-critical point of C.

The solutions of S1 are obtained by calling IsolateSols(S1,y0 × z0,0). From assumptions (A3) and
(A5), S1 has a finite number of solutions on y0 ×R that are regular and has no solution on ∂y0 ×R. Hence
the procedure terminates, and the two obtained sets Bsol,Bind are such that Bind = ∅ and Bsol contains
two dimensional boxes isolating the solutions of S1. A solution B = (y, z) in Bsol defines an implicit point
(C, < P,Q,E >) where C = l(x0)× y × z and E is the polynomial x− l(x0), as described in Def. 6. When
needed, C is contracted with l(x0)×KS1

(π(y,z)(C)). The solutions of S2, S3 and S4 are obtained similarly.

2.3 Certified numerical path-tracking

Our path-tracking procedure Track is specified in Algo. 2, its description is postponed to appendix A. The
tracker is used in Algo. 3 to compute the connected components of C ∩C0 and later in Sec. 5.1.2 to deduce
the topology of B.
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Algorithm 2 Track(< P,Q >,C0,(C0, S0),{(Cj , Sj)}j,δ)
Input: A system P = Q = 0 defining a smooth compact curve C in the domain C0, an implicit

point (C0, S0) of C, a finite set {(Cj , Sj)}j of implicit points of C containing (but not restricted
to) the boundary points of C in C0 and (C0, S0), δ > 0.

Output: A δ-approximation of the connected component of C ∩C0 containing (C0, S0) and the set
Con of implicit points of {(Cj , Sj)}j that are on the same connected component than (C0, S0).

Algorithm 3 Compute a δ-approximation of C in C0

Input: A system P = Q = 0 and an initial domain C0 = B0 ×R defining a smooth curve C ∩C0,
the set Cb of implicit points defining the boundary points of C ∩ C0, the set Cx of implicit
points defining the x-critical points of C ∩C0, δ > 0.

Output: A sequence of boxes (Ci)
m
i=1 that is a δ-approximation of C ∩C0.

1: Let Lb (resp. Lx) be a list containing elements of Cb (resp. Cx)
2: k ← 0, mk ← 0
3: while Lb 6= ∅ do
4: k = k + 1, (C, S) ← pop front(Lb)
5: ((Ci)

mk
i=mk−1+1,C

on) ← Track(< P,Q >,C0,(C, S),Cb ∪ Cx,δ)

6: remove Con ∩ Cb from Lb and Con ∩ Cx from Lx
7: while Lx 6= ∅ do
8: k = k + 1, (C, S) ← pop front(Lx)
9: ((Ci)

mk
i=mk−1+1,C

on) ← Track(< P,Q >,C0,(C, S),Cb ∪ Cx,δ)
10: remove Con ∩ Cx from Lx
11: Let m = mk

12: return (Ci)
m
i=1

2.4 Computing a δ-approximation of C
In the following, we assume that P,Q satisfy assumptions (A1) and (A2) of Sec. 2.1: C is smooth and compact
in C0. Based on the procedure Track, Algo. 3 computes a δ-approximation of C ∩C0.

Algo. 3 first computes δ-approximations for every connected components of C that are diffeomorphic to
[0, 1]. This is addressed by calling the procedure Track with boundary points as initial points. The boundary
points are implicitly defined by elements of Cb. Thus letting Ck be a connected component containing a
boundary point defined by (C, S) ∈ Cb, the call to the procedure Track in Step 5 terminates, returns a
δ-approximation of Ck and identifies the two extremities and the x-critical points of Ck.

When entering for the first time in the while loop in Step 3, the list Lb contains the two extremities of
each connected component of C ∩C0 that is diffeomorphic to [0, 1]. Each time the instruction in Step 6 is
performed, the two extremities of the connected component that has been tracked are removed from Lb and
the size of Lb decreases. When Lb is empty, each connected component that is diffeomorphic to [0, 1] has
been approximated, and the implicit points in Lx define the x-critical points that belong to the connected
components that are diffeomorphic to circles.

The connected components of C that are diffeomorphic to a circle are approximated in the while loop
beginning at Step 7 of Algo. 3. Recall that each connected component of C ∩C0 that is diffeomorphic to a
circle contains at least two x-critical points. Each time the loop is performed, the size of Lx decreases and
when Lx is empty, each connected component of C has been approximated.
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3 Isolating singularities of B
When C is defined by two analytic maps P,Q, [IMP15] describes, under genericity conditions on P,Q, the type
of singularities arising in the projection B: they are only nodes (two branches of C induce a self intersection
in B), or cusps (C has a vertical tangent). [IMP15] also introduces a system called ball system which solutions
are in one-to-one correspondence with the singularities of B, and shows that the ball system only has regular
solutions if and only if singularities of B are either nodes or ordinary cusps.

We first restate the assumptions and the main results of [IMP15]. Then we show how an enclosure of
C helps to restrict the domain where the ball system is solved while ensuring that all cusps and nodes are
obtained. Then we present Algo. 4 that decides, for a given solution of the ball system, if the corresponding
singularity is an ordinary cusp or a node when B is an apparent contour. Within this section, Σ denotes the
set of singular points of B ∩B0.

3.1 Assumptions

Consider the following assumptions:

(A6) For any (α, β) in B0, the system P (α, β, z) = Q(α, β, z) = 0 has at most 2 real roots counted with
multiplicities.

(A7) There is finitely many points (α, β) in B0 such that P (α, β, z) = Q(α, β, z) = 0 has 2 real roots counted
with multiplicities.

(A8) π(x,y) restricted to the curve C is a proper map, that is the inverse image of a compact is compact.

(A9) The singularities of the curve B in B0 are either nodes or ordinary cusps.

Assumption (A2) given in Sec. 2.1 is a consequence of (A8). Notice that Thom Transversality Theorem
implies that (A1), (A6), . . . , (A9) hold for generic analytic maps P,Q defining C (see [Dem00, Th. 3.9.7 and
§4.7]).

3.2 Ball system

Following a geometric modelling, [IMP15] defines a 4 dimensional system which solutions maps to the sin-
gularities of B. In this modelling, two solutions (x, y, z1) and (x, y, z2) of P = Q = 0 (or P = Pz = 0) are
mapped to the point (x, y, c, r2) with c = (z1 + z2)/2 and r2 = (z1 − z2)2. Fig. 4 illustrates this mapping for
singularities of the apparent contour of a torus.

We recall the main results of [IMP15].

Lemma 9 ( [IMP15, Lemma 4]). Let P,Q be two analytic functions in x, y, z satisfying the Assumptions
(A1), (A6)− (A8), and S be the set of solutions of the so-called ball system:

1
2 (P (x, y, c+

√
r2) + P (x, y, c−√r2)) = 0

1
2
√
r2

(P (x, y, c+
√
r2)− P (x, y, c−√r2)) = 0

1
2 (Q(x, y, c+

√
r2) +Q(x, y, c−√r2)) = 0

1
2
√
r2

(Q(x, y, c+
√
r2)−Q(x, y, c−√r2)) = 0

(1)

in B0 × R× R+. Then π′(x,y)(S) = Σ, where π′(x,y) is the projection from R4 to the (x, y)-plane.

Lemma 10 ( [IMP15, Lemma 5]). Under the Assumptions (A1), (A6) − (A8), all the solutions of the ball
system in B0 × R× R+ are regular if and only if (A9) is satisfied.

In addition, the solutions of the ball system with r2 = 0 map to cusps in 2d and the curve in 3d has a
vertical tangent (collinear to the z-axis); whereas the solutions with r2 6= 0 map to nodes.

11



Figure 4: Singularities of the apparent contour B of the torus. For nodes and cusps singularities of B, their
preimages on the space curve C as well as corresponding centers c and radii r2 = r2 for the ball system are
represented.

3.3 Solving domain

In [IMP15], the ball system is solved within the box B0 × R × R+ with a subdivision solver. Using the
δ-approximation (Ci)1≤i≤m of C computed by Algo. 3, we propose to reduce significantly the domain of
research for the singularities. Indeed, given a singular point σ of B, there exists 1 ≤ i ≤ m such that σ ∈ Bi,
where Bi = π(x,y)(Ci). Hence it is possible to isolate all singularities by solving the ball system within
Bi × R× R+, for 1 ≤ i ≤ m. In addition, Prop. 11 shows how to bound the solving domain in the c and r2
components.

Proposition 11. Let (Ci)1≤i≤m be a δ-approximation of C. For 1 ≤ i ≤ m, let Ci = (xi,yi, zi), Bi =
π(x,y)(Ci) = (xi,yi), and for 1 ≤ i < j ≤ m, let Bij = (xij ,yij) = Bi ∩Bj and consider the sets:

• Di = (xi,yi, zi, [0, (
w(zi)

2 )2]),

• Dij = (xij ,yij ,
(zi+zj)

2 , (
(zi−zj)

2 )2)

Then, under the Assumptions (A1), (A6) − (A9), all solutions of the ball system lie in (
⋃

1≤i≤m Di) ∪
(
⋃

1≤i<j≤m Dij).

Proof. Let p = (xp, yp, cp, rp) ∈ B0 × R × R+ be a solution of the ball system and σ = π′(x,y)(p) the

corresponding singularity in Σ. From Assumption (A9), σ is either an ordinary cusp or a node.
Suppose first it is an ordinary cusp. Then rp = 0, and σ is the projection of a single point p′ = (xp, yp, cp)

of C. Hence there exists 1 ≤ i ≤ m such that p′ ∈ Ci. As a consequence we have cp ∈ zi and p ∈ Di (see
Fig. 5).

Suppose now σ is a node. Then rp > 0, and σ is the projection of two points p− = (xp, yp, cp−
√
rp) and

p+ = (xp, yp, cp +
√
rp) of C. Hence there exist 1 ≤ i ≤ m and 1 ≤ j ≤ m such that p− ∈ Ci and p+ ∈ Cj .

If i = j, we have cp ∈ zi and rp ∈ [0, (w(zi)
2 )2], and finally p ∈ Di. If i 6= j (this case is illustrated in Fig. 5),

cp lies in
zi+zj

2 that is the center of the two intervals zi and zj , and rp lies in (
zi−zj

2 )2, that is the square of
the corresponding radius.

3.4 Singularities of an apparent contour

For a generic 3-dimensional curve, the singularities of its projection B are only nodes. When the curve B is
the apparent contour of a smooth analytic surface, then its singularities generically also include cusps. We
introduce Algo. 4 to distinguish these two types of singularities.
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Figure 5: Some boxes and their projections containing singularities of B. Cusps singularities are in boxes
Bi, nodes in boxes Bi ∩Bj .

Algorithm 4 Singularity types for an apparent contour

Input: P in Q[x, y, z], a box D = (x,y, c, r) s.t Kb(D) ⊂ i(D), where Kb is the Krawczyk operator
for the ball system.

Output: The type of the singularity contained in π′(x,y)(D) = (x,y).
1: while 0 ∈ r do
2: if K(P,Pz ,Pzz)((x,y, c)) ⊂ i((x,y, c)) then return cusp

3: D = Kb(D)

4: return node

Let D = (x,y, c, r) be a box isolating a solution p = (x, y, c, r) ∈ D of the ball system and let σ = π′(x,y)(p)

the associated singularity of B. If 0 /∈ r then r 6= 0 and σ is a node. Otherwise, σ can be either a cusp or
a node. Recall that σ is an ordinary cusp of B only if it is the projection of a point of CP∩Pz

that has a
vertical tangent (collinear to the z-axis). In other words, if σ = (α, β) is a cusp, there exists a unique γ ∈ R
such that σ = π(x,y)(α, β, γ) and P (α, β, γ) = Pz(α, β, γ) = Pzz(α, β, γ) = 0. According to assumption (A6),
γ is a triple root of P (α, β, z), that is Pzzz(α, β, γ) 6= 0. The regularity of the curve CP∩Pz

thus implies that
(α, β, γ) is a regular solution of the system P = Pz = Pzz = 0 (see [IMP17, Lemma 10]). Noting K(P,Pz,Pzz)

the Krawczyk operator for the latter system, the test on Line 2 of Algo. 4 is eventually true for a small
enough box those projection contains a cusp.

While refining the box D, Algo. 4 hence terminates for a box D∗ = (x∗,y∗, c∗, r∗) ⊂ D, containing p
such that either 0 /∈ r∗ and π′(x,y)(p) is a node, or K(P,Pz,Pzz)((x∗,y∗, c∗)) ⊂ i((x∗,y∗, c∗)) and π′(x,y)(p) is
an ordinary cusp.

4 Topology at special points of B
In this section, we compute witness boxes for the singularities and critical points of B, that is isolating boxes
such that the topology of the curve inside these boxes can be deduced from the intersections of the curve
with their boundaries. A special care is devoted to the refinement of boxes such that the intersections of the
curve with their boundaries do not eventually occur at the corners. The case of a node is detailed and the
other cases are only sketched since they are similar.
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4.1 Boundary points

We define the boundary points of C as the set C∩(∂B0×R) and the boundary points of B as the set B∩∂B0.
With Assumptions (A3) − (A5), the boundary points of C and B are in one-to-one correspondence, are not
x nor y-critical of C nor B and are not the corners of B0. The isolating boxes of boundary points of C can
thus be refined until their projection on ∂B0 are disjoint.

4.2 Preprocessing of nodes, cusps and x-extreme points

We add the following assumptions.

(A10) The two points of C above a node of B are not x-critical nor y-critical points of C.

(A11) P = Q = R′ = 0 has finitely many regular solutions in C0 and none in ∂C0, they are the y-critical
points of the curve C.

Note that a cusp of B corresponds to a point of C with a vertical tangent (collinear to the z-axis), that
is both an x and y-critical point of C. With all our assumptions, the x or y-critical points of C are in i(C0)
and

• x and y-critical points of C are in one-to-one correspondence with cusps of B.

• x-critical not y-critical points of C are in one-to-one correspondence with smooth x-critical points of
B.

• y-critical not x-critical points of C are in one-to-one correspondence with smooth y-critical points of
B.

The first step is to compute implicit points for y-critical points of C, by solving the system P = Q = R′ = 0
with IsolateSols on B0 × z0. Assumption (A11) ensures the termination of the process with input
ε = 0. Then the 4-dimensional boxes isolating nodes and cusps (the solutions of the ball system) and the
3-dimensional boxes isolating x and y-critical points (the solutions of P = Q = R = 0 and P = Q = R′ = 0)
are refined until their projections in the (xy)-plane satisfy

• a box of a cusps overlaps exactly one x-critical and one y-critical point,

• a box of a node overlaps no x nor y-critical point,

• a box of an x-critical point that is not overlapping a cusp, does not overlap any y-critical point.

An x-critical point of B that is smooth, i.e. is not also y-critical, is called x-extreme. We call special
points of B a point that is either x-extreme, node or cusp. Similarly as in [IMP17], we define a witness box
for a special point of the curve B.

Definition 12. A witness box for a special point (x-extreme, node or cusp) of the curve B is a box containing
this point and such that the topology of the curve inside the box is the one of the graph connecting its center
to the crossings of the curve on its boundary.

This definition implies that a witness box has 4 crossings of the curve on its boundary for a node and 2
crossings for a cusp or an x-extreme point. Right part of Fig. 6 shows a witness box for a node.

4.3 Topology at a node singularity

Algo. 6 computes a witness box for a node. The idea is that if the curve C does not contain x or y-critical
point above an isolating box B of the node, B is a witness box when the curve B crosses its boundary 4
times or equivalently the curve C crosses ∂B× R 4 times. To avoid the problem of crossings on the corners
of B, the refinement is performed such that its x-coordinate is exponentially smaller than its y-coordinate,
so that B will eventually cross only the left and right sides of B and far from the corners (see right part of
Fig. 6).
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Figure 6: Left (resp. middle): the decomposition of B (resp. ∂B). Right: a witness box Bn for a node.

Let B = (xB ,yB) be a 2D box of the (x, y)-plane and let a = w(xB) and b = w(yB). Assuming a < b,
we decompose B into three boxes and ∂B into eight closed segments as illustrated in the left and middle
part of Fig. 6, and we name the boxes and segments with respect to their cardinal directions around the
center of B. In particular, M(B) is (xB ,m(yB) + [−a/2, a/2]), and E(∂B) and W (∂B) are the respective
segments (u(xB),m(yB) + [−b/4, b/4]) and (l(xB),m(yB) + [−b/4, b/4]).

Proposition 13. Let B be a box containing a unique node of B such that B×R does not contain any x or
y-critical point of C. Then

(i) Algo. 5 terminates,

(ii) if Algo. 5 returns True then B is a witness box for the node,

(iii) if B intersects exactly twice E(∂B), twice W (∂B) and does not intersect NW (∂B)∪N(∂B)∪NE(∂B)∪
SW (∂B) ∪ S(∂B) ∪ SE(∂B), then Algo. 5 returns True.

Proof. Since there is no x-critical point of C in B×R, the system P (x = l(xB), y, z) = Q(x = l(xB), y, z) = 0
(resp. P (x = u(xB), y, z) = Q(x = u(xB), y, z) = 0) has only regular solutions on yB × R. In addition,
since w(yB)/4 > 0, the procedure IsolateSols called in Step 2 (resp. Step 3) of Algo. 5 terminates
even if solutions lie on ∂yB × R. Suppose now the sets of undetermined boxes Xind

1 ,Xind
2 are empty. Then

P = Q = 0 has no solution above the corners of B, and in particular the systems P (x, y = l(yB), z) =
Q(x, y = l(yB), z) = 0 and P (x, y = u(yB), z) = Q(x, y = u(yB), z) = 0 have no solution on ∂xB×R. Hence
the procedures IsolateSols called in Step 6 and 7 of Algo. 5 terminates if and only if the two later systems
have only regular solutions on xB ×R, and this is the case since C has no y-critical point over B. (i) follows.

Suppose Algo. 5 returns True. This implies that B crosses the boundary of B in exactly four distinct
points. Since C does not have x nor y-critical point above B, the two branches of C, those projections pass
through the node, are x and y-monotone above B. The projections of these two branches thus cross the
boundary of B in exactly four distinct points. In addition, there cannot be any other branch of C, since it
would either generate more crossings on the boundary or the existence of critical points in the box, thus (ii)
follows.

Proof of (iii). If there exists a box X ∈ Xind
1 , it should include one of the points in l(xB) × ∂yB and

its width should be less than w(yB)/4. Since the curve B does not intersect NW (∂B) ∪ SW (∂B) such a
box cannot contain any solution thus Xind

1 is empty. Similarly, Xind
2 is empty and the 2 solutions on E(∂B)

(resp. W (∂B)) are reported in Xsol
1 (resp. Xsol

2 ). In addition, the curve B does not intersect S(∂B) nor
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Algorithm 5 IsWitnessNodeBox(B)

Input: A box B containing a unique node of B, s.t. B × R does not contain any x or y-critical
point of C.

Output: False when the box is not witness. True when B intersects exactly twice E(∂B), twice
W (∂B) and does not intersect NW (∂B) ∪N(∂B) ∪NE(∂B) ∪ SW (∂B) ∪ S(∂B) ∪ SE(∂B).

1: Let B = (xB,yB)
2: (Xsol

1 ,Xind
1 ) = IsolateSols(P (x = l(xB), y, z) = Q(x = l(xB), y, z) = 0,yB × z0,w(yB)/4)

3: (Xsol
2 ,Xind

2 ) = IsolateSols(P (x = u(xB), y, z) = Q(x = u(xB), y, z) = 0,yB × z0,w(yB)/4)
4: if |Xind

1 |> 0 or |Xind
2 |> 0 then

5: return False
6: (Xsol

3 ,Xind
3 ) = IsolateSols(P (x, y = l(yB), z) = Q(x, y = l(yB), z) = 0,xB × z0,0)

7: (Xsol
4 ,Xind

4 ) = IsolateSols(P (x, y = u(yB), z) = Q(x, y = u(yB), z) = 0,xB × z0,0)
8: if not |Xsol

1 |+|Xsol
2 |+|Xsol

3 |+|Xsol
4 |= 4 then

9: return False
10: return True

Algorithm 6 Witness box for a node

Input: A box D containing a unique solution of the ball system that projects into a node σ and
such that π′(x,y)(D)× R does not contain any x or y-critical point of C.

Output: A witness box for σ.
1: Let D′ = D and B = π′(x,y)(D)

2: Let n = 0, an = w(B), bn = w(B) and Bn = B
3: repeat
4: n = n+ 1, an = an−1/4 and bn = bn−1/2
5: repeat
6: D′ = Kb(D

′), B′ = π′(x,y)(D
′)

7: Bn = m(B′) + ([−an/2, an/2], [−bn/2, bn/2])
8: until B′ ⊆M(Bn)
9: until Bn ⊆ B and IsWitnessNodeBox(Bn)

10: return Bn

N(∂B) and Xsol
3 and Xsol

4 are empty. Hence the number of reported solutions is 4 and the algorithm returns
True.

Note that Algo. 5 may return false negative: a box that is witness may not be classified as such. This
can happen when the curve crosses the box near its corners. The idea of Algo. 6 is to refine the box of a
node to avoid such a case, that is such that property (iii) of Prop. 13 eventually holds. The sequence Bn of
boxes constructed in Algo. 6 is illustrated in the right part of Fig. 6.

Proposition 14. Algo. 6 correctly computes a witness box.

Proof. For n fixed, the boxes M(Bn) and B′ have the same center and the width of M(Bn) is an. During
the repeat loop of line 5, the width of B′ is strictly decreasing and the condition B′ ⊆M(Bn) of Line 8 will
be true after a finite number of loops.

Let Bn
σ = σ + [−an, an] × [−2bn, 2bn], this is a strictly decreasing sequence for the inclusion and for

m > n, Bm ⊂ Bn
σ. Note also that NW (∂Bn) ∪ NE(∂Bn) ∪ SW (∂Bn) ∪ SE(∂Bn) ⊂ Bn

σ. The boxes Bn

and B both contain the node σ in their interior, so the condition Bn ⊆ B of Line 9 will be true for any n
large enough.
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It remains to show that for n large enough, Bn will be reported as witness by Algo. 6. We will show
that Bn satisfies the sufficient condition (iii) of Prop. 13.

Since B× R does not contain any x and y-critical points of C, for n large enough, one can assume that
C ∩ (Bn

σ × R) has two connected components C1 and C2 that are x and y-monotone. These two branches
project onto two curves B1 = π(x,y)(C1) and B2 = π(x,y)(C2) that are x-monotone, cross at σ and have

bounded slopes. On the other hand, the aspect ratio bn
an

= 2n b0a0 of the box Bn is increasing. For n large

enough, B1 (resp. B2) is thus crossing E(∂B) and W (∂B) exactly once and there is no other intersection on
NW (∂Bn) ∪N(∂Bn) ∪NE(∂Bn) ∪ SW (∂Bn) ∪ S(∂Bn) ∪ SE(∂Bn). Condition (iii) of Prop. 13 is hence
satisfied and the returned box Bn is a witness box.

4.4 Topology at a cusp singularity

Algo. 5 and 6 are easily adapted for a cusp. The input of Algo. 6 should then be a box D containing a
unique solution of the ball system that projects into a cusp σ and such that π′(x,y)(D)×R does not contain
any other x or y-critical point of C than the point projecting onto the cusp. The input of Algo. 5 should
then be a box B containing a unique cusp of B, such that B× R does not contain any other x or y-critical
point of C than the point projecting onto the cusp. The test for the number of reported solutions at Line 8
should be with the value 2 instead of 4. The output will be true when B intersects exactly once E(∂B), once
W (∂B) and does not intersect NW (∂B) ∪N(∂B) ∪NE(∂B) ∪ SW (∂B) ∪ S(∂B) ∪ SE(∂B).

For the proof of correctness, the same arguments hold when the limit of the tangent to B at the cusp is
not collinear with the y-axis, since in this case the slope of the branch is bounded. When this limit is the
y-axis, the same algorithm with the variables x and y swapped will behave as above. Or in other words,
the box Bn is elongated in the x-direction instead of the y-direction and intersections of the curve with its
boundary will eventually appear on the north or south sides and far from the corners. The solution is thus
to run in parallel the two algorithms and stop as soon as one has identified a witness box.

4.5 Topology at an x-extreme point

For an x-extreme point, the method is similar to the one for a cusp with a limit of the tangents collinear
with the y-axis. Indeed, the tangent to the curve at the x-extreme point is collinear with the y-axis, so that
the curve is locally y-monotone. The box Bn is thus elongated in the x-direction and intersections of the
curve with its boundary will eventually appear on the north or south sides and far from the corners.

5 Global topology of B as an embedded graph

In this section, the certified tracking of the curve C ∩ C0 together with the local topology at the special
points of its projection B ∩B0 are combined to compute the global topology of B ∩B0. We use a XPMap
to encode this topology and design a point location algorithm, that is given p ∈ B0 \ B, find the connected
component of B0 \ B to which p belongs.

In Sec. 5.1, we compute a graph G such that B ∩ B0 is an embedding of G. The vertices of G are
the special points computed in Section 4 and the edges are computed by tracking between these points. In
addition, to restrict the point location algorithm to the box B0, we consider the curve B∂ = (B ∩B0)∪ ∂B0

as the embedding of a graph G∂ . The graph G∂ and its embedding B∂ have in general several connected
components. Sec. 5.2 shows how to compute a CMap encoding the topology of one component. The only
geometric task for this, is to order branches of B around node singularities. Sec. 5.3 shows how to answer
location queries with respect to one connected component of B∂ . In Sec. 5.4, the XPMap encoding the
topology of B∂ is constructed and the point location algorithm is generalized to this structure.
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5.1 Computing a graph of which B ∩B0 is an embedding

Let Bx and Bn be the sets of witness boxes for the x-extreme points or cusps, and the nodes of B ∩ B0

computed in Section 4. We define Vx and Vn as the cylinders above witness boxes: Vx = {B × R |B ∈
Bx} and Vn = {B × R |B ∈ Bn}. We note C0 (resp. B0) the domain of R3 (resp. R2) defined as
C0 \

⋃
C∈Vx∪Vn i(C) (resp. π(x,y)(C0)). Recall that Cb is the set of implicit points for the boundary points.

We define Vb as {C | (C, S) ∈ Cb}.
Since x-critical points of C ∩ C0 are isolated in boxes of Vx, the connected components of C ∩ C0 are

diffeomorphic to [0, 1] and x-monotone. Their endpoints are C ∩
⋃

C∈Vx∪Vn∪Vb ∂C2. Hence a point of the
latter set is either the left-most or the right-most point of a connected component of C ∩ C0, and we state
the following definition.

Definition 15. Let C be a box of Vx∪Vn or the box C0. We call a point c of C ∩∂C a connection of C ∩C0

in C. If c is the left-most point of a connected component of C ∩ C0, we say that c is an out-connection.
Otherwise we call it an in-connection.

Remark that implicit points of Cb define connections of C ∩ C0 in C0. During the computation of
witness boxes as described in Section 4, the connections are also computed. We thus assume that for a box
C ∈ Vx∪Vn, the connections of C ∩C0 in C are given by the set connect(C) = {. . . , (Ci, Si), . . .} of disjoint
implicit points (i.e. Ci are pairwise disjoint). If C ∈ Vb, we let connect(C) = {(C, S)} where S is the
system defining the boundary containing C (see Corollary 8).

Let V be the set Vx ∪ Vn ∪ Vb. Let E be the set of connected components of C ∩ C0. We define the
incidence relation I : E → V × V such that for e ∈ E, I(e) = (C,C′) if and only if the extremities of e are
an out-connection of C ∩ C0 in C and an in-connection of C ∩ C0 in C′. By construction, the projections of
edges do not cross and the incidence of four edges at a node is correctly encoded, this yields the following
proposition.

Proposition 16. Let G be the graph (V,E, I). The curve B∩B0 is an embedding of G, seen as a non-directed
graph.

We note v1, v2, . . . the vertices of G (i.e. the boxes of V = Vx ∪Vn ∪Vb) and e1, e2, . . . the edges of G,
(i.e. the connected components of C ∩ C0). The graph G representing the apparent contour of the torus is
shown in the left part of Fig. 7.

We show in Sec. 5.1.1 how to distinguish in and out connections of C ∩C0 in boxes of V and in Sec. 5.1.2
how to compute the incidence relation I by computing δ-approximations of the connected components of
C ∩ C0. We consider that G is equipped with an application approx that maps each e ∈ E to its δ-
approximation. Furthermore, approx satisfies the three following properties:

(a1) if e, e′ are two edges of G, then approx(e, δ) = (Ce
i )
me
i=1 and approx(e′, δ) = (Ce′

i )
me′
i=1 satisfy 1.1Ce

i ∩
Ce′

i′ = ∅ for all 1 ≤ i ≤ me, for all 1 ≤ i′ ≤ me′ .

(a2) if e is an edge of G, C a box of V and approx(e, δ) = (Ce
i )
me
i=1, then π(x,y)(C

e
i ) ∩ π(x,y)(C) 6= ∅ if and

only if i = 1 or i = me and e has a connection in C.

(a3) if e is an edge of G and approx(e, δ) = (Ce
i )
me
i=1 then π(x,y)(C

e
1), π(x,y)(C

e
m) contain no node, cusp or

x-extreme point of B

In the following, we consider the faces of B ∩B0 in B0, that are the connected components of B0 \ B.
It is thus convenient to represent explicitly the boundary of B0 in a graph G∂ = (V∂ , E∂ , I∂) of which the
curve B∂ = (B ∩B0) ∪ ∂B0 is an embedding. G∂ is defined as follows.

If Vb is empty, then V∂ = V ∪ {B∂ × R} where B∂ is a box reduced to the left bottom corner of B0

and E∂ = E ∪ {e∂} where e∂ is ∂B0 \B∂ . Otherwise (Vb is not empty), V∂ = V and E∂ = E ∪ E′ where
E′ is the set of connected components of ∂B0 \

⋃
C∈Vb i(π(x,y)(C)). Then I∂(e) is defined as I(e) if e ∈ E.

2Recall that boxes of Vb have exactly one coordinate reduced to one point, thus ∂C = C if C ∈ Vb.
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Figure 7: Left: The directed graph G∂ for the apparent contour of the torus. Its edges are represented
by thin arrows linking out-connections to in-connections of C ∩ C0 in boxes of V . Thick lines represent the
curve B in witness boxes. Dashed arrows represent the clockwise walk on ∂B0. Right: A witness box B for
a node, and in bold the four boxes isolating the connections of B in B.

Otherwise e ∈ E∂ \ E and I∂(e) = (v, v′) if and only if the extremities of e are extremities of the segments
π(x,y)(v) and π(x,y)(v

′) and the walk from v to v′ around i(B0) is a clockwise walk.
It is clear that the curve B∂ is an embedding of G∂ . The left part of Fig. 7 shows, in dashed arrows, the

edges of E∂ \ E.

5.1.1 In and out connections

We characterize in and out connections of C ∩ C0 in a box of Vx ∪ Vn or in C0 using the direction of the
tangent of the curve. For this, let E∗(∂B) (resp. W ∗(∂B)) denote the set (E(∂B)∪SE(∂B)∪NE(∂B))∩B
(resp. (W (∂B) ∪ SW (∂B) ∪NW (∂B)) ∩B). We first consider the case where C ∈ Vx ∪Vn.

Proposition 17. Let c be a connection of C∩C0 in a box C ∈ Vx∪Vn, and B = π(x,y)(C). Let t = (tx, ty, tz)
be a tangent vector of C at c. Then

(i) tx 6= 0 and ty 6= 0;

(ii) c is an out-connection of C ∩ C0 in C if and only if π(x,y)(c) ∈ E∗(∂B) or π(x,y)(c) ∈ N(∂B) and
txty > 0 or π(x,y)(c) ∈ S(∂B) and txty < 0;

(iii) c is an in-connection of C ∩ C0 in C if and only if π(x,y)(c) ∈ W ∗(∂B) or π(x,y)(c) ∈ N(∂B) and
txty < 0 or π(x,y)(c) ∈ S(∂B) and txty > 0.

Proof. According to Section 4, the boxes in Vx ∪ Vn do not contain any x or y-critical point on their
boundary so that property (i) holds. Claim (ii) (resp. (iii)) rephrases the conditions such that the tangent
vector pointing out of the box is oriented to the left (resp. right) thus yielding an out-connection (resp.
in-connection).

Prop. 17 is easily adapted for boundary points that is when c is a connection of C ∩ C0 in C0. From
assumptions (A4), (A11), ∂C0 contains neither x nor y-critical point and (i) follows. Then one can easily
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show that properties (ii′) and (iii′), obtained from (ii) and (iii) by swapping E and W , and N and S, hold
since this is now the tangent vector pointing inside the box that is relevant.

Prop. 17 is used to decide if a connection c implicitly defined by the couple (Ci, Si) is an out or an in
connection as follows. Ci can be contracted with the Krawczyk operator KSi

until 0 /∈ R(Ci) and 0 /∈ R′(Ci),
where R and R′ as in Def. 4 are the x and y component of a tangent vector. This process terminates from
(i) of Prop. 17, and (ii), (iii), (ii′), (iii′) allows to conclude. Right part of Fig. 7 illustrates this in the case
of a node singularity. For two among the four boxes isolating the connections in its witness box, the cones
containing the tangent vector (R(Ci), R

′(Ci)) are drawn with dashed lines.

5.1.2 Computing the incidence relation I and δ-approximations of edges

Let C+ (resp. C−) be the set of implicit points defining the out (resp. in) connections of C∩C0 in boxes of Vx∪
Vn and in C0. For each out-connection (Ci, Si) ∈ C+, the process Track(< P,Q >,C0,(Ci, Si),C−∪{(Ci, Si)},δ)
defined in Algo. 2 is performed. This process terminates and returns a δ-approximation (Ce

i )
me
1 of the con-

nected component e of C ∩ C0 having (Ci, Si) as left-most point and the set Con containing exactly the
implicit point (Cj , Sj) defining the right-most point of e. This defines the edge e ∈ E with I(e) = (v, v′)
where v (resp. v′) is the vertex of G having (Ci, Si) (resp. (Cj , Sj)) as one of its out (resp. in) connections.
We let approx(e, δ) = (Ce

i )
me
i=1.

To ensure that the application approx satisfies the properties (a1), (a2) and (a3) listed above, the tracking
of edges is refined as follows. Each time a new approximation approx(e, δ) is computed, (a2) is checked and
a δ

2 -approximation of e is computed while it does not hold. This process terminates due to the properties
of witness boxes. Then for each e′ for which approx(e′, δ) is already known, (a1) is checked for e, e′. While
it does not hold, δ2 -approximations of e and e′ are computed. This process terminates since e and e′ are, by
construction, non-intersecting smooth curves. Finally (a3) is checked for e, e′. Let approx(e, δ) = (Ce

i )
me
i=1

and approx(e′, δ) = (Ce′

i )
me′
i=1 . Since (a2) holds, the ball system can have solutions only in the 4-dimensional

boxes constructed as in Prop. 11 from Ce
1,C

e′

1 ,C
e
me
,Ce′

me′
. Then δ

2 -approximations of e and e′ are computed
while the ball system has a solution in one of the latter boxes. This process terminates since each singularity
of B has a strictly positive distance with any point of the boundary of a witness box around it. To avoid
x-extreme points, one has to check that boxes Ce

1 and Ce
me

do not contain solution of the system (S5) as
defined in Corollary 8 and refine the boxes if needed.

5.2 Computing the CMap of one connected component

Let B1∂ , . . . ,Bn
′

∂ be the connected components of B∂ . ThenG∂ has n′ connected componentsG1 = (V 1, E1, I1),

. . . , Gn
′

= (V n
′
, En

′
, In

′
) such that the vertices of Gi are the cusps, nodes, x-extreme and boundary points

of Bi∂ , and the projections of the edges of Gi are the connected components of Bi∂ \ i(B0). We suppose
that G1 is the connected component containing the boundary points of B∂ . We aim here at computing for
each 1 ≤ k ≤ n′ a CMap (Hk, σk, αk) representing the embedding Bk∂ of Gk = (V k, Ek, Ik). As emphasized
in [LZ13][§1.3.3], or in [Köt02], computing the faces of an embedding reduces to order counter-clockwise the
edges around each vertex. The CMap (Hk, σk, αk) representing the embedding Bk∂ of Gk = (V k, Ek, Ik)
encodes this order in the permutation σk, and each face of Bk∂ is an orbit of ϕk = (σk)−1 ◦ αk which is an
ordered sequence of half-edges describing a counter-clockwise walk around it. A vertex of V k corresponds
either to a node, a cusp, a boundary point or a x-extreme point of Bk. Around a cusp or an x-extreme point
p, Bk \ p has only two branches, thus there is no need to order them.

Let p be a node of Bk and B be its associated witness box. Since the connected components of (Bk\p)∩B
are non intersecting curves linking p to the projections of the connections of C in B×R, a counter-clockwise
ordering of the branches of Bk \ p around p is given by the counter-clockwise order of the connections of Bk
in B (see the right part of Fig. 7).

Let now p be a boundary point of Bk∩B0. A counter-clockwise ordering of the branches of Bk∂ \p around
p can be directly deduced from the part of the boundary to which p belongs. Consider the left part of Fig. 7,
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Algorithm 7 CMap construction

Input: A graph Gk = (V k, Ek, Ik)
Output: A CMap (Hk, σk, αk) encoding the embedding Bk∂ of Gk

1: Let Vk = {i | vi ∈ V k}, Ek = {i | ei ∈ Ek} and (Oi)i∈Vk be empty sets.
2: Let Hk = ∅, αk be an involution on Hk and σk be a permutation on Hk

3: for i ∈ Ek do
4: Let Hk = Hk ∪ {h+i , h

−
i }, αk = αk ∪ {(h+i , h

−
i )}

5: Suppose Ik(ei) = (vj , vl) with j, l ∈ Vk and let Oj = Oj ∪ {h+i }, Ol = Ol ∪ {h−i }
6: for i ∈ Vk do
7: Order counter-clockwise the connections of Oi around ∂(π(x,y)(vi))

8: Let σk be the permutation on Hk which orbits are Oi, for i ∈ Vk.
9: return (Hk, σk, αk)

Algorithm 8 Point-face location on the boundary of a witness box

Input: The CMap (Hk, σk, αk) of Bk∂ , a box C ∈ Cx ∪ Cn, a point p ∈ ∂B where B = π(x,y)(C).
Preconditions: p is not in B

Output: The orbit of ϕk describing the face of Bk∂ to which p belongs.
1: Let v = (. . . , h∗i , . . .) be the orbit of σk corresponding to C
2: Let {. . . , ci = (Ci, Si), . . .} be the connections of C in C associated to v
3: Contract each ci with Ci = KSi(Ci) until their projections are disjoint and p 6∈ π(x,y)(Ci)
4: Order counter-clockwise connections ci and p on ∂B and let (c1, p, c2, . . .) be such an ordering
5: Let f be the orbit of ϕk containing h∗1
6: return f

and let p be the boundary point of which v1 is a witness box. Since p is on E∗(∂B), a counter-clockwise
ordering is necessarily (e1, e14, e13).

Algo. 7 performs the construction of the CMap of a connected component Bk∂ of B∂ . In a first loop, pairs
of half-edges are created from edges: to each edge ei ∈ Ek are associated two half-edges h+i and h−i , such
that h+i is oriented as ei, i.e. if Ik(ei) = (vj , vl), h

+
i leaves vj and h−i leaves vl. In other words, h+i represents

a walk from left to right along π(x,y)(ei). In addition, half-edges leaving a common vertex are collected. The
second loop aims at ordering the half-edges around vertices to define faces.

5.3 Faces of a CMap

To define the relative positions of the CMaps encoding the different connected components and thus comput-
ing an XPMap, the exterior face of each CMap is first identified. Then we propose a procedure to identify
to which face of Bk a point p /∈ Bk belongs.

5.3.1 Exterior face

Point-face location on the boundary of a witness box. As an intermediate step, Algo. 8
identifies the face containing a point located on the boundary of a witness box. In the algorithm, h∗ stands
for an half-edge h+ or h−. In Step 3, the connections of C in C are contracted with the appropriated
Krawczyk operator until their projections are pairwise disjoint and do not contain p. This step terminates
since p /∈ B. Then it suffices to order counter-clockwise p and the projections of the connections of C in C
on ∂(π(x,y)(C)) to conclude. The right (resp. left) part of Fig. 8 illustrates this procedure when π(x,y)(C)
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Figure 8: Finding the face containing a point p on the boundary of the witness box of a cusp (left) and of
a node (right).

Algorithm 9 Exterior face

Input: The CMap (Hk, σk, αk) of Bk∂
Output: The orbit of ϕk describing the exterior face of Bk∂ and a leftmost box C enclosing Bk∂ if

k > 1, C = ∅ if k = 1.
1: if k = 1 then
2: Let e be an edge of E∂ \ E and h+ be the half-edge associated with e
3: Let f be the orbit of ϕk containing h+ and C = ∅
4: else
5: Find a leftmost box C enclosing Bk∂ and let p be any point on W ∗(∂(π(x,y)(C)))

6: Let f be the result of Algo. 8 with input (Hk, σk, αk), C and p

7: return f , C

is the witness box of a node (resp. cusp). The orbit of the node vertex is (h−1 , h
+
2 , h

+
3 , h

−
4 ) and (c1, p, c2, . . .)

is a counter-clockwise order on the boundary of the box. The face containing p is given by the orbit of ϕk

containing h−1 .

Exterior face and leftmost box. We now explain Algo. 9 computing the orbit of ϕk describing the
exterior face of Bk∂ . Note that by construction all faces but the exterior face are described by a counter-
clockwise cycle of half-edges. The case where k = 1 is directly adressed since B1∂ contains ∂B0. The exterior
face of B1∂ is exactly R2 \ B0 and is described by the orbit of ϕ1 containing the half-edges associated with
edges of E∂ \ E (see Steps 1, 2 and 3 of Algo. 9). As an illustration, the exterior face of B1∂ on Fig. 3 is the
orbit (h+13, h

+
14).

Suppose now k > 1, and recall that Bk∂ is an embedding of Gk = (V k, Ek, Ik). Recall also that for
B = (x,y), W ∗(∂B) = (l(x),y). We state the following remark to identify the exterior face of Bk∂ .

Remark and Definition 18. Let k > 1.

(i) Bk∂ has at least two cusps or x-critical points, that is V k ∩Vx contains at least two elements.

We call leftmost box enclosing Bk∂ a box C = (x,y,R) of V k ∩Vx minimizing l(x) over all boxes of V k ∩Vx.
Let C be one of the leftmost box enclosing Bk∂ , and B = π(x,y)(C). Then

(ii) any point of W ∗(∂B) lies in the exterior face of Bk∂ ,

(iii) if p ∈W ∗(∂B) then p /∈ B.

Point (i) is a direct consequence of Prop. 7. In order to prove point (ii), consider a point p ∈ W ∗(∂B),
and suppose it does not belong to the exterior face of Bk∂ . Hence Bk∂ has necessarily a cusp or x-critical point
lying to the left of p. As a consequence, there is a box C′ = (x′,y′,R) in V k∩Vx such that l(x′) < px, where
px is the x-coordinate of p, and C is not a leftmost box enclosing Bk∂ . Consider now a point p ∈ W ∗(∂B)
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Algorithm 10 Point-face location in a CMap

Input: A point p = (xp, yp) ∈ i(B0). The CMap (Hk, σk, αk) encoding the embedding Bk∂ of
Gk = (V k, Ek, Ik). The exterior face fext of (Hk, σk, αk). The boundary edges E′ = E∂ \ E of
G∂ .

Preconditions: (c1) p is not in Bk∂ , (c2) p is not in the projection of any box of V k and
(c3) ∀ej ∈ Ek, p is not in the projection of any box of approx(ej , δ).

Output: The orbit of ϕk describing the face of Bk∂ that contains p.
1: Let S = {P (xp, y, z) = Q(xp, y, z) = 0}, B∗ = (y∗, z∗) = ∅ and f∗ = ∅
2: for ej ∈ Ek \ E′ do //ej is not a boundary edge
3: Let Xsol be the result of Algo. 11 with input ej , p and S
4: if Xsol 6= ∅ then
5: Let B∗j = (y∗j , z

∗
j ) be the unique element in Xsol

6: if B∗ = ∅ then B∗ = B∗j
7: else
8: while y∗j ∩ y∗ 6= ∅ do let B∗j = KS(B∗j ) and B∗ = KS(B∗)

9: if l(y∗j ) < l(y∗) then Let f∗ be the orbit of ϕk containing h−j and let B∗ = B∗j

10: for C ∈ (Vx ∪Vn) ∩ V k where C = (x,y, z) do
11: if xp ∈ i(x) and yp < l(y) < l(y∗) then // when B∗ = ∅ we set l(y∗) =∞
12: Let y∗ = y
13: Let f∗ be the result of Algo. 8 with input (Hk, σk, αk), C and the point (xp, l(y))

14: if f∗ = ∅ then
15: if k = 1 then
16: Let e ∈ E′ be the boundary edge above p and f∗ be the orbit of ϕk containing h−

17: else Let f∗ be the exterior face fext of (Hk, σk, αk) given by Algo. 9

18: return f∗

such that p ∈ B. Since C is the witness box, one has necessarily p ∈ Bk∂ and a contradiction follows. Hence
(iii) holds.

Algo. 9 uses Rem. 18 in Step 5. From point (iii), the call to the procedure described in Algo. 8 terminates
and returns the orbit of ϕk describing the exterior face of Bk∂ .

5.3.2 Point-face location in a CMap

We now describe Algo. 10 for the point-face location in a CMap. The preconditions (c1), (c2), (c3) ensure its
termination. In order to show the correctness of Algo. 10, we consider the segment Bseg = xp × [yp, u(y0)]
and the set Cseg = Bseg × R where B0 = (x0,y0). The idea of the proposed approach is to find the closest
intersection q of Bk∂ with Bseg. If q belongs to a smooth component π(x,y)(ej) of Bk∂ (i.e. a connected

component of Bk∂ ∩ B0) the face is given by the orbit containing the half-edge h−j . If q is in the witness

box C ∈ (Vx ∪ Vn) ∩ V k, we use Algo. 8 to determine the face containing the intersection of Bseg with
S(∂π(x,y)(C)). Let us now give further details.

Proof of correctness of Algo. 10. Suppose first that Cseg does not intersect any box of approx(ei, δ) where
ei ∈ Ek nor any box of V k. Then Bseg does not intersect Bk∂ \ ∂B0. If k = 1, i.e. Bk∂ is the component of B∂
containing ∂B0, we let p′ be the point (xp, u(y0)) ∈ ∂B0. Then p′ lies on a boundary edge ei of E′ = E∂ \E
and the face of Bk∂ containing p is described by the orbit of ϕk containing h−i . If k > 1, then p belongs to
the exterior face of Bk∂ . The algorithm handles these cases in Steps 14 to 17.
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Algorithm 11 Edge intersection

Input: An edge e ∈ Ek, a point p = (xp, yp), the system S = {P (xp, y, z) = Q(xp, y, z) = 0}.
Preconditions: (c1) p is not in Bk∂ and (c3) ∀ej ∈ Ek, p is not in the projection of any

box of approx(ej , δ).
Output: A set Xsol containing the unique intersection of e with Cseg if it exists, Xsol = ∅ otherwise.
1: Let (Ci)

m
i=1 = approx(e, δ) and ∀1 ≤ i ≤ m, Ci = (xi,yi, zi) and Xi = (yi, zi)

2: for 1 ≤ i ≤ m s.t. xp ∈ xi and l(yi) > yp do //Ci is located above p

3: Let (Xsol,Xind) = IsolateSols(S,1.1Xi,min(0.1w(xi)
2 , 0.1w(yi)

2 ))

4: if Xsol 6= ∅ then
5: break
6: return Xsol

Consider now the case where Cseg does not intersect boxes of V k but intersects some edges. The
intersections of Cseg with the smooth and x-monotone components ej ∈ Ek \ E′ are computed in the loop
beginning in Step 2. Algo. 11 computes, if it exists, the unique intersection q′ = (xp, yq, zq) of ej with
Cseg and returns a non-empty set containing B∗j ⊂ Cseg with (yq, zq) ∈ i(B∗j ). B∗j is made disjoint in
the y-coordinate with the current intersection B∗ in Step 8, and B∗j is updated in Step 9 to contain the
intersection of C with Cseg which projection is the closest above p. Due to the orientation of half-edges, the
face below an edge ej is described by the orbit of ϕk containing h−j . Thus f∗ as updated in Step 9 is the
face containing p.

Before describing the last case (i.e. when Cseg intersects some boxes of (Vx ∪Vc ∪Vb)∩V k) we remark
that Cseg can intersect only one boundary box in Vb ∩V k corresponding to the implicit point (B, S4) where
S4 is defined as in Corollary 8 and B = (x, z) is such that xp ∈ x. Letting ej ∈ Ek be such that (B, S4) is
a connexion of ej and approx(ej , δ) = (Ci)

mj

i=1, it follows from property (a2) of approx that the boundary
point implicitly defined by (B, S4) is either in C1 or in Cmj

. If the intersection (xp, u(y0)) is in C1 or in
Cmj

, the appropriated face has been determined above. Otherwise, (B, S4) can be refined with KS4
until

(xp, u(y0)) /∈ B, and this case is handled in Steps 14 to 17 of the algorithm.
Suppose now that Cseg intersects some boxes of (Vx ∪ Vn) ∩ V k. We can assume that there is a box

C ∈ (Vx ∪ Vn) ∩ V k with l(y) < l(y∗), otherwise the output of the algorithm is determined by the loop
of Step 2 or Steps 14 to 17. Such a box does not contain p from precondition (c2). The loop beginning in
Step 10 finds the box (x,y, z) ∈ (Vx ∪ Vn) ∩ V k intersecting Cseg that minimizes l(y), thus p lies in the
same face than the point (xp, l(y)). Remark that (xp, l(y)) /∈ Bk∂ , otherwise (xp, l(y)) is the projection of a
connection of C in C, and B∗ found in the loop beginning at Step 2 necessarily satisfy l(y∗) ≤ l(y). As a
consequence, the input arguments given to Algo. 8 in Step 13 satisfy its preconditions.

Proof of termination of Algo. 10. It is shown below that if its input arguments satisfy preconditions (c1)
and (c3), Algo. 11 terminates. We have already shown that Algo. 8 terminates due to condition (c1). It only
remains to prove the termination of the while loop in Step 8. The points of the curve represented by the
boxes B∗ and B∗k belong to two different edges which are disjoint in projection on the (x, y)-plane, so after
a finite number of contractions the y-coordinates will be disjoint intervals.

Proof of correctness and termination of Algo. 11. Let approx(e, δ) = (Ci)
m
i=1 and Ci = (xi,yi, zi) and Xi =

(yi, zi). From properties (a2) and (a3) of approx, e′ = C ∩
⋃m
i=1 Ci contains no x-extreme point of C and

is a smooth x-monotone curve. Hence its intersections with Cseg are regular solutions of S. From property
(a1) of approx, for any 1 ≤ i ≤ m, 1.1Ci does not intersect any box of any other approximation. Hence for
any 1 ≤ i ≤ m, 1.1Xi contains at most one solution of S. If 1.1Xi contains a solution of S it is non-singular

as a point of e′. As a first consequence of this, the call IsolateSols(S,1.1Xi,min( 0.1w(xi)
2 , 0.1w(yi)

2 )) in
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Step 3 of Algo. 11 terminates, and since any δ-approximation contains a finite number of boxes, Algo. 11
terminates for any input.

Recall now that e ⊂ e′. Since both e and e′ are smooth curves, a point of e′ belongs to the same connected
component of C \ {c ∈ C|π(x,y)(c) is a singularity or a x-extreme point of B∂}. Hence for any 1 ≤ i ≤ m, a
solution of S in 1.1Xi is a point of the edge represented by e. Reciprocally since e ⊂

⋃m
i=1 Ci (approx(e, δ)

is a δ-approximation of e), there exists 1 ≤ i ≤ m such that e ∩ Cseg is a solution of S in Xi satisfying
xp ∈ xi and l(yi) > yp from preconditions (c1) and (c3) and Xsol contains the corresponding solution. The
correctness of Algo. 11 follows.

5.4 Embedding G∂

In this part we show how to compute an XPMap (H,H0, σ, α, ext, cont) representing the topology of B∂ , as
defined in Section 1. It is shown above how to compute a CMap for each connected component Bk∂ of B∂ ,
how to identify its exterior face and how to perform point-face location in Bk∂ . Thus computing the XPMap
reduces to compute the relation cont that assigns each exterior face to a non-exterior face of another CMap
or to the infinite face. We describe in Sec. 5.4.1 the construction of the relation cont. Point-face location in
an XPMap is discussed in Sec. 5.4.2.

5.4.1 Constructing the XPMap

The relation cont that assigns the exterior face of a CMap to a non-exterior face of another CMap (or to
the infinite face) can be computed iteratively thanks to the following remark, that can be proved similarly
as Rem. 18.

Remark 19. Let Bk∂ and Bk′∂ with k, k′ > 1 be two components of B∂ , let C = (x,y,R) be a leftmost box

enclosing Bk∂ and C′ = (x′,y′,R) be a leftmost box enclosing Bk′∂ . If l(x) ≤ l(x′), then Bk lies in the exterior

face of Bk′ .

Suppose B1∂ , . . . ,Bn
′

∂ are indexed with respect to increasing l(xk) where Ck = (xk,yk, zk) is a leftmost
box enclosing Bk∂ . As a consequence of Rem. 19, given k, k′, k′′ such that 1 ≤ k′′ < k < k′ ≤ n′, the exterior

face of Bk∂ is not contained in any non-exterior face of Bk′∂ and is contained in at least one non-exterior

face of Bk′′∂ (since it is at least contained in a non-exterior face of B1∂). As a second consequence, if the

exterior face fk of Bk∂ is contained in two non-exterior faces f ′′′, f ′′ of respective components Bk′′′∂ ,Bk′′∂ with

1 ≤ k′′′ < k′′, then the exterior face fk′′ of Bk′′∂ is contained in f ′′′ and fk is contained in the non-exterior

face f
′′

of Bk′′′∂ ∪ Bk′′∂ .
Algo. 12 uses these arguments in an iterative process to construct the XPMap (H,H0, σ, α, ext, cont)

representing the topology of B∂ . Recall that (H0, σ0, α0) is an empty CMap representing the infinite face
R2 \B0. We name f0 the empty orbit of ϕ0. The loop beginning in Step 2 computes CMaps (Hk, σk, αk) for
Bk for 1 ≤ k ≤ n′, together with their exterior faces fk and the leftmost box enclosing Bk. Since B1∂ is the
connected component of B∂ containing ∂B0, its exterior face is necessarily contained in the infinite face. In
Step 5, an XPMap (H,H0, σ, α, ext, cont) encoding the embedding of B1 is initialized with H = H1, σ = σ1,
α = α1, ext = {(H1, f1)} and cont = {(f0, f1)}.

In Step 7, leftmost boxes Ck are sorted with respect to increasing l(xk) and objects are re-indexed to
apply the arguments detailed above. Let k > 1, and consider the k-th iteration of the for loop beginning in
Step 8. Suppose the relation cont has been properly constructed for B1∂ , . . . ,B

k−1
∂ , i.e. (H,H0, σ, α, ext, cont)

encodes the faces of B<k∂ = B1∂ ∪ . . . ∪ B
k−1
∂ . One has to find the non-exterior face of B<k∂ containing the

exterior face fk of Bk∂ . One first finds a point p in fk by taking any point on W ∗(∂(π(x,y)(C
k))) as justified

in Rem. 18. Due to the property of a witness box, p lies in the same face of B<k∂ than Bk∂ . The while loop in
Step 11 finds this face by calling Algo. 10 with input p, (Hk−i, σk−i, αk−i) and fk−i for increasing i. Rem. 20
below shows that this input meets the preconditions of Algo. 10 for any i and thus ensures the termination
of these calls. An argument stated above shows that the first non-exterior face f obtained is the inner face
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Algorithm 12 XPMap construction

Input: The graph G∂ and its connected components Gk = (V k, Ek, Ik) for 1 ≤ k ≤ n′
Output: An XPMap (H,H0, σ, α, ext, cont) representing the topology of B∂
1: Let H0 = ∅ and f0 represent the infinite face
2: for 1 ≤ k ≤ n′ do
3: Let (Hk, σk, αk) be the result of Algo. 7 with input Gk

4: Let fk,C
k be the result of Algo. 9 with input (Hk, σk, αk)

5: Let H = H1, σ = σ1, α = α1, ext = {(H1, f1)} and cont = {(f0, f1)}
6: Suppose Ck = (xk,yk, zk) for 1 < k ≤ n′
7: Re-index Gk, (Hk, σk, αk), fk,C

k wrt increasing l(xk) for 1 < k ≤ n′
8: for 1 < k ≤ n′ do
9: Let p be any point on W ∗(∂(π(x,y)(C

k)))
10: Let i = 0 and f = fk
11: while f = fk−i do
12: Let i = i+ 1
13: Let f be the result of Algo. 10 with input p, (Hk−i, σk−i, αk−i) and fk−i

14: Let H = H ∪Hk, σ = σ ∪ σk, α = α ∪ αk, ext = ext ∪ {(Hk, fk)}, cont = cont ∪ {f, fk}
15: return (H,H0, σ, α, ext, cont)

of B<k∂ containing fk, i.e. any other non-exterior face f ′ of Bk′∂ containing fk contains f . As a consequence,
after Step 14, the relation cont is properly constructed for B1∂ , . . . ,Bk∂ and (H,H0, σ, α, ext, cont) encodes
the faces of B<k+1

∂ .

Remark 20. Let C be a leftmost box enclosing Bk∂ , and p be a point on W ∗(∂(π(x,y)(C))). From point (iii)

of Rem. 18, p /∈ B. Since witness boxes of V are pairwise disjoint, p is not in any box of V 1
∂ ∪ . . . ∪ V

k−1
∂ .

Then ∀ei ∈ E1
∂ ∪ . . . ∪E

k−1
∂ , p is not in any box of approx(ei, δ) as a consequence of the property (ii) of the

application approx.

5.4.2 Point-face location in a XPMap

We finally propose here a procedure that, given any point p ∈ i(B0) and the XPMap encoding the embedding
B∂ , finds the face of B∂ to which p belongs. Such a procedure is easily obtained by rewriting Algo. 10 while
generalizing it for XPMaps.

We restate, in this general setting, the preconditions yielding the modified algorithm to terminate: (c1′)
p is not in B, (c2′) p is not in the projection of any box of V∂ and (c3′) ∀ek ∈ E, p is not in the projection
of any box of approx(ek, δ).

(c2′) and (c3′) can be satisfied by refining boxes of Vx∪Vn and δ-approximations of elements of E, provid-
ing that (c1′) holds. Checking (c1′) with a fully numeric method is challenging since it goes back to the prob-
lem of deciding zero. In the special case where the coordinates of p are rational numbers and P,Q are polyno-
mials, this can be addressed with symbolic computation, by computing g(z) = gcd(P (xp, yp, z), Q(xp, yp, z)).
If degz(g) ≥ 1 then p ∈ B, in particular if degz(g) = 2 and g has two distinct roots, p is a node of B and if g
has a double root, p is a cusp of B. Otherwise degz(g) = 0 and p /∈ B.

6 Implementation and results

We implemented the method presented in this paper and tested it to compute the topology of apparent
contours of algebraic surfaces of degrees up to 15. We briefly describe this implementation, then we present
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the experiments we carried out and compare our approach with state-of-the-art methods. Let us recall the
main steps that are performed to compute the topology of an apparent contour:

(1) Computing the set Cx of x-critical points by calling IsolateSols on S5.
(2) Computing the set Cb of boundary points by calling IsolateSols on S1, S2, S3, S4.
(3) Computing a δ-approximation (Ci)

m
i=1 of C with Algo. 3.

(4) Computing the sets Dn of nodes and Dc of cusps. This is performed by solving the ball system Sb
by calling IsolateSols(Sb,.,0) for each Di and each Dij as defined in Prop. 11. We note m∩ the number
of non-empty Dij . Then nodes and cusps are distinguished with Algo. 4.

(5) Computing the set Cy of y-critical points with IsolateSols(< P,Q,R′ >,Ci,0) for each 1 ≤ i ≤ m,
then separating the special points (i.e smooth critical points, nodes and cusps of B) in projection as described
in Sec. 4.2.

(6) Computing the sets Bx and Bn of witness boxes for x-critical (possibly cusp) points and nodes of B.
(7) Computing the graph G∂ : the projections of connections of x-critical points and nodes of B are made

disjoint, then a δ-approximation for each connected components of C ∩ C0 is computed with calls to Track

while ensuring that conditions (a1), (a2) and (a3) described in Sec. 5.1 are satisfied. Let us call m′ the sum
of the number of boxes of each such δ-approximation.

(8) Embedding the graph with Algo. 12.

6.1 Our implementation

The two angular stones of our implementation are the procedure IsolateSols specified in Algo. 1 and the
procedure Track specified in Algo. 3 and described in appendix A.

Our implementation of the procedure IsolateSols with subdivision, centered-form interval evaluation
and Krawczyk operator is exhaustively described in [Imb16]. It uses adaptive multi-precision arithmetic. It is
available as the package subdivision solver3 for the mathematical software SageMath4. Solving a system
of polynomial equations in an unbounded box reduces to solve several transformed systems in bounded
boxes (see. [Neu90, Section 5.6] or [Sta95, Section 5.10]). In particular, we don’t need to know in advance
the bounded interval z0 for the z-component. Solving a system on a box of the shape x× y × R reduces to
solve two systems on the bounded boxes x× y × [−1, 1] and hence requires two calls to the solver provided
by subdivision solver. Notice that a δ-approximation of C ∩ C0 yields bounds for the z-coordinates of
C ∩C0. Once Step (3) is performed, we use these bounds to avoid the second call in each algorithm involving
solving a system in a box with unbounded z-component.

The procedure Track is described in detail in Appendix A. In this description, we assume that compu-
tations are carried out with arbitrary precision. We implemented this procedure in Python within SageMath

only for machine precision; our tracker stops when the width of the boxes of the enclosure reaches the ma-
chine precision. However, we never encountered this case in the experiments reported below. In Steps (3)
and (7), the initial value δ = 1 is used as input for Track. In step (7), the conditions (a2) and (a3) are
enforced during the tracking process. The condition (a1) is checked a posteriori on the δ-approximations.
Each time the latter condition does not hold, i.e each time two boxes Ce

i and Ce′

j of δ-approximations of
edges e and e′ have a non-empty intersection, the δ-approximations of e and e′ are refined within Ce

i and

Ce′

j while enforcing (a2) and (a3) until (a1) holds.
The other algorithms used by our approach have been implemented in Python within SageMath.

6.2 Experimental data

Surfaces are defined by random dense polynomials P in Z[x, y, z] with odd total degrees from 5 to 15 and
integer coefficients chosen uniformly in J−28, 28K. We isolate the singularities and compute the topology
of the apparent contour of the surface defined by P with two state-of-the-art methods and the approach

3http://subdiv-solver.gforge.inria.fr
4http://www.sagemath.org/

27

http://subdiv-solver.gforge.inria.fr
http://www.sagemath.org/


Figure 9: Left: the apparent contour of an algebraic surface of degree 13. Center (resp. Right): a detailed
view of the same curve in the dashed box of the leftmost (resp. central) part. Cusps and nodes lying outside
zooming areas are marked with squares.

described here. For each degree, five instances are considered, and we give averages of sequential times in
seconds and standard deviations for each method.

6.3 State-of-the-art methods

In [IMP17], the singularities of an apparent contour are characterized as the real solutions of a system of two
polynomials that are coefficients of the sub-resultant chain. This system can be solved with subdivision solver

that has been designed as a solver dedicated to large dense polynomials. We use this approach to isolate the
singularities in B0 = [−1, 1]× [−1, 1].

The package Isotop5 for Maple computes the topology of a plane curve in R2, see [CLP+10]. Here,
Isotop is used to compute the topology of the resultant of P and Pz with respect to z.

6.4 Results

We report results obtained with these three methods for isolating the singularities and computing the topol-
ogy of the apparent contour of algebraic surfaces. We first give details for one of the surfaces of degree
13 we tested before giving synthetic data for surfaces of degrees from 5 to 15. Running times given below
are sequential running times in seconds on an Intel(R) Core(TM) i5-3317U CPU @ 1.70GHz machine with
Linux.

Details for a surface of degree 13. We detail the computation of the topology of the apparent
contour of one of the surfaces of degree 13 we considered. Fig. 9 displays its apparent contour and Tab. 1
details each step of the computation. Columns t give the running times. For Step (6), the column i gives
the maximum number of times a box isolating a singularity or an x-critical point is contracted before it can
be certified as a witness box. The symbol * notifies that multi-precision was required to address this step.

5http://vegas.loria.fr/isotop/
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Isolating singularities Computing topology

method Sub-resultant approach Our approach Isotop Our approach
domain B0 B0 R2 B0

d t ± σ n t ± σ n t ± σ t ± σ n

5 0.06 ± 0.04 0 1.60 ± 0.46 0 4.78 ± 0.26 3.17 ± 1.01 0

7 3.03 ± 3.30 0 3.73 ± 0.40 0 251 ± 16.1 8.13 ± 1.86 0

9 304 ± 478 1 10.2 ± 5.45 0 − 24.1 ± 16.2 0

11 >3600 4 36.0 ± 8.53 0 − 75.5 ± 13.5 0

13 − 43.5 ± 18.1 0 − 90.6 ± 37.9 1

15 − 97.9 ± 47.1 0 − 169 ± 71.0 0

Table 2: Sequential running times t in seconds (averaged over five runs), standard deviations σ, number
n of runs requiring multi-precision for isolating the singularities and computing the topology of apparent
contours of algebraic surfaces of degree d. B0 is [−1, 1]× [−1, 1] and − means that the process has not been
run.

Isolating singularities Computing topology
Step (1) (2) (3) (4) (5) (6) (7) (8)

d t |Cx| t |Cb| t m, m∩ t |Dn|, |Dc| t |Cy | t i t m′ t n′

13 13.7 14 3.44 16 9.28 1012, 2478 7.87 4, 7 1.57 8 33* 5 23.4 1940 0.34 2

Table 1: Computation of the apparent contour of an algebraic surface of degree 13.

Table 2. The first group of columns reports on the isolation of the singularities of the apparent contour
in B0 with the approach using the sub-resultant system [IMP17] and Steps (1) to (4) of our approach. The
former approach suffers from the size in term of degree, number of monomials and bit-size of the coefficients
of the equations of the sub-resultant system. For instance, the first equation of this system for the first
polynomial of degree 9 we tested has degree 57, more than 1700 monomials and its coefficient bit-size is
more than 130. Furthermore, the running times have a high standard deviation and machine precision was
not sufficient to carry out the computations for examples of high degree.

The group of columns “Computing topology” refers to the computation of the topology of the apparent
contour, including the isolation of singularities. The column Isotop reports the running times of Isotop

applied to the resultant of P and Pz with respect to z. As expected, the size of the resultant polynomial
excludes this approach for surfaces of high degree. We tried Isotop for d up to 8. For d = 8, the running
time was 1924 seconds.

In contrast, our method does not consider any resultant or sub-resultant polynomial, hence we deal with
systems having almost the same degree and bitsize as the input. On the other hand, we have up to four
variables instead of two. The machine precision was sufficient to isolate the singularities of all examples,
and only one example, the one detailed above, required to use more precision for the computation of the
topology. Singularities are characterized here as the solutions of the ball system that involves four equations
in four unknowns. The results in [IMP15] already showed the advantage of our subdivision solver upon the
symbolic approach, but they also showed the limitation of our approach when solving a four dimensional
system on a large domain instead of a two dimensional one even with higher degree and bitsize. Here, the
δ-approximation of C enables to filter the domain where the ball system is solved, and the results of Table 2
shows the efficiency of this strategy.

Table 3. This table details how the times reported in Table 2 are distributed among the main steps that
our method performs.
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Isolating singularities Computing topology total

Step (1) (2) (3) (4) (5) (6) (7) (8)

d t t t t t t t t t

5 0.14 0.36 1.03 0.06 0.02 0.31 1.22 0.00 3.17

7 0.64 0.70 2.21 0.17 0.05 1.47 2.84 0.02 8.13

9 2.85 1.41 4.66 1.27 0.24 5.78 7.91 0.02 24.1

11 8.08 2.12 16.4 9.44 0.90 10.8 27.6 0.08 75.5

13 15.6 3.36 16.3 8.14 1.22 17.6* 28.1 0.06 90.6

15 30.5 4.87 29.1 33.3 2.12 24.7 45.2 0.00 169

Table 3: Distribution of times given in Table 2 between the main steps of our approach. (1) x-critical
points; (2) boundary points; (3) δ-approximation of C; (4) solving the ball system; (5) y-critical points; (6)
witness boxes singularities; (7) connecting special points; (8) computing the XPMap; Symbol *: for one
example, multi-precision was required.

For the computation of the singularities in Steps (1) to (4): Step (2) solves systems in 2d and is the least
time consuming; Step (1) solves systems in 3d in the large domain B0 × R which is more time consuming;
Step (4) solves systems in 4d in m + m∩ small boxes. For the particular case of degree 13 detailed above,
m+m∩ = 3490. Comparing with the results of [IMP15] that performed isolation on a unique large domain,
the benefit the δ-approximation to reduce the solving domain is dramatic.

In Step (5), the y-critical points are found by solving a system in 3d in the m boxes of the δ-approximation
of C. Comparing the running times to address this step with the ones required for Step (1) illustrates again
how using the δ-approximation of C speeds up the computation.

In Step (6), witness boxes for x-extreme points and singularities are computed. It is adressed by combin-
ing Algo. 6 that contracts a box containing a node and Algo. 5 that checks if the resulting box is a witness
box, and their equivalents for x-extreme points and cusps. In almost all cases we experimented, Algo. 5
succeeded with one iteration of Algo. 6. The time for Step (6) approximately corresponds to |Cx|+|Dn|
times half the time for Step (2), except when i is high (see details given in appendix B). It appeared in our
experiments that most of the time spent in the procedure associated with Algo. 5 is used to construct the
systems defining the boundary points (that requires partial substitutions in large polynomials) rather than
to solve them. For the example of degree 13 detailed above, approximately 95% of the time required by
the latter procedure is spent for defining these systems. For this example, multi-precision arithmetic was
required to carry out Step (6). Determining a witness box for an x-extreme point for this particular example
required 5 iterations in the equivalent of Algo. 6 for x-extreme points before the equivalent of Algo. 5 for
x-extreme points certifies it to witness the x-extreme point. It should be considered as a proof of robustness
of our implementation more than as a drawback of the approach. Similarly to Step (2), Algo. 5 involves
isolating the intersections of C on the boundaries of a cylinder. Step (2) requires two calls to the numerical
0-dim solver whereas in Algo. 5 we use the bounds for the z-component given by the δ-approximation of
C ∩C0. Hence Algo. 5 requires roughly speaking half the time of Step (2) to execute.

Among Steps (1) to (8), Step (7) is the most time consuming. It consists in two substeps. First, δ-
approximations of connected components of C ∩ C0 are computed while ensuring that conditions (a2) and
(a3) hold. This results in approximations with smaller boxes than in Step (3), see the details in appendix B.
Then, the condition (a1) is checked for each pair of δ-approximation. In most examples we tested, (a1) was
satisfied without refining the approximations. For the example of degree 13 detailed above, computing the
approximations required 18.8s and checking (a1) required 4.6s.

Most of the apparent contours we computed have only one connected component, this explains the
running times for Step (8). See also column n′ in the table in appendix B.
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Springer, 2006.

[Dem00] M. Demazure. Bifurcations and catastrophes: geometry of solutions to nonlinear problems.
Universitext. Springer, Berlin, New York, 2000. École polytechnique.

[DL14] N. Delanoue and S. Lagrange. A numerical approach to compute the topology of the apparent
contour of a smooth mapping from R2 to R2. Journal of Computational and Applied Mathe-
matics, 271:267–284, 2014.

[FM07] Dominique Faudot and Dominique Michelucci. A new robust algorithm to trace curves. Reliable
Computing, 13(4):309–324, 2007.

[Hon96] H. Hong. An efficient method for analyzing the topology of plane real algebraic curves. Math-
ematics and Computers in Simulation, 42(4–6):571–582, 1996.
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Algorithm 13 isSolInSet((C, S),C,ε)

Input: An implicit point (C, S) defining a point p, a set C and a real number ε > 1.
Output: true if p ∈ C, false if p /∈ εC.
1: C ′ = εC
2: while not ( (C ⊂ i(C ′)) or (C ∩ C = ∅) ) do
3: C = KS(C)

4: if C ⊂ i(C ′) then return true

5: return false

A Implementation of Algo. 2

Several certified numerical path-tracking algorithms can be found in the literature [KX94,FM07,MGGJ13].
They approximate a smooth connected curve in a bounded box with a sequence of sets (Ci)

mk
i=1. The sets

Ci are in general boxes as in [KX94, FM07]. It has recently been proposed to use parallelotopes instead
of boxes [MGGJ13]; a parallelotope C is the image by an affine transformation of a box C. Aligning
parallelotopes along the tangent to the curve yields a more efficient approximation.

For the sake of generality, we consider here approximating sets Ci that are either boxes or parallelotopes.
If C is such a set, h(C) denotes its box hull, that is the smallest box containing C. The operators ∂, i()
are directly generalized for parallelotopes. Let C be a parallelotope and C, f be the box and the affine map
such that C = f(C). The width w(C) of C is the width of C and if ε ∈ R, the ε-inflation εC is defined as
f(εC).

Sec. A.1 introduces Algo. 13 using ε-inflation to decide if an implicit point lies in a set C. Sec. A.2 recalls
the parallelotope path-tracking algorithm of [MGGJ13], and Sec. A.3 shows how it is adapted to meet the
specifications of Algo. 2.

A.1 Deciding if an implicit point lies in a set of the approximation

Let (C, S) define implicitly a point p. To check if p belongs to a set C a naive approach consists in contracting
C on p until C ⊂ i(C) or C∩C = ∅. If p lies on ∂C, this leads to a non-terminating process. To tackle this
pitfall we use the ε-inflation approach described in Algo. 13 that takes as input C and a real number ε > 1
and returns true if p ∈ C and false if p /∈ εC. Notice that when p ∈ εC \ C, it may return either true or
false.

Proof of termination and correctness of Algo. 13. Assume ε > 1 and let C ′ be εC. After applying a finite
number of times Step 3 of Algo. 13, C is strictly included in a ball of diameter ε−1

2 w(C). Hence C can not
intersect both ∂C ′ and ∂C, thus either C ⊂ i(C ′) or C ∩ C = ∅, and the while loop of Algo. 13 terminates,
so does Algo. 13.

Remark 21. Let (C, S) be a point of C, and C and ε > 1 be such that both C∩C and C∩εC are diffeomorphic
to [0, 1]. If isSolInSet((C, S),C,ε) returns true, then (C, S) defines a point on Ck ∩ i(εC), where Ck is
such that C ∩ C = Ck ∩ C.

Proof of Rem. 21. Suppose isSolInSet((C, S),C,ε) returns true, and (C, S) defines a point on a connected
component Ck′ 6= Ck of C in εC. Then C ∩ εC contains two connected components of C, which rises a
contradiction.

A.2 The path-tracking algorithm of [MGGJ13]

Authors of [MGGJ13] propose a parameterized version of the Krawczyk operator to certify that in a given set,
in practice a parallelotope, a curve is diffeomorphic to [0, 1]. This operator is the corner-stone of an algorithm
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that uses a classical adaptive step-length control and constructs iteratively a certified approximation of a
connected component of a curve within a bounded initial domain. We state here the specifications of this
algorithm in our context of a curve of R3 defined by two polynomials P and Q.

Input: A system P = Q = 0 defining C, an initial bounded box C0, an initial point p0 ∈ C0, two strictly
positive real numbers α, β, an integer d ∈ {−1, 1}.
Output: A flag in {success, failure} and a sequence Cenc. If the flag is failure, Cenc is empty. Otherwise,
Cenc is a sequence of sets (Ci)

m
i=1 with m > 1 such that C ∩Ci is diffeomorphic to [0, 1] for each i, Ci ⊂ i(C0)

for i /∈ {1,m} and C ∩
⋃m
i=1 Ci is diffeomorphic to a one-dimensional manifold. Furthermore, one has either

C1 ∩Cm 6= ∅ and in this case C ∩
⋃m
i=1 Ci is diffeomorphic to a circle, or C1 ∩ ∂C0 6= ∅ or Cm ∩ ∂C0 6= ∅ and

in this case C ∩
⋃m
i=1 Ci is diffeomorphic [0, 1].

The initial point p0 is used to construct an initial parallelotope C0 and this step succeeds if p0 is close
enough to C. Otherwise the flag failure is returned. Then d determines the direction in which C is followed.
At each step, a new parallelotope Ci with a step-length γ is constructed, with α < γ < β. Several properties
are checked on Ci that guarantee the correctness of the algorithm and γ is decreased until either γ ≤ α or Ci
satisfies the latter properties. When γ ≤ α, the algorithm stops and returns the flag failure. γ is increased
in case of success until it reaches β.

When α > 0 the algorithm terminates. When α = 0, it terminates with the flag success providing that
C is smooth in C0 and that p0 is sufficiently close to C.

A.3 Meeting the specifications of Algo. 2

We now show how to modify the algorithm described above to meet the specifications of the procedure
Track described in Algo. 2 that are reproduced here for the sake of readability.

Input: A system P = Q = 0 defining a smooth curve C, a domain C0, an implicit point (C0, S0) of C, a
finite set {(Cj , Sj)}j of implicit points containing the boundary points of C in C0 and (C0, S0), δ > 0.
Output: A δ-approximation of the connected component of C ∩ C0 containing (C0, S0) and the set Con of
implicit points of {(Cj , Sj)}j that are on the same connected component than (C0, S0).

First, the procedure Track takes as input a domain C0 instead of a box C0, this leads to test in the
algorithm inclusion of parallelotopes within a domain rather than within a box. Recall that in our case the
domain is possibly unbounded in z. We also fix α to 0. Providing that (A2) and (A3) are satisfied (C is
smooth and bounded above B0), this modified algorithm terminates with flag success if p0 is sufficiently
close to C.

Then, the procedure Track takes as input a finite set {(Cj , Sj)}j and returns a set Con of implicit
points of {(Cj , Sj)}j that are on the approximated connected component. To achieve this goal, we modify
the algorithm so that it constructs a pair (Ci, εi) with εi > 1 such that both C ∩ Ci and C ∩ εiCi are
diffeomorphic to [0, 1]. According to Rem. 21, if the procedure isSolInSet((Cj , Sj),Ci,εi) returns true,
it is a guarantee that (Cj , Sj) defines a point on C in εiCi. We also require that at most one point of
{(Cj , Sj)}j is in each Ci, this can be tested in the same way. The latter property guarantees in particular
that each Ci intersecting the boundary of the domain contains no more than one boundary point and that
the extremities of the approximated connected component of C ∩ C0 are properly identified and reported in
Con.

Finally, the procedure Track takes as input δ > 0 and returns a δ-approximation of a connected
component. To achieve this, the condition w(h(Ci)) < δ is enforced at each iteration, and this replaces the
condition γ ≤ β. Then, when the algorithm described in Sec. A.2 with d = 1 as input terminates with the
flag success and if it is detected that the tracked component is diffeomorphic to [0, 1], an other call with
d = −1 allows to approximate the whole connected component.

These modifications give rise to the procedure TrackFromPoint(,,,,) specified in Algo. 14. When
assuming (A2) and (A3), this algorithm terminates with the flag success if p0 is sufficiently close to C.

In contrast with the latter procedure, Track takes as input an implicit point (C0, S0) on C rather
than a point p0 and guarantees that the returned δ-approximation is a δ-approximation of the connected
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Algorithm 14 TrackFromPoint(< P,Q >,C0,p0,{(Cj , Sj)}j,δ)
Input: A system P = Q = 0 defining C, an initial domain C0, an initial point p0 ∈ i(C0), a finite

set {(Cj , Sj)}j of implicit points containing the boundary points of C in C0, δ > 0.
Output: A flag in {success, failure}, a sequence Cenc and a set Con. If the flag is failure,

Cenc and Con are empty. Otherwise, Cenc is the sequence of sets (Ci)
m
i=1 with m > 1 such

that (h(Ci))
m
i=1 is a δ-approximation of a connected component Ck of C ∩C0 and Con contains

implicit points of {(Cj , Sj)}j that are on Ck.

component containing (C0, S0). One can use p0 = m(C0) and call the procedure TrackFromPoint(<
P,Q >,C0,p0,{(Cj , Sj)}j,δ). When the returned flag is success, the obtained δ-approximation is not
necessarily the one of the connected component containing (C0, S0), in particular when two connected com-
ponents are close to m(C0). On the other hand, since (C0, S0) ∈ {(Cj , Sj)}j , the returned δ-approximation
is the one of the connected component containing (C0, S0) if and only if (C0, S0) ∈ Con. If it is not the case,
C0 is contracted with KS0(C0) and TrackFromPoint(< P,Q >,C0,m(C0),{(Cj , Sj)}j,δ) is called again.
This is performed until the returned flag is success and (C0, S0) ∈ Con. The termination of this recursion
in ensured since m(C0) becomes arbitrarily close to C and the initial set of the approximation will contain
the implicit point (C0, S0).

Thus, after a finite number of iterations, TrackFromPoint(,,,,) returns the flag success, and (h(Ci))
m
i=1

and Con are a suitable output for Track(< P,Q >,C0,(C0, S0),{(Cj , Sj)}j,δ).
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B Details for results

Isolating singularities Computing topology
Step (1) (2) (3) (4) (5) (6) (7) (8)

d t |Cx| t |Cb| t m, m∩ t |Dn|, |Dc| t |Cy | t i t m′ t n′

5 0.13 4 0.36 4 0.59 89, 110 0.03 0, 1 0.02 3 0.57 1 0.99 197 0.00 1
5 0.14 1 0.36 4 0.99 139, 177 0.06 0, 1 0.02 4 0.14 1 1.28 257 0.00 1
5 0.09 0 0.36 8 0.67 45, 51 0.01 0, 0 0.00 2 0.00 0 0.50 109 0.00 1
5 0.21 2 0.36 8 1.57 236, 651 0.17 0, 1 0.02 3 0.29 1 1.99 353 0.00 1
5 0.15 4 0.36 8 1.31 171, 168 0.04 0, 0 0.02 2 0.58 1 1.35 255 0.00 1

7 0.51 1 0.70 8 2.63 404, 415 0.16 0, 0 0.04 4 0.30 1 2.52 419 0.00 1
7 0.76 5 0.73 4 2.40 349, 455 0.23 3, 2 0.09 6 2.53 1 4.71 712 0.06 2
7 0.49 0 0.69 2 2.63 492, 524 0.21 0, 0 0.03 0 0.00 0 2.46 490 0.00 1
7 0.65 6 0.70 6 1.71 248, 248 0.08 0, 0 0.02 3 1.84 1 1.92 315 0.00 1
7 0.75 7 0.70 4 1.66 243, 390 0.19 0, 3 0.06 3 2.71 3 2.59 432 0.05 2

9 2.63 7 1.24 4 2.61 379, 439 0.65 2, 2 0.28 6 7.89 6 5.88 839 0.00 1
9 2.28 5 1.24 6 2.84 397, 519 1.73 2, 1 0.15 5 3.92 1 4.55 685 0.00 1
9 2.05 4 1.24 4 1.48 210, 323 0.34 0, 3 0.25 6 2.23 1 2.23 358 0.10 2
9 5.11 13 1.26 10 10.9 1623, 2336 3.28 5, 5 0.38 11 13.0 6 21.8 2400 0.00 1
9 2.21 2 2.05 8 5.41 453, 449 0.34 0, 0 0.16 1 1.82 1 5.06 472 0.00 1

11 10.4 11 2.21 18 18.4 2482, 3995 7.39 4, 4 0.96 9 14.4 1 31.6 3041 0.00 1
11 8.50 12 2.07 8 12.5 1721, 2700 5.23 7, 7 0.82 15 18.1 1 27.8 2743 0.20 2
11 6.17 8 2.08 6 17.0 2543, 11269 22.7 1, 6 1.26 10 9.11 1 31.2 3375 0.19 2
11 7.12 6 2.11 10 11.1 1523, 2443 4.16 2, 4 0.84 8 7.71 1 17.5 2026 0.00 1
11 8.17 5 2.11 8 22.8 3297, 3841 7.68 0, 2 0.64 5 4.84 1 29.7 3392 0.00 1

13 10.3 3 3.38 6 9.91 1144, 1227 2.45 1, 1 0.42 3 6.05 1 12.1 1378 0.00 1
13 13.7 14 3.44 16 9.28 1012, 2478 7.87 4, 7 1.57 8 33.6* 5 23.4 1940 0.34 2
13 13.7 7 3.25 12 6.40 706, 1257 2.89 1, 3 1.26 12 12.0 1 11.1 1236 0.00 1
13 19.5 11 3.29 10 25.7 3159, 5570 15.3 5, 6 1.64 9 24.2 1 47.8 3969 0.00 1
13 20.9 5 3.42 10 30.5 3647, 4713 12.1 3, 3 1.23 6 12.0 1 46.2 3945 0.00 1

15 21.3 4 4.98 4 9.19 968, 1543 5.27 1, 3 1.06 5 11.3 1 12.2 1197 0.00 1
15 28.3 8 4.89 12 41.7 4439, 7798 108 5, 3 2.91 13 29.7 1 71.9 5161 0.00 1
15 39.2 10 4.80 10 18.4 1986, 3116 15.9 5, 5 2.86 8 36.2 2 35.0 2799 0.00 1
15 32.7 10 4.83 10 37.0 3754, 6380 25.5 0, 3 2.22 6 23.5 1 52.3 4019 0.00 1
15 30.9 10 4.82 14 39.2 4095, 8461 11.6 0, 0 1.55 5 22.5 1 54.5 4166 0.00 1

36


	Introduction
	Previous work
	Detailed overview
	Notations and definitions
	Geometrical and topological representations
	Interval arithmetic tools
	Interval arithmetic
	Criteria for existence and uniqueness of solutions
	Reliable numerical isolation


	Enclosing the space curve C
	Assumptions
	Connected components of CC_0 and initial boxes
	Certified numerical path-tracking
	Computing a -approximation of C

	Isolating singularities of B
	Assumptions
	Ball system
	Solving domain
	 Singularities of an apparent contour

	Topology at special points of B
	Boundary points
	Preprocessing of nodes, cusps and x-extreme points
	Topology at a node singularity
	Topology at a cusp singularity
	Topology at an x-extreme point

	Global topology of B as an embedded graph
	Computing a graph of which BB_0 is an embedding
	In and out connections
	Computing the incidence relation I and -approximations of edges

	Computing the CMap of one connected component 
	Faces of a CMap
	Exterior face
	Point-face location in a CMap

	Embedding G_ 
	Constructing the XPMap
	Point-face location in a XPMap


	Implementation and results
	Our implementation
	Experimental data
	State-of-the-art methods
	Results

	Implementation of Algo. 2
	Deciding if an implicit point lies in a set of the approximation
	The path-tracking algorithm of MGGJsiam13
	Meeting the specifications of Algo. 2

	Details for results

