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We give a probabilistic analysis of a Moser-type algorithm for the Lovász Local Lemma (LLL), adjusted to search for acyclic edge colorings of a graph. We thus improve the best known upper bound to acyclic chromatic index, also obtained by analyzing a similar algorithm, but through the entropic method (basically counting argument). Specifically we show that a graph with maximum degree ∆ has an acyclic proper edge coloring with at most ⌈3.74(∆ -1)⌉ + 1 colors, whereas, previously, the best bound was 4(∆ -1). The main contribution of this work is that it comprises a probabilistic analysis of a Moser-type algorithm applied to events pertaining to dependent variables.

Introduction and the basic algorithm

Let G = (V, E) be a (simple) graph with l vertices and m edges. The chromatic index of G is the least number of colors needed to properly color its edges, i.e., to color them so that no adjacent edges get the same color. If ∆ is the maximum degree of G, it is known that its chromatic index is either ∆ or ∆ + 1 (Vizing [START_REF] Vizing | Critical graphs with a given chromatic class[END_REF]).

A cycle of G of length s is a sequence v i , i = 0, . . . , s-1 of distinct vertices so that ∀i = 0, . . . s -1, v i and v i+1 (mod s) are connected by an edge. The acyclic chromatic index of G (ACI) is defined as the least number of colors needed to properly color the edges of G so that no cycle is bichromatic, i.e., so that there is no cycle whose edges are properly colored with only two colors. Notice that in any properly colored graph, any cycle of odd length is necessarily at least trichromatic, i.e., its edges have three or more colors. It has been conjectured (J. Fiamčik [START_REF] Fiamčik | The acyclic chromatic class of a graph (in Russian)[END_REF] and Alon et al. [START_REF] Alon | Acyclic edge colorings of graphs[END_REF]) that the acyclic chromatic index of any graph with maximum degree ∆ is at most ∆ + 2. A number of successively tighter upper bounds to the acyclic chromatic index have been provided in the literature. Most recently, Esperet and Parreau [START_REF] Esperet | Acyclic edge-coloring using entropy compression[END_REF] proved that the acyclic chromatic index is at most 4(∆ -1). Their proof makes use of the technique of Moser and Tardos [START_REF] Moser | A constructive proof of the general Lovász Local Lemma[END_REF] that constructively proves the Lóvasz Local Lemma (a technique which became known as the "entropy compression method" [START_REF] Tao | Mosers entropy compression argumentAvailable[END_REF]). An approach using the entropy compression method was also used for the vertex analogue of the edge chromatic number by Gonçalves et al. [START_REF] Gonçalves | Entropy compression method applied to graph colorings[END_REF].

In this work, we modify the technique used by Esperet and Parreau [START_REF] Esperet | Acyclic edge-coloring using entropy compression[END_REF] in that for a Moser-type edge coloring algorithm, we use as tool of analysis the approach we described in Section 2 of [START_REF] Giotis | On the algorithmic Lovász local lemma and acyclic edge coloring[END_REF]. Namely, instead of an essentially counting argument as used in the entropy compression method, we give a probabilistic analysis that yields an upper bound of ⌈3.74(∆-1)⌉+1 for the acyclic chromatic index, improving over 4(∆ -1) in [START_REF] Esperet | Acyclic edge-coloring using entropy compression[END_REF] (in contrast to the paper by Moser and Tardos [START_REF] Moser | A constructive proof of the general Lovász Local Lemma[END_REF], a probabilistic analysis was used in the original paper of Moser [START_REF] Moser | A constructive proof of the Lovász Local Lemma[END_REF]; see the elegant exposition by Spencer in [START_REF] Spencer | Robin Moser makes Lovász Local Lemma algorithmic[END_REF]). The present paper can be read independently of [START_REF] Giotis | On the algorithmic Lovász local lemma and acyclic edge coloring[END_REF].

An interesting aspect of this application is that the edge colors to which the "undesirable" events of LLL refer to are not probabilistically independent. This dependence introduces certain conceptual difficulties, some of which are, we believe, non-trivial (see the proof of Lemma 5 and the preceding remarks). The randomized algorithm that we deal with allows the freedom, when coloring an edge, to make a selection, uniformly at random, from a guaranteed minimum number of available colors. However, the "guarantee" of a minimum number of available colors is valid only if any conditioning refers only to colors previously assigned. To handle the probabilistic analysis of such a randomized algorithm without introducing posterior probabilities, which would render the analysis unmanageable, we put all events referring to colors that edges have in chronological order according to the instant these edges got their current color. We consider this approach of handling dependent events in constructive proofs of LLL, rather than just the improvement of the coefficient of the upper bound from 4 to 3.74, as the essential aspect of the contribution of this work (nevertheless, see the discussion in Section 3 for possible further numerical improvement). We also get improved numerical results with respect to graphs with bounded girth, some specific values of which are sampled in Figure 1. Below, to facilitate notation, we call a proper edge-coloring s-acyclic if it contains no bichromatic cycle of length s or less. We call the corresponding graph parameter the s-acyclic chromatic index.

Girth Number of colors Previously known

[4] - 3.731(∆ -1) + 1 4(∆ -1) 7 3.326(∆ -1) + 1 3.737(∆ -1) 53 2.494(∆ -1) + 1 3.135(∆ -1) 219 2.323(∆ -1) + 1 3.043(∆ -1)
We start by mentioning the following fact, proved in Esperet and Parreau [START_REF] Esperet | Acyclic edge-coloring using entropy compression[END_REF]:

Lemma 1 (Esperet and Parreau [START_REF] Esperet | Acyclic edge-coloring using entropy compression[END_REF]). At any step of any successive coloring of the edges of a graph, there are at most 2(∆ -1) colors that should be avoided in order to produce a 4-acyclic coloring.

Proof Sketch. Notice that for each edge e, one has to avoid the colors of all edges adjacent to e, and moreover for each pair of homochromatic (of the same color) edges e 1 , e 2 adjacent to e at different endpoints (which contribute one to the count of colors to be avoided), one has also to avoid the color of the at most one edge e 3 that together with e, e 1 , e 2 define a cycle of length 4. So the total count of colors to be avoided adds up to 2(∆ -1).

Assume now that we have K = ⌈(2 + γ)(∆ -1)⌉ + 1 colors, where γ is a nonnegative constant to be computed.

We assume below that the edges of the graph, and its cycles, are ordered according to fixed a priori orderings.

Notice that for each cycle of the graph there are two consecutive traversals of its edges. It does not matter which we use, but for concreteness when we start the traversal from an edge e, the next edge to be traversed is the least one from the two adjacent to e. We call this traversal "positive".

Also in an even length cycle, the edges can be partitioned into two subsets of equal cardinality, the elements of each of which have pairwise odd distance. These sets are called equal parity sets. If we color such a cycle with two colors so that no adjacent edges get the same color, then the equal parity sets are the monochromatic sets, i.e. the sets whose respective elements get the same color.

Consider now the algorithm given in Figure 2.

Color

1:
Color all edges following their ordering and choosing at each step a color uniformly at random among those that retain 4-acyclicity. 2: while an edge belonging to a bichromatic cycle exists, let e be the least such and let C be the least bichromatic cycle that contains e and do

3:

Recolor(e, C) 4: end while 5: Output current coloring.

Recolor(e, C) 1: Recolor, in their ordering, all edges of C, choosing at each step a color uniformly at random among those that retain 4-acyclicity. 2: while an edge of C belonging to a bichromatic cycle exists, let e ′ be the least such and let C ′ be the least bichromatic cycle that contains e ′ and do

3:

Recolor(e ′ ; C ′ ) 4: end while A root call of Recolor is a call invoked in line 3 of Color. A phase is the collection of steps involved in the execution of a call of Recolor (root or not) or the collection of steps executed in line 1 of Color. The latter phase is called the initial phase (phases are nested). The time complexity of Color is expressed in terms of the number of invocations (root or not) of Recolor, i.e. the number of phases.

Notice that in this algorithm, each non-root invocation of Recolor chooses a cycle sharing an edge with the cycle of the calling Recolor. So this algorithm is in the spirit of the algorithm in the original paper by Moser [START_REF] Moser | A constructive proof of the Lovász Local Lemma[END_REF]; in the subsequent algorithm by Moser and Tardos [START_REF] Moser | A constructive proof of the general Lovász Local Lemma[END_REF], the event chosen at the end of each phase does not necessarily share a variable with the event of the previous phase.

The following follows easily from line 2 of Color.

Lemma 2. Color outputs an acyclic edge coloring if it ever stops.

The main result of this paper, Theorem 2, states that if there are at least 3.74(∆ -1) + 1 available colors, then the probability that Color lasts for at least n phases is < 1 for sufficiently large n (actually, Theorem 2 states that this probability is subexponential), therefore there is an acyclic edge coloring. Lemma 3. Consider an arbitrary call of Recolor(e, C). Let E be the set of edges that do not belong to a bichromatic cycle at the beginning of this call together with the set of edges of C. Then, if the call terminates, the edges in E do not belong to any bichromatic cycle at the end of Recolor(e, C).

Proof. Consider an edge e ′ ∈ E. Assume first that e ′ does not belong to C. Then, if e ′ is in a bichromatic cycle C ′ after the execution of Recolor(e, C), that cycle must have become bichromatic during the execution. Therefore there is a cycle C -and an edge of it e -such that the process Recolor(e -; C -) was called as a recursive call of Recolor(e, C) and C ′ and C -share an edge and C ′ became bichromatic during Recolor(e -; C -). But the call Recolor(e -; C -) will not terminate until all edges in C -do not belong to a bichromatic cycle. Assuming Recolor(e, C) terminates, Recolor(e -; C -) must have also terminated. So C ′ cannot be bichromatic at the end of Recolor(e -; C -). The same argument can be reapplied every time e changes color and becomes an element of a bichromatic cycle during Recolor(e, C).

If, on the other hand, e ′ ∈ C, then by definition e ′ does not belong to any bichromatic cycle at the end of Recolor(e, C).

As an immediate corollary we get:

Corollary 1. The cycles of root calls of Recolor have pairwise distinct sets of edges. Therefore the number of root phases is at most m, the number of edges of the graph.

We define labeled forests to be rooted forests whose nodes are labeled with pairs (e, C), where e is an edge, called the edge-label, and C is an even cycle of half-length ≥ 3 that contains e, called the cycle-label. We consider such labeled forests as ordered by ordering the set of roots and each set of siblings (children of the same parent) according to the order of their respective edge-label. We also define:

Definition 1. A labeled forest is called feasible if i.
Pairwise, the cycle-labels of the roots of the trees do not share an edge, ii. pairwise the cycle-labels of the children of every node do not share an edge, iii. if C is the cycle-label of a node u, the edge-label of any child of u belongs to C.

Feasible forests are intended to represent the structure of recursive calls to Recolor. For technical reasons, we add to a feasible forest some new leaves to which we assign just an edge-label (their cycle-label can be taken to be an empty cycle): First we add new trees comprised of a root only, so that the set of edge-labels of all the roots of the trees of forest becomes equal to the set of edges of the graph; second, we hang from each original leaf v of F as many new leaves as the edges of the cycle-label of v, and we label them so that the set of their edge-labels coincides with the set of edges of the cycle-label of v. So we assume in the sequel that there are exactly m roots whose edge-labels comprise the set of all edges, and that any internal node with a cycle-label C of halflength k has exactly 2k children whose edge-labels comprise the set of all edges in C. Traversing the internal nodes of each tree of a feasible forest in pre-order (depth-first), and visiting the trees in the order of their roots' edge-labels, we obtain the forest's label-sequence L = (e 1 , C 1 ), . . . , (e n , C n ) (labels of leaves are not included in the label-sequence).

Definition 2. The n-witness forest (or just the witness forest, when n is clear from the context) of an execution of Color with at least n phases is the feasible forest that results by creating one node per each of the n invocations of Recolor, labeling it by its argument, and structuring the trees of the forest as the calls of Recolor appear in the recursion stack of each root phase, i.e. a node labeled with (e 2 , C 2 ) is a progeny of a node labeled with (e 1 , C 1 ) if Recolor(e 2 , C 2 ) is called while Recolor(e 1 , C 1 ) is executed (additional leaves as described in the previous paragraph are also added).

A Bound for the Acyclic Chromatic Index

Towards finding an upper bound that Color lasts for at least n phases, we consider the algorithm ColorVal in Figure 3 that takes as input an arbitrary sequence S = (e 1 1 , e 2 1 , k 1 ), . . . , (e 1 n , e 2 n , k n ), such that for all s = 1, . . . , n, e 1 s and e 2 s are adjacent edges contained in some cycle of half-length k s ≥ 3, and appear in this order in the cycle's positive traversal, when we start from e 1 s . We call such sequences admissible sequences. Observe that ColorVal on input an arbitrary admissible sequence S, with |S| = n, always produces as output a uniquely defined sequence of cycles C = C 1 , . . . , C n (but, alas, may end up with success = false). The notion of "phases" for ColorVal is defined in analogy to Color, i.e. phases are comprised of the number of steps that are involved with the execution of line 1 (initial phase) or with the execution of a loop of line 3 of ColorVal (phase s).

ColorVal (S admissible sequence (e 1

s , e 2 s , k s ), s = 1, . . . , n)

1: Color all edges of the graph, following their ordering, choosing at each step uniformly at random a color that retains 4-acyclicity. Recolor all edges of C s , in their ordering, choosing at each step a color uniformly at random among those that retain 4-acyclicity 9: end for Proof. We prove first that the probability P for at least one F ∈ F S being a witness forest of Color is bounded from above by the probability that Color-Val is successful on input S. For this it is sufficient to notice that if the random choices made by an execution of Color that produces an arbitrary F ∈ F S are made by ColorVal on input S F = S, then ColorVal is successful. The result now follows by observing the the events that F is a witness forest of Color for various F ∈ F S are mutually exclusive, therefore P can be written as the sum in the lhs of (1).

Given an admissible sequence S = (e 1 1 , e Call the color an edge has immediately before the s'th repetition of loop 3 the edges's color at phase s. Also call an edge's color at phase 1 the edge's initial color. Given an edge e and a phase number s, let time(s; e) be the latest instant before phase s starts that e was assigned the color it has at phase s, and let χ(s; e) be this color.

Remark 1. Notice that in general it is possible to have two distinct phases s ′ , s and an edge e so that time(s ′ ; e) = time(s; e), because an edge may not be assigned a color for the duration of several phases; however if C s ′ is the cycle produced by an execution of ColorVal at phase s ′ , s ′ < s, and e belongs to C s ′ then time(s ′ ; e) < time(s; e), because the cycles of the output cycle-sequence are recolored at each repetition of loop 3.

Let c 1

s , c 2 s be the colors that the early edges e ), j = 1, 2. Remark 2. To avoid a possible misinterpretation, let us stress here that we do not assume that c 1 s , c 2 s are a priori fixed and that the executions considered are conditioned on the early edges of C s taking the colors c 1 s , c 2 s , respectively. Rather, given an arbitrary execution, c 1 s , c 2 s denote the colors the early edges will have at phase s. Much like the Monty Hall problem [START_REF] Selvin | A problem in probability (letters to the editor)[END_REF], where the assumption that

Monty Hall opens box A does not mean that the choice of the contestant is conditioned on Monty Hall always opening box A. "Box A" is just a "name" for whatever box Monty Hall will open. Its actual value depends on the box selected by the contestant.

Given a phase number s a color c and an edge e (belonging to C s or not), the event of assignment of color c for phase s (CA-event, in short), notationally CA(s, c; e), is the event that occurs if the color assigned to e by ColorVal at instant t = time(s; e) is c. If e belongs to the cycle C s , i.e. if e = e i s for some i, then the CA-event CA(s, c; e) for c = c ((i+1) mod 2)+1 s is called the the correct color assignment event (CCA-event, in short), notationally CCA(C s ; e). In other words, a CCA-event occurs when the edge of its argument takes the color of the corresponding early edge of the cycle of its argument. We refer to the color c ((i+1) mod 2)+1 s for the edge e i s as e i s 's "correct" color for phase s. The chronological order of the edges e i s of a cycle sequence C is the order induced by the ordering of time(s; e i s ) (recall Remark 1).

Definition 3. An anterior conditional for an event CA(s, c; e) is any conjunction of events CA(s ′ , c ′ ; e ′ ), or negations of them, such that time(s ′ ; e ′ ) < time(s; e).

Lemma 4. The probability of any CA-event, not referring to a cycle's early edge and its correct color, given any anterior conditional, is at most

1 γ(∆ -1) + 1 .
Proof. It follows immediately from the fact that ColorVal assigns a color chosen uniformly at random from the set of colors that do not presently destroy 4-acyclicity and that this set, by Lemma 1, has cardinality at least γ(∆ -1) + 1, independently of past assignments (recall that the total number of available colors is K = ⌈(2 + γ)(∆ -1)⌉ + 1).

Remark 3. [Identifying the pivotal edges with their corresponding early edges]

Observe that by definition, the CCA-events corresponding to the early edges of cycles occur with probability 1. To keep the notation simple, we will consider CCA-events CCA(C s ; e i s ) for all i ≥ 3 but with the notational convention that for j = 1, 2, CCA(C s ; e l j s s ) stands for CCA(C s ; e j s ), i.e. the CCA-event of an early edge is, by convention, just the CCA-event of the corresponding pivotal edge.

Lemma 5. Given an admissible sequence S = (e 1

s , e 2 s , k s ), s = 1, . . . , n, then for the probability of success of ColorVal on input S we have that:

Pr [ColorVal is successful on S] ≤ 1 γ(∆ -1) + 1 n n s=1 1 -1 - 1 γ(∆ -1) + 1 ∆-1 2ks-3 . (2)
Proof. Given a cycle-sequence C associated with S, the edges incident on v i s other than e i-1 s are called these edges stemming out v i s . Let these edges in chronological order be o 1 , . . . , o δ i s , where δ i s denotes their cardinality (the o l 's themselves depend on s and i, however for brevity we omit the corresponding indices). Obviously δ i s ≤ ∆ -1, where ∆ is the max degree of the underlying graph G. When e i-1 s is the previous to last edge of C s in its positive traversal, we set δ i s = 1. Also, let the parity of a non-pivotal edge e i s of C s be 1 or 2 depending on whether e i s is at odd distance from e 1 s or e 2 s . Let E 1 C , . . . , E 2 k C denote the CCA-events CCA(C s ; e i s ), 1 ≤ s ≤ n, i = 3, . . . , 2k s of C in chronological order (by Remark 1, we may assume that these events correspond to distinct time instants). Let A t denote the conditional that the chronologically first t -1 CCA-events of C hold (A t depends on the execution).

The geometric order of the edges of C is the one where the edges in each cycle are ordered as they are traversed in its positive traversal, whereas the cycles are ordered by their index (corresponding phase number). Assume that the CCAevent for the k'th such edge (k = 1, . . . , 2 k) in the geometric order is E t k C . In other words, E t k C , t = 1, . . . , 2 k is a reordering, in the sense of the geometric order, of the chronological order E C , t = 1, . . . , 2 k (the reordering depends on the execution).

We now define a random variable, denoted by C, over the random colorchoices of ColorVal. C is the unique cycle-sequence such that for every cycle C s of C, every non-pivotal edge e i s is either the (unique) edge stemming out of v i s that, at the beginning of phase s, has the same color as the pivotal edge of C s of the same parity, if there is such one, or is the first edge stemming out of v i s in some predetermined order of all edges of the underlying graph, otherwise. This is a well defined function over the space of random color-choices of ColorVal because we cannot have two homochromatic edges incident onto the same vertex. It is admittedly somewhat confusing that until now the notation C referred to an arbitrary but fixed cycle-sequence, whereas in the sequel it denotes a random variable depending on the random choices of ColorVal, yet we believe that we thus avoid overloading the notation. Once C is seen as an well-defined random variable, all the parameters defined up to now in terms of a fixed arbitrary C, like e i s (the i-th edge in the positive traversal of the s-th cycle of C), δ i s (the number of edges stemming out of the v i s ), o l (the chronologically l-th edge stemming out of v i s ) etc. become well-defined random variables, depending only on the random choices of ColorVal and its input S. Also the events previously described remain meaningful with C being the random variable defined above instead of arbitrary and fixed. Now, observe that:

Pr [ColorVal is successful on S] = Pr [C is bichromatic] = 2 k t=1 Pr E t C | A t = 2 k k=1 Pr E t k C | A t k . (3) 
Indeed, we obviously have that the event "ColorVal is successful on S" is implied by the event "C is bichromatic" (C is said to be bichromatic if for all s, C s is bichromatic at the beginning of phase s). Also because no two homochromatic edges can be incident to the same vertex, we have that the latter event is implied by the former, so we get the first equality of Equation 3. The second equality follows by Remark 3 and the third one is trivial.

In order to find an upper bound for Pr E t k C | A t k , first assume that for some s = 1, . . . , n, i = 3, . . . , 2k s , the event E t k C is the event CCA(C s ; e i s ). For brevity let δ k denote δ i s and c k the correct color for e i s . Let now E l be the event "(e i s = o l ) ∧ CA(s; c k , o l )", l = 1, . . . , δ k . Intuitively, E l means that e i s is the chronologically l'th edge stemming out of v i s and it gets the correct color. In case e i s is a non-pivotal early edge of a cycle C s (i.e. the earliest edge among the same parity edges of C s ), then E l stands for "(e i s = o l ) ∧ CA(s; c k , e)", where e is the pivotal edge e 1 s or e 2 s of the same parity as e i s and c k is e i s 's color (recall Remark 3). We have:

Pr E t k C | A t k = Pr CA(s, c k ; e i s ) | A t k = Pr δ k l=1 E l | A t k , (4) 
because always (deterministically) e i s is one of the edges that stem out of v i s . Intuitively, Pr δ k l=1 E l | A t k denotes the probability that one of the edges stemming out of e i s gets the correct color.

Observe that:

Pr

δ k l=1 E l | A t k = 1 -Pr δ k l=1 (¬E l ) | A t k = 1 - δ k l=1 Pr ¬E l | l-1 m=1 ¬E m ∧ A t k . (5) 
Intuitively, the expression Pr

δ k l=1 (¬E l ) | A t k
denotes the probability that none of the possible instantiations of e i s (i.e. the edges that stem out of the v i s ) gets the correct color. Now observe that:

(i) for an l's for which e i s = o l , it holds that Pr ¬E l | l m=1 ¬E m ∧ A t k = 1, whereas (ii) for an l for which e i s = o l , it holds that

Pr ¬E l | l-1 m=1 ¬E m ∧ A t k ≥ 1 - 1 γ(∆ -1) + 1 ,
because when e i s = o l , the event E l is equivalent to CA(s, c k ; o l ) and the conditional

l-1 m=1 ¬E m ∧ A t k is equivalent to A t k ,
which is anterior to CA(s, c k ; o l ), because e i s = o l . Therefore for all l, we have that

Pr ¬E l | l-1 m=1 ¬E m ∧ A t k ≥ 1 - 1 γ(∆ -1) + 1 , Therefore: Pr δ k l=1 (¬E l ) | A t k ≥ 1 - 1 γ(∆ -1) + 1 d k ,
where d k = 1 if k corresponds to the last (in the geometric order) edge e i s of C s , and

d k = ∆ -1 otherwise (d k is not random).
Therefore, from ( 4) and ( 5) we get that:

Pr E t k C | A t k ≤ 1 -1 - 1 γ(∆ -1) + 1 d k .
Observe that among the k = 1, . . . , 2 k there are n values of k for which d k = 1 (the k's for which e i s is the closing edge of C s ), whereas for the remaining n s=1 (2k s -3) values of k, we have d k = ∆ -1. So we can conclude from (3) that that Pr [ColorVal is successful on S] is bounded from above by:

1 γ(∆ -1) + 1 n n s=1 1 -1 - 1 γ(∆ -1) + 1 ∆-1 2ks-3 .
Remark 4. The fact that no two homochromatic edges can be incident onto the same vertex is essential for the correctness of the above proof. For example in the case of vertex coloring, where we can have more than one homochromatic vertices neighboring with the same vertex, the proof does not go through. Indeed, even if we define the random variable C to be the unique cycle-sequence such that for every cycle C s of C, every non-pivotal edge e i s is either the first edge stemming out v i s that has the same color as the pivotal edge of C s of the same parity, if there is one, or is the first edge stemming out of v i s , if there is none, still Equation 3 can only take the form:

Pr [ColorVal is successful on S] ≥ Pr [C becomes bichromatic] = 2 k t=1 Pr E t C | A t = 2 k k=1 Pr E t k C | A t k . ( 6 
)
Corollary 2. If S is as in Lemma 5 then

Pr [ColorVal is successful on S] ≤ 1 ∆ -1 n n i=1 1 γ 1 -e -1 γ 2ki-3 . (7) 
Proof. Use the inequality

1 -x > e -x 1-x , ∀x < 1, x = 0
(see e.g. [12, inequality (4.5.7)]) for x = 1 γ(∆-1)+1 , which implies, after elementary operations, that 1 -

1 γ(∆-1)+1 ∆-1
is at least e -1 γ .

We now turn to the estimation of the probability, call it Pn , that Color lasts for at least n phases.

Theorem 1. The expression P n defined as

P n = n1+•••+nm=n n1,...,nm≥0 Q n1 • • • Q nm , (8) 
where Q n is defined by the recursion:

Q n = k≥3 1 γ 1 -e -1 γ 2k-3 • n1+•••+n 2k =n-1 n1,...,n 2k ≥0 Q n1 • • • Q n 2k , (9) 
with Q 0 = 1, is an upper bound of Pn .

Proof. Let f be an unlabeled ordered forest with m trees (recall, m is the number of edges of G) and with n internal nodes, each, considered in their pre-order, having an even degree 2k s , s = 1, . . . , n (k s ≥ 3). Let p f be the probability that the witness forest of an execution of Color on G has underlying unlabeled forest f . Obviously Pn =

f p f , (10) 
where the sum above ranges over unlabeled forests as described.

With each internal node of f with half-degree k s , we associate weight

1 γ 1 -e -1 γ 2ks-3
, and we associate weight 1 with the leaves of f . We define:

f = n i=1 1 γ 1 -e -1 γ 2ki-3 . ( 11 
)
We now prove:

Claim. p f ≤ f .
Proof of Claim. Let L = (e 1 1 , C 1 ), . . . , (e 1 n , C n ) be a sequence which if considered as label-sequence of f leads to an n-witness forest for Color. We will examine what the possibilities for L are and thus bound the probability that at least one such label-sequence, together with f , comprises a witness of Color.

First observe that the lengths of the cycles C s should coincide with the positive degrees 2k s of f , therefore the lengths of the C s of L are uniquely determined. Then observe that the edge-label e 1 1 of L, which is to be assigned to the first r root of f that is not a leaf, is uniquely determined to be the k'th edge of G, where k -1 is the number of leaf-roots that precede r (recall the definition of a witness forest, the way it is defined by Color and the fact that we introduced isolated roots for feasible forests in order to cover all edges of G). There are at most (∆ -1) choices for e 2 1 , the second pivotal edge of C 1 . This introduces a factor of (∆-1) for the sought after upper bound of p f . Once e 1 1 , e 2 1 of L are determined, the event that f , together with such an L, gives a witness for Color necessitates that some C 1 with pivotal edges e 1 1 , e 2 1 and length 2k 1 is bichromatic. For each such possibility for C 1 , the second edge-label e 1 2 of L is determined to be the first edge of C 1 that does not correspond to a leaf of f (recall again the definition of a witness forest, the way it is defined by Color and the fact that we introduced isolated leaves for feasible forests in order to cover all edges of each cycle-label of each internal node). Again there are at most (∆ -1) possibilities for e 2 2 , thus introducing a factor of (∆ -1) to the sought after upper bound. And again, it becomes necessary that some C 2 with with pivotal edges e 1 2 , e 2 2 and length 2k 2 is bichromatic. We continue in this fashion, following the structure of f : when a leaf is reached, we go back to the last internal node (in a depth-first fashion), then the next edge of this internal node's cycle-label should be the next edge-label in L; when a tree of the forest f is exhausted, we go to the next root, then the next edge of G should be the next edge-label L. Now from Proposition 1, which bounds the probability that at least one forest with labels (e 1 s , C s ) s is a witness for Color, and Corollary 2, which bounds the probability that ColorVal is successful on input (e 1 s , e 2 s , k s ) s , and taking into account the n factors (∆ -1), which correspond to the possible choices of e 2 s , we conclude that p f is bounded from above by the product of the weights:

f = n i=1 1 γ 1 -e -1 γ 2ki-3 .
This concludes the proof of the Claim and we now return to the proof of Theorem 1.

Consider unlabeled ordered forests with m ordered trees with n internal nodes in total, whose out-degrees are even and ≥ 6; assign weight w 2k to all internal nodes of out-degree 2k; also assign weight 1 to all leaves and let the weight of such a tree be the product of the weight assigned to all its nodes. Then by distributivity of multiplication over addition it follows that the sum f n of the weights of all such weighted unlabeled ordered forests is given by:

f n = n1+•••+nm=n n1,...,nm≥0 t n1 • • • t nm , (12) 
where t n , the sum of the weights of weighted unlabeled ordered rooted trees with n internal nodes, is given by the recurrence:

t n = k≥3 w 2k n1+•••+n 2k =n-1 n1,...,n 2k ≥0 t n1 • • • t n 2k , (13) 
with t 0 = 1. By the Claim above we get that:

f p f ≤ f f = f n i=1 1 γ 1 -e -1 γ 2ki-3 . (14) 
The required follows from ( 10) and ( 14) making use of the recurrence given by ( 12) and (13).

Asymptotic analysis of the recurrence

We will asymptotically analyze the coefficients of the OGF Q(z) of Q n . Towards this end, multiply both sides of equality (9) by z n and sum for n = 1, . . . , ∞ to get

Q(z) -1 = k≥3 1 γ 1 -e -1 γ 2k-3 zQ(z) 2k , (15) 
with Q(0) = 1. Setting W (z) = Q(z) -1 we get

W (z) = k≥3 1 γ 1 -e -1 γ 2k-3 z(W (z) + 1) 2k , (16) 
with W (0) = 0. For notational convenience, set W = W (z). Then from (16) we get: 

W = z 1 γ • 1 -e -1
to get from (17):

W = zφ(W ). ( 19 
)
Let now R = 

By [13, Proposition IV.5] (it is trivial to check that the hypotheses in that Theorem are satisfied for γ > 0), we get [z n ]Q ⊲⊳ (1/ρ) n , i.e. lim sup ([z n ]Q) 1/n = 1/ρ (see [START_REF] Flajolet | Analytic Combinatorics[END_REF]IV.3.2]). Now by a simple search (through Maple, for the code see [START_REF] Giotis | Maple code[END_REF]) we found that for γ = 1.73095, the unique positive solution of (20) in the radius of convergence is τ = 0.1747094762, and this value of τ gives 1/ρ = 0.9999789027 < 1. Therefore by making use of (8), we get: Theorem 2. Assuming ∆, the maximum degree of the graph G, is constant, and given the availability of at least 3.74(∆-1)+1 colors, there exists an integer N , which depends linearly on m, the number of edges of G, and a constant ρ > 1 such that if n/ log n ≥ N then the probability that Color executes at least n calls of Recolor is < (1/ρ) n ; therefore the graph has an acyclic edge coloring. Now if the graph has girth 2r -1 for r ≥ 4, the previous arguments carry over with minimal changes. Namely, equation (9) becomes:

Q n = k≥r 1 γ 1 -e -1 γ 2k-3 • n1+•••+n 2k =n-1 n1,...,n 2k ≥0 Q n1 • • • Q n 2k , Q 0 = 1. ( 22 
)
Also in [START_REF] Giotis | Acyclic edge coloring through the lovász local lemma[END_REF] and ( 16), the starting point of the summation is changed from 3 to r. Moreover, equation (17) becomes:

W = z 1 γ • 1 -e -1 γ 2r-3 (W + 1) 2r 1 -1 -e -1 γ 2 (W + 1) 2 , ( 23 
)
and equation (18) becomes:

φ(x) = 1 γ • 1 -e -1 γ 2r-3 (x + 1) 2r 1 -1 -e -1 γ 2 (x + 1) 2 . ( 24 
)
Working as before, we get numerical results depicted in Figure 4 with sample specific values explicitly given in Figure 1. 

Discussion

There are several conceivable possibilities for improvement of the ⌈3.74(∆ -1)⌉ + 1 bound. For example, in Color we can recolor not all edges of C s but all but two consecutive of them (because it is only those that determine bichromaticity). Also in Theorem 1, we can conceivably improve the bound provided by claiming that for each execution, there is only one k s so that the cycle C s of half-length k s is bichromatic. Nevertheless we opted not to consider these possible improvements, as our aim was only to present a probabilistic analysis of a Moser-type algorithm with dependent variables.
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  2 1 , k 1 ), . . . , (e1 n , e 2 n , k n ), an arbitrary sequence C = C 1 , . . . , C n of cycles such that C s , s = 1, . . . , n, has length 2k s and contains e1 s , e 2 s , in this order in its positive traversal, starting from e 1 s , is called a cycle-sequence associated with the admissible S (a cycle-sequence C associated with S need not necessarily be the cycle-sequence produced by ColorVal).Given a cycle-sequence C = (C s ) s associated with an admissible sequence S = (e1 s , e 2 s , k s ) s , let the other edges of C s in its positive traversal be e 3 s , . . . e 2ks s and let v i s , i = 1, . . . , 2k s , be the vertices of C s with v i s , v i+1 mod 2ks For linguistic convenience, we call the edges e 1 s , e 2 s the first and second pivotal edges of C s , respectively (these are common to all C). Let e ) be the edge of C s that gets the color it has at phase s of ColorVal earliest among the edges of C s that have equal parity with e 1 the early edges of C s .We call instants of an execution of ColorVal the discrete successive values t = 1, 2, . . . of a time parameter at which ColorVal assigns a color to an edge. Reassigning the same color is assumed to take place at a new instant.
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