On Veech's proof of Sarnak's theorem on the Möbius flow el Houcein el Abdalaoui

We present Veech's proof of Sarnak's theorem on the Möbius flow which say that there is a unique admissible measure on the Möbius flow. As a consequence, we obtain that Sarnak's conjecture is equivalent to Chowla conjecture with the help of Tao's logarithmic Theorem which assert that the logarithmic Sarnak conjecture is equivalent to logaritmic Chowla conjecture, furthermore, if the even logarithmic Sarnak's conjecture is true then there is a subsequence with logarithmic density one along which Chowla conjecture holds, that is, the Möbius function is quasigeneric.

Introduction

In this short note we present Veech's proof of Sarnak's theorem on the Möbius flow [START_REF] Veech | A conjecture Between the Chowla and Sarnak conjectures[END_REF], [START_REF] Veech | Möbius dynamics[END_REF]. Of-course, this proof is connected to Sarnak and Chowla conjectures. Moreover, let us stress that our exposition is self-contained as much as possible.

Roughly speaking, Chowla conjecture assert that the Liouville function is normal, and Sarnak conjecture assert that the Möbius randomness law holds for any dynamical sequence with zero topological entropy. For more details on the Möbius randomness law we refer to [START_REF] Iwaniec | Analytic number theory[END_REF].

It is turn out that Veech's proof in combine with the recent result of Tao [START_REF] Tao | [END_REF] yields that Sarnak conjecture implies Chowla conjecture. Indeed, Tao's result assert that if the even logarithmic Chowla conjecture holds then there exists a subsequence N with logarithmic density 1 along which the Chowla conjecture holds, and from Veech's proof we will see that this is enough to conclude that Chowla conjecture holds. We remind that T. Tao obtained as a corollary the recent result of Gomilko-Kwietniak-Lemańczyk [START_REF] Gomilko | Sarnak's conjecture implies the Chowla conjecture along a subsequence[END_REF].

Let us further point out that the proof of Gomilko-Kwietniak-Lemańczyk is based essentially on Tao's theorem on logarithmic Sarnak and Chowla conjectures.

We further notice, as T. Tao pointed out, that the proof of Gomilko-Kwietniak-Lemańczyk use only that the Möbius function is bounded.

Here, as mentioned before, combining Tao's result with Sarnak's theorem as established by W. Veech, we deduce that Sarnak conjecture holds if and only if Chowla conjecture holds.

The more striking result that follows from Veech's proof is the connection between Sarnak conjecture and Hadamard matrix.

We remind that the matrix H of order n is a Hadamard matrix if H is a n × n matrix with entries ±1 such that HH T = nI n , where I n is the identity matrix. The Hadamard matrix are named after Hadamard since the equality in the famous Hadamard determinant inequality holds if and only if the matrix is a Hadamard matrix.

It is well known that Hadamard matrix exist when n = 1, 2 or n is a multiple of 4.

The Hadamard conjecture states that there is a Hadamard matrix for every any multiple of 4. In the opposite direction, the circulant Hadamard matrix conjecture state that the only circulant Hadamard matrix are matrix of order 1 and 4. We recall that a circulant matrix of order m is an m × m matrix for which each row except the first is a cyclic permutation of the previous row by one position to the right.

The conjectures of Hadamard are two of the most outstanding unsolved problems in mathematics nowadays.

It is well known that the Hadamard matrix is related to the so-called Barker sequences. The Barker sequence is a sequence of ±1 for which the autocorrelation coefficients are bounded by 1. We remind that the autocorrelation of a sequence (x j ) N -1 j=0 are given by

c k = N -k-1 j=0 x j x j+k , k ≥ 1 with c k = c -k , ifk < 0.
For the special real case we have c k = c -k . To be more precise, it is well known that if a Barker sequence of even length n exists, then so does a circulant Hadamard matrix of order n. But, very recently, the author established that there are only finitely many Barker sequences, that is, Turyn-Golay's conjecture is true [START_REF] El Abdalaoui | On the Erdös flat polynomials problem, Chowla conjecture and Riemann Hypothesis[END_REF]. For more details on the Hadamard matrix, we refer to [START_REF] Horadam | Hadamard matrices and their applications[END_REF].

Setup and the main result

The Möbius function µ is related intimately to the Liouville function λ which is defined by λ(n) = 1 if the number of prime factor of n is even and -1 otherwise. Precisely, the Möbius function µ is given by

µ(n) =      1, if n = 1 λ(n), if n is square-free, 0, otherwise.
We remind that n is square-free if n has no factor in the subset P 2 def = p 2 /p ∈ P , where as customary, P denote the subset of prime numbers.

In his seminal paper [START_REF] Sarnak | Three lectures on the Möbius function, randomness and dynamics[END_REF], P. Sarnak makes the following conjecture.

Sarnak conjecture 2.1. For any dynamical flow (X, T ) with topological entropy zero, for any continuous function f ∈ C(X), for any point x ∈ X,

1 N N n=1 µ(n)f (T n x) -----→ N →+∞ 0. (2.1)
The popular Chowla conjecture on the correlation of the Möbius function state that

Chowla conjecture 2.2. For any r ≥ 0, 1 ≤ a 1 < • • • < a r , i s ∈ {1, 2} not all equal to 2, we have n≤N µ i0 (n)µ i1 (n + a 1 ) • . . . • µ ir (n + a r ) = o(N ). (2.2)
This conjecture is related to the weaker conjecture stated in [START_REF] Chowla | The Riemann hypothesis and Hilbert's tenth problem[END_REF]. We refer to [START_REF] Chowla | The Riemann hypothesis and Hilbert's tenth problem[END_REF] for more details.

In his breakthrough paper [START_REF] Tao | Equivalence of the logarithmically averaged Chowla and Sarnak conjectures. Number theory-Diophantine problems, uniform distribution and applications[END_REF], T. Tao proposed the following logarithmic version of Sarnak and Chowla conjectures.

Logaritmic Sarnak conjecture 2.3. For any dynamical flow (X, T ) with topological entropy zero, for any continuous function f ∈ C(X), for any point x ∈ X,

1 log(N ) N n=1 µ(n)f (T n x) n -----→ N →+∞ 0. (2.
3)

The logarithmic Chowla conjecture can be stated as follows:

Logaritmic Chowla conjecture 2.4. For any r ≥ 0, 1 ≤ a 1 < • • • < a r , i s ∈ {1, 2} not all equal to 2, we have 1≤n≤N µ i0 (n)µ i1 (n + a 1 ) • . . . • µ ir (n + a r ) n = o(log(N )). (2.4)
We remind that the logarithmic density of a subset E ⊂ N is given by the following limit (if it exists) lim

N →∞ 1 log(N ) N 1 I E (n) n .
Let us further notice that one can replace log(N ) by ℓ N = N n=1 1 n . Thanks to Euler estimation. Following L. Mirsky [START_REF] Mirsky | Arithmetical pattern problems relating to divisibility by r-th powers[END_REF] and P. Sarnak [START_REF] Sarnak | Three lectures on the Möbius function, randomness and dynamics[END_REF], the subset A ⊂ N is admissible if the cardinality t(p, A) of classes modulo p 2 in A given by t(p, A)

def = z ∈ Z/p 2 Z : ∃n ∈ A, n = z [p 2 ] satisfy ∀p ∈ P, t(p, A) < p 2 .
(2.5)

In other words, for every prime p the image of A under reduction mod p 2 is proper in Z/p 2 Z.

Let X 3 be the set {0, ±1} N and X 2 def = {0, 1} N , and for each i = 1, 2, let X i be equipped with the product topology. Therefore, X 3 and X 2 are a compact set. We denote by M 1 (X i ), i = 1, 2, the set of the probability measures on X i . it is turn out that M 1 (X i ), i = 1, 2 is a compact set for the weak-star topology by Banach-Alaoglu-Bourbaki theorem. Let x ∈ X i , i = 1, 2, and for each N ∈ N, put

m N (x) = 1 N N -1 n=0 δ S n x ,
where δ y is the Dirac measure on y and S is the canonical shift map (Sx

) n = x n+1 , for each n ∈ N. Therefore m N (x) ∈ M 1 (X Ai ).
We thus get that the weak-star closure I S (x) of the set m N (x) is not empty. We further define the square map s on X 3 by s(x) = (x 2 n ) for any x ∈ X 3 . Definition 2.5. An infinite sequence x = (x n ) n∈N * ∈ X 3 is said to be admissible if its support {n ∈ N * : x n = 0} is admissible. In the same way, a finite block x 1 . . . x N ∈ {0, ±1} N is admissible if {n ∈ {1, . . . , N } : x n = 0} is admissible. In the same manner, we define the admissible sets in X 2 .

For each i = 1, 2, we denote by X Ai the set of all admissible sequences in X i . Since a set is admissible if and only if each of its finite subsets is admissible, and a translation of a admissible set is admissible, X Ai is a closed and shiftinvariant subset of X i , i.e. a subshift. We further have that µ 2 is admissible, and

X A3 = s -1 (X A2 ).
Let us notice that the previous notions has been extended to the so-called Bfree setting by el Abdalaoui-Lemańczyk-de-la-Rue in [START_REF] El Abdalaoui | A dynamical point of view on the set of B-free integers[END_REF]. Therein , the authors produced a dynamical proof of the Mirsky theorem on the pattern of µ 2 which assert that the indicator function of the square-free integers is generic for the Mirsky measure ν M , that is, µ 2 is generic for the push-forward measure of the Haar measure µ h of the group G = p Z/p 2 Z under the map ϕ :

G -→ X 2 defined by ∀g ∈ G, ϕ(g) def = f (T n g) n∈N * , (2.6) 
where T is the translation by

1 def = = (1, 1, • • • ) and f is defined by f (g) def = 0 if there exists k ≥ 1 such that g k = 0, 1 otherwise.
We thus get that

µ 2 = (f (T n O)), O = (0, 0, • • • ).
We further have that for each measurable subset

C ⊂ X 2 , ν M (C) def = ν h (ϕ -1 C). Then ν M = ϕ(µ h ) is shift-invariant,
and it can be shown that ν M is concentrated on X A2 . Moreover, the measurable dynamical system (X A2 , ν M , S) is a factor of (G, ν h , T ). In particular, it is ergodic, and for any η ∈ I S (µ), we have sη = ν M , that is, η(s -1 A) = ν M (A), for any Borel set of X A2 . For more details, we refer to [START_REF] El Abdalaoui | A dynamical point of view on the set of B-free integers[END_REF].

For any finite sets A, B ⊂ N, we denote by F A,B the function

F A,B (x) = a∈A π a (x) b∈B π b (x) 2 ,
where π n is the n th canonical projection given by π n (x) = x n , n ∈ N. Obviously, F A,B ∈ C(X A3 ), where C(X A3 ) is the space of continuous function on X A3 . We further have F A,B = F A,B\(A∩B) , so we can assume always that A and B are disjoint. Following W. Veech [START_REF] Veech | A conjecture Between the Chowla and Sarnak conjectures[END_REF], [START_REF] Veech | Möbius dynamics[END_REF], we introduce also the notion of admissible measure. We are now able to state the main result.

Definition 2.6. A measure m ∈ M 1 (X A3 ) is admissible if (i) Sm = m, that is, m(S -1 A) = m(A), for each Borel set A ⊂ X A3 . (ii) s(m) = ν M , and
Theorem 2.7 (Sarnak's Theorem on Möbius flow [START_REF] Sarnak | Three lectures on the Möbius function, randomness and dynamics[END_REF]). There exists a unique admissible measure µ M on X A3 which is ergodic with the Pinsker algebra

Pi µM = s -1 B(A 2 ) .
Moreover, E(π 1 |Pi µM ) = 0. Following W. Veech [START_REF] Veech | Möbius dynamics[END_REF], the measure µ M is called Chowla measure.

Remark 2.8. Furthermore, as pointed out by Veech, the existence of the putative "Chowla measure" does not depend on the Chowla conjecture.

For the proof of our second main result, we need the following result due to T. Tao [START_REF] Tao | [END_REF]. Theorem 2.9 (Tao's theorem on logarithmic and non-logarithmic Chowla conjectures [START_REF] Tao | [END_REF]). Let k be a natural number. Assume that the logarithmically averaged Chowla conjecture is true for 2k. Then there exists a set N of natural numbers of logarithmic density 1 such that lim

N →∞ N ∈N 1 N N 1 λ(n + h 1 ) . . . λ(n + h k ) = 0, for any distinct h 1 , . . . , h k .
As a corollary, T. Tao obtain the following Corollary 2.10 (Gomilko-Kwietniak-Lemańczyk's theorem [START_REF] Gomilko | Sarnak's conjecture implies the Chowla conjecture along a subsequence[END_REF]). If Sarnak's conjecture holds then there exists a set N of natural numbers such that for any r ≥ 0, 1 ≤ a 1 < • • • < a r , i s ∈ {1, 2} not all equal to 2, we have

1 N n≤N µ i0 (n)µ i1 (n + a 1 ) • . . . • µ ir (n + a r ) N ∈N -----→ N →+∞ 0.
(2.7) Combining Sarnak's Theorem 2.7 with Tao's Theorem 2.9, we get the following Corollary 2.11. Sarnak conjecture 2.1 is equivalent to Chowla conjecture 2.2.

Proof. The proof of the implication follows from Tao's Theorem 2.9 and since the admissible measure is unique. For the converse, there are several proofs by Sarnak [START_REF] Sarnak | [END_REF], Tao [START_REF] Tao | Equivalence of the logarithmically averaged Chowla and Sarnak conjectures. Number theory-Diophantine problems, uniform distribution and applications[END_REF], Veech [START_REF] Veech | Möbius dynamics[END_REF], and el Abdalaoui-Kua lga-Przymus-Lemańczyk-de la Rue [START_REF] El Abdalaoui | The Chowla and the Sarnak conjectures from ergodic theory point of view[END_REF].

Proof of the main result.

We start by proving the following proposition related to Hadamard matrix. For that, let E be a finite nonempty set, and P(E) be the set of subset of E. For any A, B ∈ P(E), put

C(A, B) = (-1) |A∩B| ,
where |.| is the cardinality function. Therefore C is a matrix of order 2 |E| , we further have Proposition 3.12. With the notations above,

det(C) = 2 |E|2 |E|-1 , if |E| > 1 -2, otherwise.
Moreover, if the vector (ν(B)) B∈P(E) satisfy

B∈P(E) C(A, B)ν(B) = a, if A = ∅ 0, otherwise. Then ν(B) = a 2 |E| .
Proof. The proof of the first part of the proposition can be found in [4, p.42], but for the sake of completeness we include an alternative proof of it.

We start by recalling the Hadamard determinant inequality. Let M be a matrix of order n with real entries and columns m

1 , • • • , m n , then det(M ) ≤ n j=1 m j 2 ,
where . 2 is the usual Euclidean norm. Therefore, if all the entries are in the interval [-1, 1], we get det(M ) ≤ n n 2 , with equality if and only if M is a Hadamard matrix . For short and elementary proof of the Hadamard determinant inequality we refer to [4, pp.40-41], [START_REF] Lange | Hadamard's determinant inequality[END_REF].

We thus need to check that C is a Hadamard matrix. For that, we proceed by induction. For n = 1, the matrix is given by

C = C(∅, ∅) C(∅, {1}) C({1}, ∅) C({1}, {1}) = 1 1 1 -1
Assume that the property is true for n ≥ 1, and let

E n+1 = {1, 2, • • • , n + 1} = E n ∪ {n + 1}.
We assume that the subsets of E n+1 are ordered as those of E n . Notice that this does not affect our proof since the determinant does not depend upon any ordering of the elements of 2 E . It follows that the resulting 2 n+1 × 2 n+1 matrix has block form

C n+1 = C n C n C n -C n .
We thus get, by Sylvester observation, that C n+1 is a Hadamard matrix. For the second part, let

p q ∈ R 2 n × R 2 n such that C n+1 p q = a.δ ∅ (A).
Then, for n = 1, we have

p + q = a, if A = ∅ p -q = 0, if not.
Obviously, we get p = q = a 2 . Assume that the property is true for n. Then

p + q = a 2 n , • • • , a 2 n .
Moreover, since det(C n ) = 0, we get p = q, that is,

p = q = a 2 n+1 , • • • , a 2 n+1 .
The proof of the lemma is complete.

For the proof of the Sarnak's theorem 2.7, we need also to characterize the Chowla measure. For that, let us put

Qr n = x ∈ X 2 | supp(x) is admissible , n > 0 and C(x) = n j=1 y ∈ X A2 |π j (x) = x j .
Define the partition Pr n by

Pr n = C(x)|x ∈ Qr n .
If follows that any C(x) ∈ Pr n admits a partition into 2 |supp(x)| "cylinder" since

s -1 (C(x)) ⊂ s -1 X A2 = X A3 .
More precisely, if A ⊂ supp(x), then A can be seen as a element y(A) ∈ X A2 . We thus denote by C(x, y(A)) the subset of X A3 such that z ∈ C(x, y(A)) if and only if the first n coordinates of z are -1 on A, 1 on supp(x) \ A and 0 on [1, n] \ supp(x). This allows us to see that s 
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 3 A,B (x)dm(x) = 0, for any A = ∅. and B finite sets of N.

3 G 10 )(- 1 )

 3101 -1 (C(x)) = A⊆supp(x)C(x, y(A)).Now, for anyA ⊂ supp(x), put G A,supp(x)\A = F A,supp(x)\A c∈[1,n]\supp(x) (1π c (y) 2 ). It is straightforward that G A,supp(x)\A ∈ C(X A3 ). Moreover, G A,supp(x)\A |s -1 C(x) = F A,supp(x)\A |s -1 C(x)(3.8)and G A,supp(x)\A is identically null on X A3 \ s -1 C(x) .Expand the product in the definition of G A,supp(x)\A , we getG A,supp(x)\A = B⊂[1,n]\supp(x) (-1) |B| F A,supp(x)\A∪B .Now, let m be an admissible measure and assume that A = ∅. Then XA A,supp(x)\A m(dz) = s -1 C(x) F A,supp(x)\A (z)m(dz) This gives, for A ⊂ supp(x) and A = ∅, B⊂supp(x) |A∩B| m(C(x, y(B)) = 0, since F A,supp(x)\A is constant on each "cylinder" set C(x, y(B)) with the constant value equal to (-1) |A∩B| .We proceed now to evaluate the expression whenA = ∅. Since sm = ν M , we obtain ν M (C(x)) = B⊂supp(x)m(C(x, y(B)) = 0.Question. Let O(µ) ⊂ X A3 be the orbit closure of µ under the left shift S. Do we have that O(µ) = X A3 ?

W. Veech in his letter indicated to me that there is only four persons in the world who has a copy of his notes including me.
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This combined with Proposition 3.12 yields that for any C(x) ∈ Pr n , for any B ⊂ supp(x), we have

Summarizing, we conclude that m is completely determined on the partition Pr n , i.e., if an admissible measure exists, then it is unique.

We proceed now to the proof of Sarnak 's theorem 2.7.

Consider the canonical dynamical system

2 ) is the Bernoulli measure. Therefore, by Furstenberg theorem (Proposition I.3 in [START_REF] Furstenberg | Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation[END_REF]), the dynamical system

) , is ergodic. We further have, by Theorem 18.13 from [7, p.325], that the Pinsker algebra satisfies

). Now we define a coordinate-wise multiplicative map Π :

Therefore the dynamical system (X A3 , S, µ

, where µ M is the push-forward measure under Π, satisfies

• sµ M = ν M , and

Whence, µ M is admissible, ergodic and Pi µM = s -1 B(X A2 ) up to µ M null set. This last fact follows from the following

To finish the proof, we need only to notice that π 1 = F {1},∅ , and for any finite set B ⊂ N,