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Introduction

Modern reliability engineering is increasingly looking at the model-based methods (cf. physics-of-failure (PoF) methods [START_REF] Chamberlain | Development of a probabilistic mechanistic model for reliability assessment of gas cylinders in compressed natural gas vehicles[END_REF], structural reliability methods [START_REF] Collins | Mechanical design of machine elements and machines[END_REF], etc.), where reliability is predicted exploiting deterministic failure behavior models whose parameter variations are assumed to be the only source of uncertainty [START_REF] Zeng | A new metric of reliability: Belief reliability[END_REF]. In practice, however, apart from the random variations in the model parameters (often referred to as aleatory uncertainty [1]), the predicted reliability is also subject to the influence of epistemic uncertainty due to incomplete knowledge on the degradation and failure processes [START_REF] Kiureghian | Aleatory or epistemic? does it matter?[END_REF]: for example, the developed failure behavior model might not be able to accurately describe the actual failure process; besides, the precise values of the model parameters might not be accurately estimated [START_REF] Aven | Model output uncertainty in risk assessment[END_REF][START_REF] Bjerga | An illustration of the use of an approach for treating model uncertainties in risk assessment[END_REF], etc. In most existing model-based reliability assessment methods, however, the effect of epistemic uncertainty has not been considered.

Recently, a new metric of reliability, the belief reliability, has been defined to explicitly account for epistemic uncertainty in model-based reliability analysis and assessment [START_REF] Fan | An approach to measure reliability based on belief reliability[END_REF][START_REF] Zeng | Measuring reliability during product development considering aleatory and epistemic uncertainty[END_REF][START_REF] Zeng | A new metric of reliability: Belief reliability[END_REF]. The new reliability metric integrates the contributions of design margin, aleotory uncertainty and epistemic uncertainty and provides a more comprehensive and systematic description of reliability. Zeng et al. [START_REF] Zeng | A new metric of reliability: Belief reliability[END_REF] presented a framework to evaluate the belief reliability where epistemic uncertainty is quantified by the effectiveness of the engineering analysis and assessment activities that contribute to the state of knowledge on the failure causes and processes. Belief reliability has been applied successfully on the reliability evaluation of hydraulic servo-actuators [START_REF] Zeng | Measuring reliability during product development considering aleatory and epistemic uncertainty[END_REF][START_REF] Zeng | A new metric of reliability: Belief reliability[END_REF], DC regulated power supplies [START_REF] Fan | An approach to measure reliability based on belief reliability[END_REF] and printed circuit boards [START_REF] Jiang | A naive bayes based method for evaluating the effects of electronic product reliability simulation experiments[END_REF], all of which are subject to the influence of epistemic uncertainty.

Currently, the belief reliability of a component or a system can only be evaluated from its definition (i.e., based on design margin, aleotory uncertainty and epistemic uncertainty) [START_REF] Zeng | Measuring reliability during product development considering aleatory and epistemic uncertainty[END_REF]. In practice, we often need to calculate the belief reliability of a system based on the structure of the system and the belief reliabilities of its components (referred to as system reliability analysis in conventional reliability theories [START_REF] Yang | Life cycle reliability engineering[END_REF]). To address this problem, a mathematical theory should be determined as the mathematical foundation of belief reliability, based on which the system belief reliability analysis method can be developed.

In literature, various mathematical theories have been used to describe epistemic uncertainty, e.g., probability theory (subjective interpretation [START_REF] De Finetti | Probability, induction, and statistics[END_REF]), evidence theory [START_REF] Shafer | A mathematical theory of evidence[END_REF], possibility theory [START_REF] Dubois | Possibility theory: An approach to the computerized processing of information[END_REF] and uncertainty theory [START_REF] Liu | Uncertainty theory[END_REF], etc. Kang et al. [START_REF] Kang | Measuring reliability under epistemic uncertainty: A review on non-probabilistic reliability metrics[END_REF] reviewed the theories and concluded that among them, uncertainty theory is the most suitable one for modeling belief reliability since it satisfies the Duality Axiom and adopts minimum operation as the Product Axiom, which are two essential requirements for a mathematical theory qualified to describe reliability under the influence of epistemic uncertainty. If either requirement is violated, misleading results might be reached when belief reliability is applied in practical applications (see Section 3.2 for a detailed discussion).

Uncertainty theory, proposed by Liu in 2007 [START_REF] Liu | Uncertainty theory[END_REF] and refined by Liu in 2010 [START_REF] Liu | Uncertainty theory: A branch of mathematics for modeling human uncertainty[END_REF], is a branch of axiomatic mathematic founded on four axioms, the Normality, Duality, Subadditivity and Product Axiom. Currently, uncertainty theory has been widely applied in various fields, including portfolio selection [START_REF] Zhang | Uncertain programming models for portfolio selection with uncertain returns[END_REF], network science [START_REF] Han | The maximum flow problem of uncertain network[END_REF], option pricing [START_REF] Ji | Option pricing for an uncertain stock model with jumps[END_REF], graph theory [START_REF] Gao | On distribution function of the diameter in uncertain graph[END_REF], transportation [START_REF] Yang | Reduction methods of type-2 uncertain variables and their applications to solid transportation problem[END_REF],

supply chain [START_REF] Huang | Model and algorithm for 4plrp with uncertain delivery time[END_REF], etc. The research of reliability in uncertainty theory started from [START_REF] Liu | Uncertain risk analysis and uncertain reliability analysis[END_REF], where Liu defined the reliability index and showed how to calculate the system reliability index from the system structure functions. In [START_REF] Liu | Reliability analysis of redundant system with uncertain lifetimes[END_REF], the reliability indexes for redundant systems were calculated for the case in which the lifetimes of the components are uncertain variables. Zeng et al. [START_REF] Zeng | Belief reliability: a new metrics for products' reliability[END_REF] defined time-static and time-variant reliability in the context of uncertainty theory and developed calculation methods for the reliability indexes. Wen and Kang [START_REF] Wen | Reliability analysis in uncertain random system[END_REF] developed an approach to calculate the reliability index when both uncertain variables and random variables are considered. Gao and Yao [START_REF] Gao | Importance index of components in uncertain random systems[END_REF] investigated the importance index in the context of uncertainty theory. Age replacement and block replacement policies were also investigated with lifetimes described as uncertain variables [START_REF] Ke | Block replacement policy with uncertain lifetimes[END_REF][START_REF] Zhang | Some new results on uncertain age replacement policy[END_REF][START_REF] Zhang | Uncertain block replacement policy with no replacement at failure[END_REF].

Most existing system reliability analysis methods in uncertainty theory are based on structure functions (e.g., see [START_REF] Liu | Uncertain risk analysis and uncertain reliability analysis[END_REF] and [START_REF] Wen | Reliability analysis in uncertain random system[END_REF]). Since they require enumerating all the possible combination of system states, the computational efficiency of the structure function-based methods are often unsatisfactory, especially for large and complex systems. In a previous study, minimal cut sets have been used to alleviate the computational burdens of the structure function-based methods [START_REF] Zeng | Belief reliability: a new metrics for products' reliability[END_REF]. However, the method developed in [START_REF] Zeng | Belief reliability: a new metrics for products' reliability[END_REF] requires independence among the minimal cut sets, which is a strong condition and restricts its application.

In this paper, we show that the restriction is unnecessary and develop a minimal cut set-based method to calculate the belief reliability for a system with independent components. The rest of this paper is organized as follows. Section 2 reviews the definition of belief reliability. In Section 3, we justify the choice of uncertainty theory as the mathematical foundation of belief reliability and give the definition of belief reliability in the context of uncertainty theory. Then, a system belief reliability analysis method is developed based on minimal cut sets in Section 4. In Section 5, a numerical algorithm is presented for belief reliability analysis based on fault tree models. The paper is concluded in Section 6 with discussions on possible future research directions.

Definition of belief reliability

In traditional model-based reliability methods, it is assumed that the failure behavior of a component or system is characterized by its performance margin m, which is modeled by:

m = g m (x), (1) 
where m ≤ 0 indicates that the component or system fails and m > 0 indicates normal functioning; g m (•) is developed by modeling the failure process [START_REF] Zeng | Using pof models to predict system reliability considering failure collaboration[END_REF].

Given the probability density functions of the input variables x, denoted by f X (x), the reliability index can be calculated as

R p = P r (g m (x) > 0) = • • • gm(x)>0 f X (x)dx. ( 2 
)
To differentiate it from belief reliability, the reliability index in (2) is referred to as probabilistic reliability in this paper.

In the model-based reliability methods, a fundamental assumption is that, the reliability model is correct and accurate, so that all the uncertainty comes from the random variations in x (aleatory uncertainty). The validity of such an assumption heavily depends on the state-of-knowledge we have on the failure process. In a lot of practical applications, however, due to the limitation of the knowledge, the models in ( 1) and ( 2) might not be able to accurately capture the actual failure process. Besides, the precise values of the model parameters might not be accurately known to us. Therefore, the predicted reliability index is subject to an additional source of uncertainty, which arises from lack of knowledge and is referred to as epistemic uncertainty [START_REF] Zio | Two methods for the structured assessment of model uncertainty by experts in performance assessments of radioactive waste repositories[END_REF].

Belief reliability was proposed as a metric of reliability that explicitly accounts for epistemic uncertainty in reliability analysis and assessment [START_REF] Fan | An approach to measure reliability based on belief reliability[END_REF][START_REF] Zeng | Measuring reliability during product development considering aleatory and epistemic uncertainty[END_REF][START_REF] Zeng | A new metric of reliability: Belief reliability[END_REF]. Note that in (1) and ( 2), the probabilistic reliability R p can be viewed as determined by deterministic designs and aleatory uncertainty in the design parameters. Deterministic designs are quantified by design margin m d :

m d = g m (x N ) (3) 
where x N is the nominal values of the parameters. Aleatory uncertainty is measured by F a , the factor of aleatory uncertainty, which is defined by:

F a = m d Z Rp (4) 
where R p is given by ( 1) and (2); Z α is the value of the inverse cumulative distribution function of a standard normal distribution evaluated at α. Let us define equivalent performance margin M E as:

M E = m d + a , (5) 
where m d is the design margin in (3) and a ∼ Normal(0, F 2 a ) quantifies the effect of aleatory uncertainty. It is easy to verify that

M E ∼ Normal(m d , F 2 a )
and the probabilistic reliability R p can be calculated as the probability that M E > 0, as shown in Figure 1 (a).

In belief reliability, epistemic uncertainty is described by introducing a factor of epistemic uncertainty, denoted by F e , whose value is related to the state-ofknowledge of the failure processes and is measured based on the effectiveness of the engineering analysis and assessment activities for component and system reliability performance characterization [START_REF] Fan | An approach to measure reliability based on belief reliability[END_REF][START_REF] Zeng | A new metric of reliability: Belief reliability[END_REF]. An adjustment factor e ∼ Normal(0, F 2 e ) is introduced to quantify the effect of epistemic uncertainty on the equivalent performance margin:

M E = m d + a + e . (6) 
Equation ( 6) indicates that epistemic uncertainty introduces additional dispersion to the aleatory distribution of the equivalent performance margin, as shown in Figure 1 (b). Considering ( 6) and the normality assumption on a and e , belief reliability is defined as:

Definition 1 (Belief reliability [START_REF] Zeng | A new metric of reliability: Belief reliability[END_REF]). The reliability metric

R B = Φ N m d F 2 a + F 2 e ( 7 
)
is defined as belief reliability, where Φ N (•) is the cumulative distribution function of a standard normal random variable.

It can be shown from ( 7) that as F e → 0, R B → R p , where R p denotes the conventional model-based reliability metric calculated under the same conditions. This is natural, since F e → 0 indicates that there is no epistemic uncertainty and, therefore, the failure behavior can be accurately determined by the reliability models in ( 1) and ( 2).

In practical application, we always have m d > 0 and F e ≥ 0 [START_REF] Zeng | A new metric of reliability: Belief reliability[END_REF]. It is easy to verify from ( 7) that

R B ≤ R p , (8) 
which shows that using belief reliability yields a more conservative evaluation result than using the probability-based reliability metric. The reason is that belief reliability considers the effect of insufficient knowledge on the estimated reliability, while the probability-based reliability metric implicitly assumes that knowledge is complete. It is the additional uncertainty caused by the insufficient knowledge that reduces our confidence on the reliability estimation.

Uncertainty theory as the mathematical foundation of belief reliability

In this section, we discuss the mathematical foundations of belief reliability and show that the new reliability metric should be modeled by uncertainty theory. Uncertainty theory is reviewed in subsection 3.1. In subsection 3.2, we explain the reasons to choose uncertainty theory as the mathematical foundation, and then define belief reliability as an uncertain measure.

Preliminaries of Uncertainty Theory

The first important concept in uncertainty theory is that of an event. Let Γ be a nonempty set, and L a σ-algebra over Γ. Each element Λ in L is called an event.

In uncertainty theory, the belief degree of an event is measured by its uncertain measure. An uncertain measure is a set function M from L to [0, 1] satisfying the following three axioms [START_REF] Liu | Uncertainty theory[END_REF]:

Axiom 1 (Normality Axiom [START_REF] Liu | Uncertainty theory[END_REF]). M{Γ} = 1 for the univeral set Γ.

Axiom 2 (Duality Axiom [START_REF] Liu | Uncertainty theory[END_REF]). M{Λ} + M{Λ c } = 1 for any event Λ.

Axiom 3 (Subadditivity Axiom [START_REF] Liu | Uncertainty theory[END_REF]). For every countable sequence of events

Λ 1 , Λ 2 , • • • , M ∞ i=1 Λ i ≤ ∞ i=1 M{Λ i }. (9) 
The triplet (Γ, L, M) is called an uncertainty space [START_REF] Liu | Uncertainty theory[END_REF]. A product uncertain measure was defined by Liu [START_REF] Liu | Some research problems in uncertainty theory[END_REF] in order to obtain an uncertain measure of a compound event, thus producing the fourth axiom of uncertainty theory:

Axiom 4 (Product Axiom [START_REF] Liu | Some research problems in uncertainty theory[END_REF]).

Let (Γ k , L k , M k ) be uncertainty spaces for k = 1, 2, • • • The product uncertain measure M is an uncertain measure satisfying M ∞ k=1 Λ k = ∞ k=1 M k {Λ k } ( 10 
)
where Λ k are arbitrarily chosen events from

L k for k = 1, 2, • • • , respectively.
An uncertain variable is a measurable function ξ from an uncertainty space (Γ, L, M) to the set of real numbers, i.e. , for any Borel set B of real numbers, the set {ξ ∈ B} = {γ ∈ Γ|ξ(γ) ∈ B} is an event [START_REF] Liu | Uncertainty theory[END_REF].

In practice, an uncertain variable is described by the uncertainty distribution [START_REF] Liu | Uncertainty theory[END_REF], defined by

Φ(x) = M{ξ ≤ x}, ∀x ∈ . ( 11 
)
An uncertainty distribution is said to be regular if its inverse function Φ -1 (•) exists and is unique for each α ∈ (0, 1) [START_REF] Liu | Uncertainty theory: A branch of mathematics for modeling human uncertainty[END_REF].

The uncertain variables ξ 1 , ξ 2 , . . . , ξ m are said to be independent if

M m i=1 (ξ i ∈ B i ) = m i=1 M{ξ i ∈ B i } (12) 
for any Borel sets B 1 , B 2 , • • • , B m of real numbers [START_REF] Liu | Some research problems in uncertainty theory[END_REF].

Liu [START_REF] Liu | Uncertainty theory: A branch of mathematics for modeling human uncertainty[END_REF] developed operation laws for uncertain variables so that the distribution of functions of independent uncertain variables can be achieved. Let

ξ 1 , ξ 2 , • • • , ξ n be independent uncertain variables with regular uncertainty distri- butions Φ 1 , Φ 2 , • • • , Φ n , respectively. If the function f (x 1 , x 2 , • • • , x n ) is strictly increasing with respect to x 1 , x 2 , • • • , x m ,
and strictly decreasing with respect

to x m+1 , x m+2 , • • • , x n , then, the uncertain variable ξ = f (ξ 1 , ξ 2 , • • • , ξ n ) has an inverse uncertainty distribution Ψ -1 (α) = f Φ -1 1 (α), Φ -1 2 (α), • • • , Φ -1 m (α), Φ -1 m+1 (α), • • • , Φ -1 n (α) . (13) 

Belief reliability as an uncertain measure

Belief reliability measures the degree to which we believe that a component or a system can perform its function as designed. In this subsection, we compare four mathematical theories commonly used to model belief degrees, probability theory (subjective interpretation [START_REF] De Finetti | Probability, induction, and statistics[END_REF]), evidence theory [START_REF] Shafer | A mathematical theory of evidence[END_REF], possibility theory [START_REF] Dubois | Possibility theory: An approach to the computerized processing of information[END_REF] and uncertainty theory [START_REF] Liu | Uncertainty theory[END_REF], and choose among them the most appropriate one as the mathematical foundation for belief reliability.

In practice, how to calculate the belief degree of the intersection of events (more formally, the product event) is an important issue, since it is the basis of system reliability calculations. Based on how the belief degree of the intersection of events is calculated, the four theories can be divided into two groups.

Probability theory and evidence theory comprise the first group, where the belief degree of the intersection of events is calculated by the product of the individual belief degrees (assuming independence among the individual events).

According to Liu [START_REF] Liu | Why is there a need for uncertainty theory[END_REF], a premise of using the product operation to calculate the belief degree of the intersection of events is that the estimated belief degree for each individual event is close enough to the long-run cumulative frequency.

As shown in [START_REF] Dubois | Possibility theory: An approach to the computerized processing of information[END_REF], however, belief reliability is a more conservative reliability measure than the probabilistic reliability. If we use probability theory or evidence theory to model belief reliability, the conservatism in the component level will be distorted by the product operation, which might lead to counter-intuitive results when calculating system belief reliability. To illustrate this point, consider the following example. 

Based on the evaluation result in (14), the system is highly unreliable, which contradicts with our intuition.

Example 1 shows that to model belief reliability, we need a mathematical theory whose operation law of product events can compensate for the conservatism in the component-level belief reliability evaluation. Possibility theory provides an alternative solution by assuming that the product belief degree is the minimum one among all the individual events [START_REF] Dubois | Possibility theory: An approach to the computerized processing of information[END_REF][START_REF] Zadeh | Fuzzy sets as a basis for a theory of possibility[END_REF]. If we regard the component belief reliabilities in Example 1 as a possibility measure, according to [START_REF] Dubois | Possibility theory: An approach to the computerized processing of information[END_REF], the system belief reliability is given by

R B,S = 2000 i=1 R B,i = 0.9987, (15) 
which avoids the counter-intuitive result in Example 1. However, regarding belief reliability as a possibility measure introduces an issue: possibility measure does not follow the duality axiom, which might lead to other counter-intuitive results [START_REF] Liu | Uncertainty theory: A branch of mathematics for modeling human uncertainty[END_REF]. For instance, see Example 2.

Example 2. Assume that belief reliability R B is a possibility measure. A possibility measure Π has the following properties [START_REF] Dubois | Possibility theory: An approach to the computerized processing of information[END_REF]:

• Π(Ω) = 1,
where Ω is the universal set, and

• Π(U ∪ V ) = Π(U ) ∨ Π(V )
, for any pair of disjoint sets U and V .

Since "working" and "failure" are two disjoint sets and their union is the universal set, from the above axioms, it is easy to show that for a given component or a system, either the reliability R B = 1 or the unreliability R B = 1 which will confuse the decision maker when applied in practice.

From 

R B = M{Λ 1 }. ( 16 
)
Remark 1. From the Duality Axiom, we can calculate the belief unreliability:

R B = M{Λ 2 } = 1 -R B , (17) 
which can also be seen from Figure 1, since the areas of failure region and safe region sum up to 1.

Minimal Cut Set Theorem

In this section, we show how to calculate the belief reliability of a coherent system by proving the Minimal Cut Set Theorem. Coherent system is the most widely applied system model in reliability theory, which describes the logic of binary monotone systems whose components are all relevant [START_REF] Bayramoglu | The reliability of coherent systems subjected to marshall-olkin type shocks[END_REF][START_REF] Navarro | Orderings of coherent systems with randomized dependent components[END_REF].

Commonly encountered examples of coherent systems include series systems, parallel systems, k-out-n:G systems, etc.

Let ξ i , 1 ≤ i ≤ n and ξ denote the state of the ith component and of the system, respectively, where

ξ i =      1, if the ith component is working, 0, if the ith component fails. ξ =      1, if the system is working, 0, if the system fails. ( 18 
)
The boolean variables ξ and ξ i , 1 ≤ i ≤ n are referred to as state variables for the system and the components, respectively.

In coherent systems, ξ is a function of ξ i , 1 ≤ i ≤ n:

ξ = φ(x ξ ) = φ(ξ 1 , ξ 2 , • • • , ξ n ), (19) 
where

x ξ = [ξ 1 , ξ 2 , • • • , ξ n ]
is the state vector of the components. The function φ(•) in ( 19) is the structure function of the coherent system.

The state variables ξ, ξ i , 1 ≤ i ≤ n are all Boolean uncertain variables. Since ξ can be determined by ξ 1 , ξ 2 , • • • , ξ n via the structure function, ξ is a function of uncertain variables. Hence its uncertainty distribution can be obtained via the operation laws of uncertain variables [START_REF] Liu | Uncertainty theory[END_REF]. Following the operation law for Boolean uncertain variables, Liu [START_REF] Liu | Uncertain risk analysis and uncertain reliability analysis[END_REF] proved the Reliability Index Theorem for coherent systems:

Theorem 1 (Reliability Index Theorem [START_REF] Liu | Uncertain risk analysis and uncertain reliability analysis[END_REF]). Assume that a system contains

uncertain elements ξ 1 , ξ 2 , • • • , ξ n and has a structure function φ. If ξ 1 , ξ 2 , • • • , ξ n
are independent uncertain elements with reliability indices a 1 , a 2 , • • • , a n , respectively, then, the system reliability index a is

a =          sup φ(x1,x2,••• ,xn)=1 min 1≤i≤n ν i (x i ), if sup φ(x1,x2,••• ,xn)=1 min 1≤i≤n ν i (x i ) < 0.5 1 - sup φ(x1,x2,••• ,xn)=0 min 1≤i≤n ν i (x i ), if sup φ(x1,x2,••• ,xn)=1 min 1≤i≤n ν i (x i ) ≥ 0.5 (20) 
where x i , i = 1, 2, • • • , n take value either 0 or 1, and ν i are defined by

ν i (x i ) =    a i , if x i = 1 1 -a i , if x i = 0. ( 21 
)
The proof of Theorem 1 can be found in [START_REF] Liu | Uncertain risk analysis and uncertain reliability analysis[END_REF].

Directly applying Theorem 1 to calculate belief reliability of a coherent system requires enumerating all possible combinations of ξ i , which is tedious and hard to apply in practice. In order to simplify the evaluation processes, we develop a system belief reliability evaluation method for coherent systems based on the concept of minimal cut sets.

Definition 3 (Minimal cut set). Suppose x = [x 1 , x 2 , • • • , x n ]
is the state vector of a coherent system whose structure function is φ. A vector x a is called a minimal cut vector if φ(x a ) = 0 and φ(x b ) = 1, ∀x b > x a . By x b > x a , we mean x b,i ≥ x a,i , 1 ≤ i ≤ n and there is at leat one i, x b,i > x a,i .

Suppose x C is a minimum cut vector. Let C(x C ) = {i : x i = 0}. Then, C(x C
) is referred to as a minimum cut set.

A minimal cut set is the smallest combination of components which will cause the systems failure if they all fail. In [START_REF] Zeng | Belief reliability: a new metrics for products' reliability[END_REF], the authors used minimal cut sets to reduce the computational costs in system belief reliability calculations.

However, their method requires a strict assumption that all the minimal cut sets are independent. In this paper, we show that the restriction is unnecessary, by proving the Minimal Cut Set Theorem, which only requires independence among the components.

Theorem 2 (Minimal Cut Set Theorem). Consider a coherent system comprising n independent components with belief reliabilities R B,i , i = 1, 2, . . . , n. If the system contains m minimal cut sets, C 1 , C 2 , . . . , C m , then, the system belief reliability is

R B,S = 1≤i≤m j∈Ci R B,j . (22) 
Proof. Without loss of generality, let us assume that the ith minimal cut set C i contains n i components. Let us also assume

R B,11 ≥ R B,12 ≥ • • • R B,1j ≥ • • • ≥ R B,1n1 , R B,21 ≥ R B,22 ≥ • • • R B,2j ≥ • • • ≥ R B,2n2 , . . . R B,m1 ≥ R B,m2 ≥ • • • R B,mj ≥ • • • ≥ R B,mnm , and 
R B,11 ≥ R B,21 ≥ • • • R B,j1 ≥ • • • ≥ R B,m1 ,
where R B,ij denotes the belief reliability of the jth component in the ith minimal cut set. In order to prove [START_REF] Liu | Some research problems in uncertainty theory[END_REF], we only have to prove

R B,S = R B,m1 . (23) 
Equation ( 23) comes from the fact that R B,11 , R B,21 , • • • , R B,m1 are the maximum component belief reliabilities for each minimal cut set, and R B,m1 is the

minimum among R B,11 , R B,21 , • • • , R B,m1 .
The proof breaks into two cases:

1. If R B,m1 < 0.5: Since φ(x 1 , x 2 , • • • , x n ) = 1 indicates that at least one component in each minimal cut set is working, it is easy to verify that sup φ(x1,x2,••• ,xn)=1 min 1≤i≤n ν i (x i ) = min 1≤i≤m max φi(x1,x2,••• ,xn i )=1 min 1≤j≤ni ν(x ij ) (24) 
where

φ i (x 1 , x 2 , • • • , x ni ) = max 1≤j≤ni x ij . Since R B,m1 ≥ R B,m2 ≥ • • • R B,mj ≥ • • • ≥ R B,mnm , we have max φm(x1,x2,••• ,xn m )=1 min 1≤j≤nm ν(x ij ) = min R B,m1 , min 2≤j≤nm (1 -R B,mj ) = R B,m1 . (25) 
For

1 ≤ i ≤ m -1, if R B,i1 ≥ 0.5, from Lemma 1 in Appendix A, we have max φi(x1,x2,••• ,xn i )=1 min 1≤j≤ni ν(x ij ) ≥ 0.5 > R B,m1 ; (26) 
if R B,i1 < 0.5, then, like [START_REF] Liu | Why is there a need for uncertainty theory[END_REF], we can prove that

max φi(x1,x2,••• ,xn i )=1 min 1≤j≤ni ν(x ij ) = R B,i1 ≥ R B,m1 . (27) 
Substituting ( 26) and ( 27) into (24), we have

sup φi(x1,x2,••• ,xn i )=1 min 1≤j≤ni ν(x ij ) = R B,m1 < 0.5. (28) 
Note that belief reliability is a reliability index. Then, from Theorem 1,

R B,S = R B,m1 . 2. If R B,m1 ≥ 0.5: Since R B,11 ≥ R B,21 ≥ • • • R B,j1 ≥ • • • ≥ R B,m1 ≥ 0.5, from Lemma 1, we have sup φ(x1,x2,••• ,xn i )=1 min 1≤j≤ni ν i (x i ) ≥ 0.5. ( 29 
)
Since φ i (x 1 , x 2 , • • • , x ni ) = 0 indicates that at least in one minimal cut set, all the components fail, we have sup

φ(x1,x2,••• ,xn)=0 min 1≤i≤n ν(x i ) = max 1≤i≤m min 1≤j≤ni (1 -R B,ij ) = max 1≤i≤m (1 -R B,i1 ) = 1 -R B,m1 . (30) 
Then, from Theorem 1,

R B,S = 1 - sup φ(x1,x2,••• ,xn)=0 min 1≤i≤n ν(x i ) = R B,m1 . (31) 
Example 3 (Belief reliability of a series system). Consider a series system comprising n independent components with belief reliabilities R B,i , i = 1, 2, . . . , n.

It is easy to show that the system has n minimal cut sets, C 1 = {1}, C 2 = {2}, . . . , C n = {n}. Therefore, from Theorem 2, the belief reliability of the system is

R B,S = 1≤i≤n R B,i . (32) 
Reference [START_REF] Liu | Uncertain risk analysis and uncertain reliability analysis[END_REF] also calculates the belief reliability of a series system using the Reliability Index Theorem. The result in [START_REF] Yang | Reduction methods of type-2 uncertain variables and their applications to solid transportation problem[END_REF] is the same as that from using Theorem 1 ( [START_REF] Liu | Uncertain risk analysis and uncertain reliability analysis[END_REF]). However, using Theorem 1 requires n • 2 n comparisons, while using Theorem 2 requires only n comparisons. Therefore, the computational costs can be greatly reduced by using the Minimal Cut Set Theorem.

Example 4 (Belief reliability of a parallel system). Consider a paralell system comprising n independent components with belief reliabilities R B,i , i = 1, 2, . . . , n. It is easy to show that the system has one minimal cut set, C 1 = {1, 2, . . . , n}. Therefore, from Theorem 2, the system belief reliability is

R B,S = 1≤i≤n R B,i . (33) 
Reference [START_REF] Liu | Uncertain risk analysis and uncertain reliability analysis[END_REF] also calculates the belief reliability of a parallel system using the Reliability Index Theorem. The result in [START_REF] Zadeh | Fuzzy sets as a basis for a theory of possibility[END_REF] is the same as that from using Theorem 1 ( [START_REF] Liu | Uncertain risk analysis and uncertain reliability analysis[END_REF]). However, using Theorem 1 requires n • 2 n comparisons, while using Theorem 2 requires only n comparisons. Therefore, the computational costs can be greatly reduced by using the Minimal Cut Set Theorem.

Example 5 (Belief reliability of a k-out-n:G system). Consider a k-out-n:G system comprising n independent components with belief reliabilities R B,i , i = 1, 2, . . . , n. It is easy to show that the system has C (k+1) n minimal cut sets.

Each minimal cut set contains k + 1 components arbitrary chosen from the n components. Therefore, from Theorem 2, the belief reliability of the system is

R B,S = R B,k . (34) 
Reference [START_REF] Liu | Uncertain risk analysis and uncertain reliability analysis[END_REF] also calculates the belief reliability of a k-out-n:G system using the Reliability Index Theorem. The result in [START_REF] Zeng | Using pof models to predict system reliability considering failure collaboration[END_REF] is the same as that from using Theorem 1 ( [START_REF] Liu | Uncertain risk analysis and uncertain reliability analysis[END_REF]). However, using Theorem 1 requires n • 2 n comparisons, while using Theorem 2 requires only n comparisons. Therefore, the computational costs can be greatly reduced by using the Minimal Cut Set Theorem.

Fault tree analysis using belief reliability

In this section, we show how to calculate system belief reliability based on fault tree models. For this, we first show that Theorem 2 also applies to cut sets. A vector x CS is a cut vector if φ(x CS ) = 0. Then, CS = {i : x CS,i = 0} is defined as a cut set. All minimal cut sets are cut sets; whereas, a cut set might be necessarily be a minimal cut set since it might contain redundant elements.

If a cut set CS comprises of all the elements of a minimal cut set C and some redundant elements, C is said to be contained in CS.

Theorem 3 (Cut Set Theorem). Suppose that a coherent system has m mini-

mal cut set CS 1 , CS 2 , • • • , CS m and (l -m) cut sets CS m+1 , CS m+2 , • • • , CS l
that contain some minimal cut sets. Then, the system belief reliability can be calculated by

R B,S = 1≤i≤l j∈CSi R B,j . (35) 
Proof. Let

R B,M CS = 1≤i≤m j∈CSi R B,j . (36) 
Without loss of generality, let us assume that CS m+1 contains CS 1 and belief reliabilities of the redundant components are R

B,R,1 ≥ R B,R,2 ≥ R B,R,n R . Let R B,1 denote the highest belief reliability among the components in CS 1 . If R B,R,1 ≤ R B,1 , immediately we have R B,M CS = 1≤i≤m+1 j∈CSi R B,j . ( 37 
) If R B,R,1 > R B,1 , (37) also holds since j∈CSm+1 R B,j = R B,R,1 > R B,1 . (38) 
Similarly, we can prove that

1≤i≤l j∈CSi R B,j = R B,M CS . (39) 
From Theorem 2, R B,M CS = R B,S . Hence, the theorem is proved.

The cut sets required in [START_REF] Zeng | Measuring reliability during product development considering aleatory and epistemic uncertainty[END_REF] can be enumerated from the fault tree model using the MOCUS algorithm [START_REF] Fussell | A new methodology for obtaining cut sets for fault trees[END_REF]. System belief reliability can, then, be calculated by the following algorithm:

An engineering system, the left leading edge flap (LLEF) control subsystem of the F-18 air fighters [START_REF] Dugan | A quantitative analysis of the f18 flight control system[END_REF], is used to demonstrate the developed system belief reliability analysis method. The schematic of the system is given in Fig. 2, where FCC represents flight control computer, CH represents channel, HSA represents hydraulic servo-actuator, LLEF represents left leading edge flap and RLEF represents right leading edge flap [START_REF] Dugan | A quantitative analysis of the f18 flight control system[END_REF].

The failure behavior of the system can be described by a fault tree, as shown in Fig. 3 [START_REF] Dugan | A quantitative analysis of the f18 flight control system[END_REF]. In Fig. 3, the basic events 1 -9 represent the failure of HSA-A, Algorithm 1 Belief reliability analysis based on fault tree 1: Do a depth-first-search for the logic gates in the fault tree.

2: For each logic gate, calculate the belief reliability for its output event: The belief reliability of the components can be evaluated using the procedures in [START_REF] Zeng | A new metric of reliability: Belief reliability[END_REF]. Suppose the component belief reliabilities are R Then, from [START_REF] Zio | Two methods for the structured assessment of model uncertainty by experts in performance assessments of radioactive waste repositories[END_REF], the belief reliability of the LLEF control system is R B,S = R B,6 = 0.8800.

R B,out =          1≤i≤n R B,
The structure function-based method is also used to evaluate the system belief reliability. To do this, all the possible combinations of the system states need to be enumerated, which, in this case, are 2 9 = 512 states. Then, the system belief reliability is calculated based on (20). The calculated system belief reliability is R B,S = 0.8800, which is the same as the one from Algorithm 1.

According to [START_REF] Kiureghian | Aleatory or epistemic? does it matter?[END_REF], the structure function-based method requires n × 2 n = 4608 comparisons, where n is the number of components. Algorithm 1, however, requires only 10 comparisons according to [START_REF] Zio | Two methods for the structured assessment of model uncertainty by experts in performance assessments of radioactive waste repositories[END_REF]. The results demonstrate that using the developed methods can help to improve the computational efficiency of system belief reliability analysis.

Conclusion

In this paper, belief reliability was defined as an uncertain measure in uncertainty theory, due to the explicit representation of epistemic uncertainty. The Minimal Cut Set Theorem was proved, which shows how to calculate the belief reliability for coherent systems based on minimal cut sets. A system belief reliability analysis method is, then, developed based on fault tree models and applied on some numerical case studies. A comparison to the existing structure function-based method shows that the developed methods reduces the computational costs in system belief reliability analysis.

In this paper, we only consider binary systems. Many practical systems, however, are multi-state. In the future, the belief reliability evaluation method will be extended to multi-state system models. Also, the belief reliability considered in this paper is independent of time. How to model the time-dependent belief reliability is another future research direction. 

Example 1 .

 1 Consider a series system of 2000 components. Suppose for each component, m d = 9 and F a = 0. It is easy to verify that both the component and the system are unlikely to fail.When using belief reliability as the reliability measure, we have to consider the effect of epistemic uncertainty, by evaluating our state of knowledge. Suppose for each component, we have F e = 3. Then, from[START_REF] De Finetti | Probability, induction, and statistics[END_REF], the belief reliability of each component is R B = 0.9987. If we regard belief reliability as a probability measure, the system belief reliability should be calculated by the product of the component belief reliabilities: R B,S = R 200 B = 0.9987 2000 = 0.074.

  ,1 = 0.9688, R B,2 = 0.9200, R B,3 = 0.9500, R B,4 = 0.9000, R B,5 = 0.8000, R B,6 = 0.8800, R B,7 = 0.9600, R B,8 = 0.9700, R B,9 = 0.9500, respectively. From Algorithm 1, the belief reliability of the system isR B,S = R B,1 ∧ R B,2 ∧ R B,3 ∧ (41) (R B,5 ∧ R B,8 ) ∨ (R B,6 ∧ R B,9 ) ∧ (R B,4 ∨ R B,5 ∨ R B,6 ∨ R B,7 )

Figure 1 :Figure 2 :Figure 3 :

 123 Figure 1: Epistemic uncertainty effect on the aleatory distribution of the performance margin (Adapted from [37])

  Definition 2 (Mathematical definition of belief reliability). Let the universal set Γ = {γ 1 , γ 2 }, where γ 1 represents the working state of a system or component, while γ 2 represents the failure state. Then, belief reliability R B is defined as the uncertain measure of the event Λ 1 = {γ 1 },

	capable to compensate for the extra dispersion induced by epistemic uncertainty.
	Compared to possibility theory, uncertainty theory follows the Duality Axiom,
	which prevents the counter-intuitive examples such as that in Example 2. Hence,
	belief reliability is assumed to be an uncertain measure in this paper.
	Examples 1 and 2, we can see that to model belief reliability, we need a
	mathematical theory which can compensate the conservatism in the individual
	belief degree and satisfy the duality axiom. Compared to probability theory,
	uncertainty theory differs in the Product Axiom, where a minimum operator is
	used instead of the product operator, indicating that the uncertainty theory is

  in,i , for an OR gate, : R B,S ← R B,out,T E , where T E represents top event.

	(40)
	R B,in,i , for an AND gate,
	1≤i≤n
	left asymmetry control unit, LLEF, CH1, CH2, CH3, CH4, FCC-A and FCC-B,
	respectively.

34: return R B,S .
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If the structure function of the system φ is:

and there is at least one R B,i such that R B,i ≥ 0.5, then we have

Proof. The proof breaks into two cases:

Without loss of generality, we assume that there exists a k, k

such that R B,k ≥ 0.5. Since R n < 0.5, there exists a j ∈ (k, n), where

where