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Abstract—Model-based reliability analysis and assessment
methods rely on models, which are assumed to be precise, to
predict reliability. In practice, however, the precision of the
model cannot be guaranteed due to the presence of epistemic
uncertainty. In this paper, a new reliability metric, called belief
reliability, is defined to explicitly account for epistemic uncer-
tainty in model-based reliability analysis and assessment. A new
method is developed to explicitly quantify epistemic uncertainty
by measuring the effectiveness of the engineering analysis and
assessment activities related to reliability. To evaluate belief
reliability, an integrated framework is presented, where the
contributions of design margin, aleatory uncertainty and epis-
temic uncertainty are integrated to yield a comprehensive and
systematic description of reliability. The developed methods are
demonstrated by two case studies.

Index Terms—Reliability, physics-of-failure, epistemic uncer-
tainty, model uncertainty, belief reliability

I. INTRODUCTION

Reliability refers to the ability of a component or system
to perform a required function for a given period of time
when used under stated operating conditions [1]. Traditionally,
reliability is measured by the probability that functional failure
does not occur in the considered period of time and failure
data are used for its estimation based on statistical methods
[2]. In practice, however, failure data are often scarce (if
available at all), which defies the use of classical statistical
methods and challenges Bayesian methods with respect to
the assumption of subjective prior distributions [3]. Due to
the problem of limited failure data, model-based methods
(cf. physics-of-failure (PoF) methods [4], structural reliability
methods [5], etc.) are widely applied to predict reliability,
by deterministically describing the degradation and failure
processes using deterministic failure behavior models. More
specifically, it is assumed that:

1) the failure behavior of a component or a system can be
described by a deterministic model;

2) random variations in the variables of the deterministic
model are the sole source of uncertainty.

The probabilistic quantification of reliability is, then, obtained
by propagating uncertainties through the model analytically or
numerically, e.g. by Monte Carlo simulation [6–8].

The random variations represent the uncertainty inherent in
the physical behavior of the system and are referred to as
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aleatory uncertainty [9]. However, the model-based methods
are also subject to epistemic uncertainty due to incomplete
knowledge on the degradation and failure processes [10, 11].
According to Aven and Zio [12, 13], epistemic uncertainty
may arise because:

1) the deterministic model cannot exactly describe the
failure process, e.g., due to incomplete understanding of
the failure causes and mechanisms (model uncertainty,
also known as structural uncertainty);

2) the precise values of the model parameters might not
be accurately estimated due to lack of data in the actu-
al operational and environmental conditions (parameter
uncertainty).

In this paper, we introduce a new reliability metric, belief
reliability, to explicitly consider the effect of epistemic uncer-
tainty on the model-based methods. For illustrative purposes,
we consider only model uncertainty in this paper. However,
the framework can be easily extended to deal with parameter
uncertainty.

In literature, various approaches have been developed to
consider model uncertainty. Mosleh and Droguett reviewed
a number of approaches for model uncertainty assessment
and compared them in terms of theoretical foundations and
domains of application [14, 15]. Among them, the alternate
hypotheses approach and the adjustment factor approach are
two most widely applied ones [16]. The alternate hypotheses
approach identifies a family of possible alternate models and
probabilistically combines the predictions of them based on
Bayesian model averaging, where the probability of each
model is evaluated from experimental data or expert judge-
ments [17, 18]. Apostolakis [19] addressed the issue of model
uncertainty in probabilistic risk assessment using the alternate
hypotheses approach. Park and Grandhi [20] quantified the
model probability in the alternate hypotheses approach by the
measured deviations between experimental data and model
predictions. In [21], two crack models were probabilistically
combined using the alternate hypotheses approach to estimate
the failure probability of a butt weld. Other applications of
the alternate hypotheses approach include sediment transport
models [22], identification of benchmark doses [23], precipi-
tation modeling [24], etc.

In the adjustment factor approach, the model uncertainty
is addressed by modifying a benchmark model (the one that
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we have highest confidence in) with an adjustment factor,
which is assumed to be uncertain, and is either added to or
multiplied by the prediction results of the model [16, 25].
In [26], the adjustment factor approach was used to com-
bine experts’ estimates according to Bayes’ theorem. Zio
and Apostolakis [16] used the approach to assess the risk
of radioactive waste repositories. Fischer and Grandhi [27]
applied an adjustment factor to low-fidelities models so as
to scale them to high-fidelity models. In a series of studies
conducted by Park and Grandhi [25, 28–30], the adjustment
factor approach was combined with the alternate hypotheses
approach by introducing an adjustment factor to quantify the
uncertainty in each alternate model; the model uncertainty was,
then, evaluated by averaging all the models according to the
alternate hypotheses approach.

The alternate hypotheses approach requires enumerating a
set of mutually exclusive and collectively exhaustive models
[15]. In the case of model-based reliability methods, however,
it is impossible for us to enumerate all the possible models,
which limits the application of the alternate hypotheses ap-
proach. Hence, we adopt the adjustment factor approach in this
paper to develop a new reliability metric to describe the effect
of epistemic uncertainty (model uncertainty) on the model-
based reliability methods.

In the adjustment factor approaches, epistemic uncertainty is
quantified by the adjustment factor, which is often determined
based on validation test data (for example, see [18] or [30]).
In practice, however, due to limited time and resources, it
is hard, if not impossible, to gather sufficient validation test
data. Resorting to expert judgements might offer an alternative
solution (for example, see [16]), but they could be criticized for
being too subjective. On the other hand, epistemic uncertainty
relates to the knowledge on the component or system functions
and failure behaviors: as this knowledge is accumulated,
epistemic uncertainty is reduced. In the life cycle of a com-
ponent or system, the knowledge is gained by implementing
a number of reliability analysis-related engineering activities,
whose purpose is to help designers better understand potential
failure modes and mechanisms. For example, through Failure
Mode, Effect and Criticality Analysis (FMECA), potential
failure modes and their effects could be identified, so that the
designer can better understand the product’s failure behaviors
[31]. Similar engineering activities include Failure Report,
Analysis, and Corrective Action System (FRACAS) [32],
Reliability Growth Test (RGT) [33], Reliability Enhancement
Test (RET) [32], Reliability Simulation Test (RST) [34, 35],
etc. In this paper, we develop a new quantification method
for the epistemic uncertainty in the adjustment factor method,
based on the effectiveness of these engineering activities.

The contributions of this paper are summarized as follows:
1) a new reliability metric, the belief reliability, is devel-

oped to explicitly consider epistemic uncertainty in the
model-based reliability methods;

2) a new method is developed to quantify epistemic un-
certainty, based on the effectiveness of the engineering
activities related to the reliability analysis and assess-
ment of components and systems;

3) a method is developed to evaluate the belief reliability

of components and systems, based on the integration
of design margin, aleatory uncertainty and epistemic
uncertainty.

The rest of the paper is organized as follows. In section
II, belief reliability is defined to account for the effect of
epistemic uncertainty in model-based reliability methods. In
section III-B, epistemic uncertainty is quantified based on
the effectiveness of the related engineering activities and
a belief reliability evaluation method is developed. Section
IV presents two case studies to demonstrate the developed
methods. Finally, the paper is concluded in section V with a
discussion on future works.

II. DEFINITION OF BELIEF RELIABILITY

In this section, we introduce a new metric of reliability,
belief reliability, to explicitly account for the influence of
epistemic uncertainty on model-based reliability methods. We
start with a brief introduction of the model-based reliability
method in subsection II-A. Then, belief reliability is defined
in subsection II-B.

A. Model-based reliability methods

For a general description of model-based reliability meth-
ods, we introduce the concepts of performance parameter and
performance margin:

Definition 1 (Performance parameter). Suppose failure occurs
when a parameter p reaches a threshold value pth. Then, the
parameter p is referred to as a performance parameter, while
the threshold value pth is referred to as the functional failure
threshold associated with p.

According to Definition 1, performance parameters and
functional failure thresholds define the functional requirements
on a system or a component, for which three categories exist
in practice:

1) Smaller-the-better (STB) parameters: if failure occurs
when p ≥ pth, then, the performance parameter p is
a STB parameter.

2) Larger-the-better (LTB) parameters: if failure occurs
when p ≤ pth, then, the performance parameter p is
a LTB parameter.

3) Nominal-the-better (NTB) parameters: if failure occurs
when p ≤ pth,L or p ≥ pth,U , then, the performance
parameter p is a NTB parameter.

Definition 2 (Performance margin). Suppose p is a perfor-
mance parameter and pth is its associated functional failure
threshold; then,

m =



pth − p
pth

, if p is STB,

p− pth
pth

, if p is LTB,

min

(
pth,U − p
pth,U

,
p− pth,L
pth,L

)
, if p is NTB

(1)

is defined as the (relative) performance margin associated with
the performance parameter p.
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Remark 1. From Definition 2, performance margin is a unitless
quantity and failure occurs whenever m ≤ 0.

In the model-based reliability methods, it is assumed that
the performance margin can be described by a deterministic
model, which is derived based on knowledge of the functional
principles and failure mechanisms of the component [5, 36].
Conceptually, we assume that the performance margin model
has the form

m = gm(x), (2)

where gm(·) denotes the deterministic model which predicts
the performance margin and x is a vector of input variables.

In the design and manufacturing processes of a product,
there are many uncertain factors influencing the input x of
(2). Thus, the values of x may vary from product to product
of the same type. Usually, this product-to-product variability is
described by assuming that x is a vector of random variables
with given probability density functions. Then, m is also a
random variable and reliability Rp is defined as the probability
that m is greater than zero. The subscript p is used to indicate
that Rp is a probability measure. Given the probability density
function of x, denoted by fX(·), Rp can be calculated by:

Rp = Pr (gm(x) > 0) =

∫
· · ·
∫
gm(x)>0

fX(x)dx. (3)

B. Definition of belief reliability

Belief reliability is defined in this subsection to explicitly
account for the effect of epistemic uncertainty in model-based
reliability methods. For this, we first define design margin and
Aleatory Uncertainty Factor (AUF):

Definition 3 (Design margin). Suppose the performance mar-
gin of a component or a system can be calculated by (2). Then,
design margin md is defined as

md = gm(xN ), (4)

where xN is the nominal values of the parameters.

Definition 4 (Aleatory Uncertainty Factor (AUF)). Suppose
Rp is the probabilistic reliability calculated from the perfor-
mance margin model using (3). Then, AUF σm is defined as

σm =
md

ZRp

, (5)

where ZRp
is the value of the inverse cumulative distribution

function of a standard normal distribution evaluated at Rp.

Further, let equivalent design margin ME to be

ME = md + εm, (6)

where εm ∼ Normal(0, σ2
m). It is easy to verify that ME ∼

Normal(md, σ
2
m) and Rp can be calculated as the probability

that ME > 0, as shown in Figure 1 (a). Therefore, the
probabilistic reliability can be quantified by the equivalent
performance margin and further by md and σm, where

• md describes the inherent reliability of the product
when all the input variables take their nominal values.
Graphically, it measures the distance from the center

of the equivalent performance margin distribution to the
boundaries of the failure region, as shown in Figure 1
(a);

• σm accounts for the uncertainty resulting from the
product-to-product random variations, e.g. the tolerance
of manufacturing processes, the variability in materi-
al properties, etc. Usually, these random variations are
controlled by engineering activities such as tolerance
design, environmental stress screening, stochastic process
control, etc [11].

To further account for the effect of epistemic uncertainty, it
is assumed that:

ME = md + εm + εe, (7)

where εe is an adjustment factor [16] and εe ∼ Normal(0, σ2
e).

Parameter σe is defined as Epistemic Uncertainty Factor (EUF)
and it quantifies the effect of epistemic uncertainty. The
physical meaning of (7) is explained in Figure 1 (b): epistemic
uncertainty introduces additional dispersion to the aleatory
distribution of the equivalent performance margin. The degree
of the dispersion is related to the knowledge we have on the
failure process of the product, i.e., the more knowledge we
have, the less value σe takes.

dm

m

P
ro

b
ab

ili
ty

 d
en

si
ty

 o
f 

m

(a) Aleatory distribution

dm

m e

P
ro

b
ab

ili
ty

 d
en

si
ty

 o
f 

m

(b) Effect of epistemic uncertainty

Fig. 1. Epistemic uncertainty effect on the distribution of the equivalent
performance margin
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Considering the assumption made in (7), we can, then,
define the belief reliability as follows:

Definition 5 (Belief reliability). The reliability metric

RB = ΦN

(
md√
σ2
m + σ2

e

)
(8)

is defined as belief reliability, where ΦN (·) is the cumulative
distribution function of a standard normal random variable.

Belief reliability can be interpreted as our belief degree
on the product reliability, based on the knowledge of design
margin, aleatory uncertainty and epistemic uncertainty. In the
following, we discuss respectively how design margin, aleatory
uncertainty and epistemic uncertainty influence the value of
belief reliability.
Discussion 1. It is obvious from (8) that RB ∈ [0, 1], where

• RB = 0 indicates that we believe for sure that a
component or system is unreliable, i.e., it cannot perform
its desired function under stated time period and operated
conditions.

• RB = 1 indicates that we believe for sure that a
component or system is reliable, i.e., it can perform its
desired function under stated time period and operated
conditions.

• RB = 0.5 indicates that we are most uncertain about the
reliability of the component or system [37].

• RB,A > RB,B indicates that we believe that product A
is more reliable than product B.

Discussion 2 (Variation of RB with the design margin). From
(8), it is easy to see that RB is an increasing function of md,
as illustrated by Figure 2, which is in accordance with the
intuitive fact that when the design margin is increased, the
component or system becomes more reliable.

Fig. 2. Influence of md on RB

Besides, it can be verified from (8) that if md = 0, RB =
0.5. This is because when md = 0, the product is at borderline
between working and failure. Therefore, we are most uncertain
about its reliability (For details, please refer to the maximum
uncertainty principle in [37]).

Discussion 3 (Variation of RB with the aleatory uncertainty).
In (8), the effect of aleatory uncertainty is measured by the
AUF, σm. Figure 3 shows the variation of RB with σm, when
σe is fixed, for different values of md. It can be seen from
Figure 3 that when md and σe are fixed, RB approaches 0.5
as σm increases to infinity. The result is easy to understand,
since σm → ∞ indicates the fact that uncertainty has the
greatest influence.

Fig. 3. Variation of RB with σm

Discussion 4 (Variation of RB with the epistemic uncertainty).
In (8), the effect of epistemic uncertainty is measured by the
EUF, σe. The variation of RB with respect to σe is illustrated
in Figure 4, with σm fixed to 0.2. From Figure 4, we can see
that when σe → ∞, RB also approaches 0.5, for the same
reason as the AUF.

Fig. 4. Variation of RB with σe

Besides, it can be shown from (8) and assumption (3) that
as σe → 0, RB approaches the Rp calculated by the model-
based reliability methods using equation (3). This is a natural
result since σe = 0 is the ideal case for which there is no
epistemic uncertainty, so that the product failure behavior is
accurately predicted by the deterministic performance margin
model and the aleatory uncertainty.



IEEE ACCESS, VOL. , NO. , 5

In practice, we always have md ≥ 0 and σe > 0. Therefore,

RB ≤ Rp (9)

where Rp is the probabilistic reliability predicted by (3) under
the same conditions. Equation (9) shows that using belief
reliability yields a more conservative evaluation result than
using the probabilistic reliability, because belief reliability
considers the effect of insufficient knowledge on the reliability
evaluations.

III. EVALUATION OF BELIEF RELIABILITY

In this section, we discuss how to evaluate the belief
reliability for a given product. A general framework for belief
reliability evaluation is first given in subsection III-A. Then, a
method is presented for evaluating epistemic uncertainty and
determining the value of the EUF.

A. Belief reliability evaluation

The RB defined in (8) incorporates the contributions of
design margin md, aleatory uncertainty (represented by σm)
and epistemic uncertainty (represented by σe). The contribu-
tions from the three factors should be evaluated individually
and then, combined to evaluate the belief reliability of a
component. Detailed procedures are presented in Figure 5.

Epistemic Uncertainty 

Evaluation

Performance Margin 

Model Development

Aleatory Uncertainty 

Evaluation

dm

m

e

Belief Reliability Analysis

2 2

d

B N

m e

m
R

 

 
  
  

Fig. 5. Procedures for component belief reliability evaluation

Four steps comprise the evaluation procedure:
1) Performance Margin Model Development: First, a deter-

ministic performance margin model is developed to predict the
value of the performance margin m. The performance margin
model can be developed based on knowledge of underlying
functional principles and physics of failures. For a detailed
discussion on how to develop performance margin models,
readers might refer to [38] and [39].

2) Aleatory Uncertainty Evaluation: Next, the values of md

and σm are determined. The value of md is calculated based
on (4), where all the input parameters of the performance
margin model take their nominal values. To calculated the
value of σm, the probabilistic reliability Rp is calculated first
by propagating aleatory uncertainty in the model parameters
according to (3). Either structural reliability methods [5] or
Monte Carlo simulations [7] might be used for the calculation.
Then, σm can be calculated by combining md and Rp using
(5).

3) Epistemic Uncertainty Evaluation: The value of σe is,
then, determined by evaluating the effect and potential impact
of epistemic uncertainty. In practice, epistemic uncertainty
relates to the knowledge on the component or system functions
and failure behaviors: as this knowledge is accumulated,
epistemic uncertainty is reduced. Hence, in this paper, we
relate epistemic uncertainty to our state of knowledge on the
product and its failure process and assess the value of σe based
on the effectiveness of engineering activities that generate our
knowledge base. Details on how to evaluate the value of σe
is given in Section III-B.

4) Belief Reliability Evaluation: Following steps 1) - 3),
the values of md, σm and σe are determined. Then, the belief
reliability can be evaluated according to (8).

B. Quantification of epistemic uncertainty
In this section, we develop a method to quantify epistemic

uncertainty based on the state of knowledge. In subsection
III-B1, we discuss how to evaluate the state of knowledge,
and then, in subsection III-B2, we quantify the effect of
epistemic uncertainty in terms of σe.

1) Evaluation of the state of knowledge: In the life cycle
of a component or system, the knowledge on the products’
failure behavior is gained by implementing a number of
engineering activities of reliability analysis, whose purposes
are to help designers better understand potential failure modes
and mechanisms. In this paper, we refer to these engineering
activities as epistemic uncertainty-related (EU-related) engi-
neering activities. Table I lists some commonly encountered
EU-related engineering activities and discusses their contribu-
tions to gaining knowledge and reducing epistemic uncertainty,
where FMECA stands for Failure Mode, Effect and Criticality
Analysis, FRACAS stands for Failure Reporting, Analysis,
and Corrective Action System, RET stands for Reliability
Enhancement Test, RGT stands for Reliability Growth Test
and RST stands for Reliability Simulation Test.

In this paper, we make an assumption that the state of
knowledge is directly related to the effectiveness of the
EU-related engineering activities. Suppose there are n EU-
related engineering activities in a product life cycle. Let
yi, i = 1, 2, · · · , n denote the effectiveness of the EU-related
engineering activities, where yi ∈ [0, 1]; the more effective
the engineering activity is, the larger value the corresponding
yi takes. The values of yi are determined by asking experts
to evaluate the effectiveness of the EU-related engineering
activities, based on a set of predefined evaluation criteria.

For example, the effectiveness of FMECA can be evaluated
based on eight elements, as shown in Table II. For each
element, experts are invited to evaluate their performances
according to the criteria listed in Table II. Based on the
evaluated performance, a score can be assigned to each el-
ement, denoted by S1, S2, · · · , S8. Then, the effectiveness of
FMECA, denoted by y1, can be determined by

y1 =
1

8

8∑
i=1

Si. (10)

The effectiveness of other EU-related engineering activi-
ties can be evaluated in a similar way, so that the values
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TABLE I
EXAMPLES OF EU-RELATED ENGINEERING ACTIVITIES

Activities Contributions to gaining knowledge and reducing epistemic uncertainty

FMECA FMECA helps designers to identify potential failure modes and understand their effects, so as to increase the designer’s
knowledge about potential failures [31].

FRACAS By implementing FRACAS, knowledge on potential failure modes and mechanisms is accumulated based on previously
ocurred failures and corrective actions [32].

RGT In a RGT, cycles of Test Analysis and Fix (TAAF) are repeated until the product reaches its reliability requirements. In
this way, designers’ knowledge on the failure modes and mechanisms is accumulated [33].

RET As the RGT, RET reduces epistemic uncertainty by stimulating potential failures, but using highly accelerated stresses,
which can generate failures that are hard to be identified by analyses or conventional tests [32].

RST In a RST, simulation tests are conducted based on physics-of-failure models to identify weak design points for the products.
Knowledge of potential failure modes can be accumulated in this way [34, 35].

TABLE II
EVALUATION CRITERIA FOR FMECA

Notations Elements Criteria Scores
S1 Definition of failures The failure definition is clear and unambiguous, so that a complete analysis of failure

modes could be conducted.
S1 = 3

The failure definition is defined, but unclear or ambiguous. S1 = 1
The failures are undefined. S1 = 0

S2 Coverage of failure modes The considered failure modes cover all that have occurred historically in the products
with similar functions, use and environmental conditions.

S2 = 3

A few uncritical failure modes are not considered in the analysis. S2 = 1
A lot of critical failure modes are not considered in the analysis. S2 = 0

S3 Completeness of failure mode analysis The considered failure modes include both catastrophic failures as well as degradation
failures.

S3 = 3

Only one of the two types is considered. S3 = 1
None of the two types is considered. S3 = 0

S4 Credibility of information sources The considered failure modes come from real historical data of the product or similar
products.

S4 = 3

The considered failure modes come from literature. S4 = 1
The considered failure modes come from expert judgements. S4 = 0

S5 Completeness of failure cause analysis The analysis takes into account all the possible failure causes. S5 = 3
A few noncritical failure causes are not considered in the analysis. S5 = 1
A lot of critical failure causes are not considered in the analysis. S5 = 0

S6 Completeness of failure effect analysis Failure effects in both component and system levels are analyzed. S6 = 3
Only one of the two levels is considered. S6 = 1
Failure effects are not considered in the analysis. S6 = 0

S7 Credibility of data sources Criticality analysis is based on field data. S7 = 3
Criticality analysis is based on data from literature. S7 = 1
Criticality analysis is based on data from expert judgements. S7 = 0

S8 Effectiveness of design improvements Over 90% of the exposed design weaknesses are modified. S8 = 3
The modified design weaknesses are between 60%-90%. S8 = 1
Less than 60% of the exposed design weaknesses are modified. S8 = 0

for y1, y2, · · · , yn can be determined. Then, the state of
knowledge about the potential failures of the component or
system can be evaluated as the weighted average of yi, i =
1, 2, · · · , n:

y =

n∑
i=1

ωiyi, (11)

where ωi is the relative importance of the ith engineering ac-
tivity for the characterization of the potential failure behaviors,
where

∑n
i=1 ωi = 1.

2) Determination of EUF: Having determined the value of
y, we need to define a function σe = h(y), through which
σe is determined. Since σe is a measure of the severity of
epistemic uncertainty and y measures the state of knowledge,
σe is negatively dependent on y. Theoretically, any monotonic
decreasing function of y could serve as h(y). In practice,
the form of h(y) reflects the decision maker attitude towards
epistemic uncertainty and is related to the complexity of the

product. Therefore, we propose h(y) to be

h(y) =



1

3
√
y
·md, for simple products;

1

3y6
·md, for complex products;

1

3y2
·md, for medium complex products.

(12)
By letting σm = 0 and md fixed to a constant value, the

attitudes of the decision maker for different products can be
investigated (see Figure 6):

• for simple products, RB is a convex function of y,
indicating that even when y is small, we can gather
enough knowledge on the product function and failure
behaviors, so that we can assign a high value to the belief
reliability;

• for complex products, RB is a concave function of y,
indicating that only when y is large we can gather
sufficient knowledge on the product function and failure
behaviors, so that we can assign a high value to the belief
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Fig. 6. Different attitudes of the decision maker towards epistemic uncertainty

reliability;
• the h(y) for medium complex products lies between the

two extremes.

IV. CASE STUDIES

In this section, we apply the developed belief reliability to e-
valuate the reliability of two engineering components/systems,
i.e., a Hydraulic Servo Actuator (HSA) in Section IV-A and a
Single Board Computer (SBC) in Section IV-B. A comparison
is also made on both cases with respect to the traditional
probabilistic reliability metrics.

A. Hydraulic Servo Actuator (HSA)

The HSA considered in this paper comprises the six com-
ponents, as listed in Table III. The schematic of the HSA is
given in Figure 7.

Fig. 7. Schematic of the AMESim model to predict pHSA

The required function of the HSA is to transform input
electrical signals, xinput , into the displacement of the hydraulic

cylinder (HC). The performance parameter of the HSA is the
attenuation ratio measured in dB:

pHSA = −20 lg
AHC

Aobj
, (13)

where, AHC denotes the amplitude of the HC displacements
when input signal xinput is a sinusoidal signal, and Aobj is the
objective value of AHC. Failure occurs when pHSA ≥ pth =
3(dB). The belief reliability of the HSA is evaluated following
the procedures in Figure 5.

1) Performance Margin Model Development: The perfor-
mance margin model is developed in two steps. First, a model
for the pHSA is developed based on hydraulic principles, with
the help of commercial software AMESim. The AMESim
model is given in Figure 7. Coherently with (2), the model
in Figure 7 is written as

pHSA = gHSA(xHSA). (14)

Second, as pHSA is a STB performance parameter, the
performance margin of the HSA can be determined according
to (1):

mHSA =
1

pth
(pth − gHSA(xHSA)) . (15)

2) Aleatory Uncertainty Evaluation: The xHSA comprises
six parameters, namely, the clearances on diameters (CoDs)
of the six components of the HSA. The CoDs are subject
to aleatory uncertainties from production and manufacturing
processes, which are quantified by the tolerances in Table III.
For simplicity of illustration, it is assumed that all the six
parameters follow normal distributions. Following the ’3σ’
principle (for references, see [40]), the probability density
function for each parameter is determined and given in Table
III. The value of md is calculated by (4), where the nominal
values are given in Table III. The resulting md is 0.6928 (dB).
The values of σm is determined using Monte Carlo simulations
with a sample size N = 3000. The resulting σm is 0.0353
(dB).

3) Epistemic Uncertainty Evaluation: Then, we need to
determine the value of σe. In the development of the HSA,
five EU-related engineering activities, i.e., FMECA, FRA-
CAS, RGT, RET and RST have been conducted. Let yi, i =
1, 2, · · · , 5 denote the five engineering activities, respective-
ly. The values of yis can be determined by evaluating the
effectiveness of these engineering activities, based on the pro-
cedures illustrated in Section III-B1. The result is y1 = 0.70,
y2 = 0.90, y3 = 0.80, y4 = 0.85, y5 = 0.70. In this case
study, the engineering activities are assumed to have equal
weights, ω1 = ω2 = · · · = ω5 = 1/5, and then, according
to (11), y = 0.79. Since the HSA has medium complexity,
according to (12),

σe =
1

3y2
·md = 0.3700. (16)

4) Belief Reliability Evaluation: Finally, the belief reliability
can be predicted using (8) and the result is shown in Table
IV. If we only consider the aleatory uncertainty, probabilistic
reliability can be predicted using (3), whose value is also
presented in Table IV for comparisons. The result shows that,
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TABLE III
COMPONENTS AND TOLERANCES OF THE HSA

Component ESV Spool 1 Spool 2 Spool 3 Spool 4 HC
Parameters CoD x1 CoD x2 CoD x3 CoD x4 CoD x5 CoD x6
Tolerances

(×10−3mm) 1± 0.015 7± 0.15 7± 0.15 7± 0.15 7± 0.15 10± 1.5

Distributions N(1, 0.0052) N(7, 0.052) N(7, 0.052) N(7, 0.052) N(7, 0.052) N(10, 0.52)

ESV: Electrohydraulic servo valve
HC: Hydraulic cylinder

as expected, epistemic uncertainty reduces our confidence that
the product will perform its function as designed, whereas
probabilistic reliability would lead to overconfidence.

TABLE IV
COMPARISON BETWEEN PROBABILISTIC RELIABILITY AND BELIEF

RELIABILITY

Types of reliability measures Results
Probabilistic reliability calculated by (3) 0.9999

Belief reliability calculated by (8) 0.9688

Another major difference between belief reliability and
probabilistic reliability is that belief reliability allows for
the consideration of EU-related engineering activities in the
reliability assessment, which are neglected in the probability-
based reliability evaluation. For example, if the effectiveness
of the EU-related engineering activities is increased from
y1 = 0.70, y2 = 0.90, y3 = 0.80, y4 = 0.85, y5 = 0.70
to y1 = y2 = · · · = y5 = 0.9, then, the belief reliability
will increase from RB,0 = 0.9688 to RB,1 = 0.9921. In
other words, in order to enhance the belief reliability, one not
only needs to increase the design margin and reduce aleatory
uncertainty by design, but also needs to reduce epistemic
uncertainty by improving the state of knowledge, whereas
probabilistic reliability focuses only on the former two aspects.

B. Single Board Computer
A SBC, as shown in Figure 8 [41], is chosen to demonstrate

the time-dependent belief reliability analysis for electrical
systems.

Fig. 8. A SBC [41]

A probabilistic reliability analysis was conducted in [41]
based on the parts-counting reliability prediction method in

[42]. The times to failure of both the components are assumed
to be exponentially distributed and their failure rates are
predicted based on the database in [42], as shown in Table
V. The failure rate of the SBC can, then, be calculated by
summing over all the components’ failure rates. Hence, the
predicted probabilistic reliability is

Rp(t) = exp{−1.186× 10−6t}, (17)

where the unit of t is hour.

TABLE V
PREDICTED FAILURE RATES OF THE SBC [41]

Components Number Predicted failure rate (×10−9 (h−1))
IC 51 384.8

Crystal oscillator 4 56
Inductance 6 6.56
Connector 9 32.76
Capacitor 631 40.60
Resistance 545 648.91

Others 20 16.16
Total 1266 1186

The probabilistic reliability in (17) is a time-dependent
function. To further evaluate the belief reliability, first note
by substituting (5) into (8), we have

RB =
1√(

1

ZRp

)2

+

(
σe
md

)2
. (18)

Since Rp is time-dependent, the belief reliability is also a
time-dependent function and can be calculated by using (18)
recursively at each time t:

RB(t) =
1√(

1

ZRp(t)

)2

+

(
σe
md

)2
, (19)

where Rp(t) is the time-dependent probabilistic reliability and
σe is the EUF evaluated using the procedures in Section III-B.

The effectiveness of the five EU-related engineering activ-
ities, i.e., FMECA, FRACAS, RGT, RET and RST, can be
assessed using the procedures illustrated in Section III-B1:
y1 = 0.60, y2 = 0.80, y3 = 0.70, y4 = 0.75, y5 = 0.55. As
the previous case study, we also assume that the five activities
have equal weights. From (11), y = 0.68. By assessing the
configuration of the SBC, it is determined that it has medium
complexity. Therefore, by substituting (12) and (17) into (19),
the belief reliability of the SBC can be calculated, as shown
in Figure 9.
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Fig. 9. Belief reliability of the SBC

Fig. 10. Belief reliability of the SBC

It can be seen from Figure 9 that the belief reliability
curve is more close to RB = 0.5 than the probabilistic
reliability. This is because RB = 0.5 corresponds to the
state of maximum uncertainty, since we cannot differentiate
whether the system is more likely to be working or failure
(for details, please refer to maximum uncertainty principle
in [37]). Since belief reliability considers the influence of
epistemic uncertainty, it yields a more uncertain result than
the probabilistic reliability.

A sensitivity analysis is conducted with respect to y to
further investigate the influence of epistemic uncertainty on
belief reliability. The results are given in Figure 10. It can be
seen from Figure 10 that the value of y significantly impacts
RB : a larger value of y, which indicates improvements on the
effectiveness of the EU-related engineering activities, tends to
make the belief reliability moving towards the probabilistic
reliability; while a lower value of y tends to make the
belief reliability moving towards 0.5, which is the state of
maximum uncertainty. This demonstrates that, compared to
the traditional probabilistic reliability, belief reliability allows
for the explicit consideration of epistemic uncertainty and EU-
related engineering activities in the reliability assessment. In
other words, in order to enhance the belief reliability, one not
only needs to increase the design margin and reduce aleatory
uncertainty by design, but also needs to reduce epistemic
uncertainty by improving the state of knowledge.

V. CONCLUSION

In this paper, a new metric of belief reliability has been
introduced to explicitly incorporate the influence of epistemic
uncertainty into model-based methods of reliability assess-
ments. To quantify the effect of epistemic uncertainty, an
evaluation method is proposed, based on the effectiveness
of engineering activities related to reliability analysis and
assessment. The proposed belief reliability evaluation method
integrates design margin, aleatory uncertainty and epistemic
uncertainty for a comprehensive and systematic characteriza-
tion of reliability. Two numerical case studies demonstrate
the benefits of belief reliability compared to the traditional
probability-based reliability metrics, with the explicit consid-
eration of epistemic uncertainty.

Compared to the traditional probabilistic reliability metrics,
belief reliability explicitly considers the effect of epistemic
uncertainty and allows considering EU-related engineering
activities in reliability assessment. We believe that as a new
reliability metric, belief reliability is beneficial in reliability
engineering practices, since epistemic uncertainty is a severe
problem for real-world products, especially for those in design
and development phases. An interesting future work is to
define a mathematical theory to model belief reliability and its
time-dependence. Various mathematical theories dealing with
epistemic uncertainty can be considered, e.g., Bayesian theory,
evidence theory, possibility theory, uncertainty theory, etc.
Besides, methods of scoring the effectiveness of engineering
activities should be further investigated.
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ACRONYMS

AUF Aleatory Uncertainty Factor
ESV Electrohydraulic Servo Valve
EU Epistemic Uncertainty
EUF Epistemic Uncertainty Factor
FMECA Failure Mode, Effect and Criticality Analysis
FRACAS Failure Report, Analysis, and Corrective Action System
HC Hydraulic Cylinder
HSA Hydraulic Servo Actuator
LTB Larger-the-better
NTB Nominal-the-better
RGT Reliability Growth Test
RET Reliability Enhancement Test
RST Reliability Simulation Test
SBC Single Board Computer
STB Smaller-the-better
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NOTATIONS

m Performance margin
p Performance parameter
pth Functional threshold
RB Belief reliability
Rp Probabilistic reliability
md Design margin
σm Aleatory uncertainty factor
σe Epistemic uncertainty factor
y Effectiveness of the EU-related engineering activ-

ities
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