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In this paper, we study the vector penalty-projection method for incompressible unsteady Stokes equations with Dirichlet boundary conditions. The time derivative is approximated by the backward difference formula of second-order scheme (BDF2), namely Gear's scheme, whereas the approximation in space is performed by the finite volume scheme on a Marker And Cell (MAC) grid. After proving the stability of the method, we show that it yields second-error estimates in the time step for both velocity and pressure in the norm of l ∞ (L 2 (Ω)) and l 2 (L 2 (Ω)) respectively. Besides, we show that the splitting error for both velocity and pressure is of order O( √ ε δt) where ε is a penalty parameter chosen as small as desired and δt is the time step. Numerical results in agreement with the theoretical study are also provided.

Introduction

For T > 0, we consider the time-dependent incompressible Navier-Stokes equations in the primitive variables on a finite time interval [0,T]:

ρ ( ∂v ∂t + (v • ∇) v ) -µ ∆v + ∇p = f in Ω×]0, T [, (1.1) 
∇ • v = 0
in Ω×]0, T [, (1.2) v = 0 on Γ×]0, T [, (1.3) where Ω ⊂ R d (d = 2 or 3 in practice) is an open bounded and connected domain with a Lipschitz continuous boundary Γ = ∂Ω. The generic point in Ω is denoted by x. We denote by v=(u, v) T the fluid velocity with initial value v(t = 0) = v 0 , p the pressure field, ρ the fluid density (the density is taken equal to 1), µ the dynamic viscosity (here, µ = 1/Re with Re a Reynolds number) and f the external body forces. We impose homogeneous Dirichlet condition (1.3) on the whole boundary Γ for the sake of simplicity. Finally, the reader will keep in mind that bold letters such as v, f, etc., indicate vector valued quantities. One of the main numerical difficulties in solving ((1.1)-(1.3)) arises from the coupling between the velocity and the pressure by the incompressibility constraint at each time step. Undoubtedly, the most popular way to overcome this difficulty consists of using the projection methods introduced initially by Chorin [START_REF] Chorin | Numerical solution of the Navier-Stokes equations[END_REF] and Temam [START_REF] Temam | Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (ii)[END_REF] in the late sixties. Projection methods are fractional-step schemes which consist in splitting the time evolution into two sub-steps. In the first step, an intermediate velocity, that does not satisfy the incompressibility constraint, is computed by solving an advection diffusion problem. In the second step, according to the Helmholtz-Hodge decomposition [START_REF] Ferziger | Computational methods for fluid dynamics[END_REF], the intermediate velocity is projected to the space of the divergence-free vector fields to get the pressure and the corrected velocity that satisfies the incompressibility condition. Projection methods gained popularity due to the fact that the computations of the velocity and the pressure are decoupled by the two-step predictor-corrector procedure which significantly reduces the computational cost. However, Chorin-Temam's projection method suffers from an inconsistent Neumann boundary condition satisfied by the pressure approximation. This artificial condition induces a loss of the temporal accuracy in the solution; hence the numerical scheme is not satisfactory since its splitting error is irreducibly of O(δt) [START_REF] Rannacher | On Chorin's projection method for incompressible Navier-Stokes equations[END_REF] where δt is the time step. Over the years, several variants of projection methods have been developed to improve the temporal accuracy among which are pressure-correction methods [START_REF] Goda | A multistep technique with implicit difference schemes for calculating two-or threedimensional cavity flows[END_REF][START_REF] Van Kan | A second-order accurate pressure-correction scheme for viscous incompressible flow[END_REF][START_REF] Timmermans | An approximate projection scheme for incompressible flow using spectral elements[END_REF][START_REF] Guermond | Un résultat de convergence à l'ordre deux en temps pour l'approximation des équations de Navier-Stokes par une technique de projection[END_REF][START_REF]On the error estimates for the rotational pressure-correction projection methods[END_REF] (incremental or rotational form), velocity-correction methods [START_REF] Orszag | Boundary conditions for incompressible flows[END_REF][START_REF]Velocity-correction methods for incompressible flows[END_REF][START_REF] Poux | Open boundary conditions for the velocity-correction scheme of the NavierStokes equations[END_REF] (incremental or rotational form), consistent splitting scheme [START_REF]A new class of truly consistent splitting schemes for incompressible flows[END_REF][START_REF] Shen | Error estimates for finite element approximations of consistent splitting schemes for incompressible flows[END_REF][START_REF] Johnston | Accurate, stable and efficient Navier-Stokes solvers based on explicit treatment of the pressure term[END_REF], scalar penalty-projection methods [START_REF] Shen | On error estimates of some higher order projection and penalty-projection methods for Navier-Stokes equations[END_REF][START_REF] Jobelin | A finite element penaltyprojection method for incompressible flows[END_REF][START_REF] Févrière | On the penalty-projection method for the Navier-Stokes equations with the MAC mesh[END_REF] and more recently vector penalty-projection methods [START_REF]Vector penalty-projection methods for the solution of unsteady incompressible flows[END_REF][START_REF] Ph | Analysis for the fast vector penalty-projection solver of incompressible multiphase Navier-Stokes/brinkman problems[END_REF]. Hereafter we present a short review on some theoretical results obtained from some of these variants in the presence of Dirichlet boundary conditions.

Incremental pressure-correction methods [START_REF] Goda | A multistep technique with implicit difference schemes for calculating two-or threedimensional cavity flows[END_REF][START_REF] Van Kan | A second-order accurate pressure-correction scheme for viscous incompressible flow[END_REF] were widely used in practice and have been rigorously analyzed by E and Li [START_REF] Liu | Projection method i: Convergence and numerical boundary layers[END_REF] and Shen [START_REF]On error estimates of projection methods for the Navier-Stokes equations: secondorder schemes[END_REF] in the semi-discrete case and by Guermond [START_REF] Guermond | Un résultat de convergence à l'ordre deux en temps pour l'approximation des équations de Navier-Stokes par une technique de projection[END_REF] in the fully discrete case. Second-order accuracy in time on the velocity in L 2 -norm has been proved but only O(δt) estimates on the pressure approximation are available due to the presence of a numerical boundary layer.

Timmermans et al. [START_REF] Timmermans | An approximate projection scheme for incompressible flow using spectral elements[END_REF] proposed a modified version of the incremental pressurecorrection methods, referred by Guermond and Shen in [START_REF] Guermond | Quelques résultats nouveaux sur les méthodes de projection[END_REF][START_REF]On the error estimates for the rotational pressure-correction projection methods[END_REF] as incremental pressure-correction methods in rotational form. Brown, Cortez and Minion [START_REF] Brown | Accurate projection methods for the incompressible Navier-Stokes equations[END_REF] showed, using normal mode analysis in a periodic channel, that the pressure approximation in this particular case is second-order accurate. In this regard, a rigorous normal mode error analysis was carried out by Pyo and Shen [START_REF] Pyo | Normal mode analysis of second-order projection methods for incompressible flows[END_REF] for two second-order projection type methods. Finally, Guermond and Shen showed in [START_REF]On the error estimates for the rotational pressure-correction projection methods[END_REF] that the best possible convergence rate for pressure approximation in the L 2 -norm is of order 3/2 in general domains.

Another class of projection methods namely velocity correction methods has been introduced and rigorously analyzed (in its incremental and rotational form) by Guermond and Shen [START_REF]Velocity-correction methods for incompressible flows[END_REF]. Error estimates lead to a second-order accuracy for the velocity in the L 2 -norm for both versions. In addition, they proved better error estimates for the rotational form, i.e., O(δt 3/2 ) in the H 1 -norm of the velocity and the L 2 -norm of the pressure (see also [START_REF] Guermond | Error analysis of fully discrete velocity-correction methods for incompressible flows[END_REF] for the fully discrete case). It was also shown that this family of projection methods can be related to a set of methods in [START_REF] Orszag | Boundary conditions for incompressible flows[END_REF][START_REF] Karniadakis | High-order splitting methods for the incompressible Navier-Stokes equations[END_REF].

For more details regarding both numerical and theoretical results of different projection methods, the reader can refer to the complete review of Guermond et al. [START_REF] Guermond | An overview of projection methods for incompressible flows[END_REF].

Moreover, the scalar penalty projection method is another variant of projection methods, proposed and numerically investigated by Jobelin et al. [START_REF] Jobelin | A finite element penaltyprojection method for incompressible flows[END_REF]. It was also theoretically analyzed in [START_REF] Ph | Error analysis of the penalty-projection method for the time dependent Stokes equations[END_REF] and verified later by Févrière et al. [START_REF] Févrière | On the penalty-projection method for the Navier-Stokes equations with the MAC mesh[END_REF] using a spatial discretization by finite volumes on staggered grids. The basic idea behind the development of this scheme originated from a paper of Shen in 1992 [START_REF] Shen | On error estimates of some higher order projection and penalty-projection methods for Navier-Stokes equations[END_REF] and consists in adding to the velocity prediction step a penalty term similar to the augmentation term used in the so-called Augmented Lagrangian method (e.g. [START_REF] Fortin | Augmented lagrangians: Application to the numerical solution of boundary value problems[END_REF]), which constrains the divergence of the intermediate velocity. The same idea has been exploited independently later, in 1999, by Caltagirone and Breil [START_REF] Caltagirone | Sur une méthode de projection vectorielle pour la résolution des équations de Navier-Stokes[END_REF] with a different projection step called by the authors "vector projection step". From the point of view of convergence properties, the authors show in [START_REF] Ph | Error analysis of the penalty-projection method for the time dependent Stokes equations[END_REF] that for low value of the penalty parameter r, splitting error estimates of the so-called rotational projection scheme are recovered, i.e. O(δt 2 ) and O(δt 3/2 ) convergence for the velocity and the pressure, respectively. Indeed, for high values of the penalty parameter, they obtain the δt/r behavior for the velocity splitting error known for the penalty scheme.

In 2008, Angot et al. [START_REF]Vector penalty-projection methods for the solution of unsteady incompressible flows[END_REF] introduced a new fractional-step scheme called Vector Penalty-Projection (V P P ) methods to solve incompressible fluid flows and to overcome most of the drawbacks of the usual projection methods. This family of methods represents a compromise between the best properties of both classes: the Augmented Lagrangian (without iterations) and splitting methods under a vector form. In fact, an original penalty-correction step for the velocity replaces the standard scalar pressure-correction one to calculate flows with divergence-free velocity. This allows to impose the desired boundary condition to the end-of-step velocity pressure variables. The V P P methods were improved in [START_REF] Ph | Analysis for the fast vector penalty-projection solver of incompressible multiphase Navier-Stokes/brinkman problems[END_REF][START_REF]A spectacular vector penalty-projection method for Darcy and Navier-Stokes problems[END_REF][START_REF]A fast vector penalty-projection method for incompressible non-homogeneous or multiphase Navier-Stokes problems[END_REF] where they showed that such methods are also very efficient to compute incompressible multiphase viscous flows or Darcy flows whatever the density, viscosity or permeability jumps are and also in the presence of outflow boundary conditions [START_REF] Ph | Vector penalty-projection methods for incompressible fluid flows with open boundary conditions[END_REF][START_REF]Vector penalty-projection methods for outflow boundary conditions with optimal second-order accuracy[END_REF]. Indeed, they showed to favorably compete with the best incremental projection methods or Augmented Lagrangian methods in terms of accuracy, cheapness and robustness.

In [START_REF]Vector penalty-projection methods for the solution of unsteady incompressible flows[END_REF][START_REF] Ph | Analysis for the fast vector penalty-projection solver of incompressible multiphase Navier-Stokes/brinkman problems[END_REF][START_REF]A spectacular vector penalty-projection method for Darcy and Navier-Stokes problems[END_REF], the V P P methods were implemented using the first-order Euler implicit scheme in time with Dirichlet conditions on the boundary. The authors found that the scheme is O(h 2 ) in space for velocity and pressure, where h is the spatial mesh step of the MAC scheme and O(δt) in time for velocity and pressure (δt is the time step). However, in the literature, the V P P methods concern only the case of the first-order time discretization with Dirichlet boundary conditions. The present paper is devoted to the extension of such methods to a second-order time discretization. Remember that in view of all the previous results of different types of projection methods, one can notice that, while a temporally second order convergence for the velocity can be readily obtained analytically, the computed pressure can not reach the full second-order accuracy in time. We believe that this paper provides interesting results in this regard as well as for the splitting error of the scheme.

The main task of the present paper is to provide stability and rigorous error analysis of the second-order vector penalty-projection method with Dirichlet boundary conditions. Our results indicate that the V P P method guarantees O(δt 2 ) for both velocity and pressure in the norm of l ∞ (L 2 (Ω)) and l 2 (L 2 (Ω)) respectively. Besides, we show that the splitting error of the method varies as O(ε) where the penalty parameter ε can be chosen as small as desired. This feature is very interesting since it offers the possibility to reduce the splitting error, up to make it negligible with respect to the consistency error of higher-order schemes.

The rest of the paper is organized as follows. In Section 2, we describe the vector penalty-projection method using a second-order scheme to discretize in time and we underline the role of each step of the method. In Section 3, we show the well-posedness and the stability of the method. Section 4 is devoted to giving the error estimates for the V P P method. In Section 5, we present some numerical experiments which are consistent with the theoretical results. Concluding remarks are reported in Section 6.

Vector penalty-projection method

In this section, we describe the vector penalty-projection method for the incompressible Navier-Stokes problem using a second-order backward difference formula (BDF2) to march in time. In addition, we highlight briefly the role of each step of the method.

2.1. Description of the scheme. Before presenting the scheme, let us first introduce the following functional spaces:

L 2 (Ω) = ( L 2 (Ω) ) d , H 1 (Ω) = { u ∈ L 2 (Ω); ∇u ∈ (L 2 (Ω)) d×d } , L 2 0 (Ω) = { q ∈ L 2 (Ω); ∫ Ω q dx = 0 } .
We denote L 2 (Ω)-norm by ∥ . ∥ 0 , the H 1 (Ω)-norm by ∥ . ∥ 1 , the H -1 (Ω)-norm by ∥ . ∥ -1 and L 2 (Ω)-inner product by (. , .) 0 . Now, let 0 = t 0 < t 1 < ... < t N = T be a partition of the time interval of computation [0,T] which we suppose uniform for the sake of simplicity. We denote by δt = t n+1 -t n > 0 the time step. Let ϕ 0 , ϕ 1 , . . . ,ϕ N be a sequence of functions in a Hilbert space H. We denote this sequence by ϕ δt and we define the following discrete norm:

∥ ϕ δt ∥ l 2 (H) := (δt Σ N n=0 ∥ ϕ n ∥ 2 H ) 1/2 .
The notation v n is used to represent an approximation of v(t n ), where t n = n δt.

We use a semi-implicit time-integration scheme. We approximate the time derivative the BDF2 scheme. The convective term is handled explicitly. Finally, the viscous term is treated implicitly. Hence, the V P P method reads as follows.

Let n ≥ 1 such that (n + 1)δt ≤ T , v 0 , v 1 , v 0 , v 1 ∈ L 2 (Ω) and p 0 , p 1 ∈ L 2 0 (Ω) given. Find (v n+1 , p n+1 ) such that:

• Vector penalty-prediction step with an augmentation parameter r ≥ 0:

3 v n+1 -4 v n + v n-1 2δt + N LT 1 -µ ∆ v n+1 -r ∇(∇ • v n+1 ) (2.1) + ∇p ⋆,n+1 = f n+1 in Ω, v n+1 = 0 on Γ, (2.2)
where p ⋆,n+1 is the second-order Richardson extrapolation for p n+1 :

p ⋆,n+1 = 2p n -p n-1 ,
and N LT 1 is the second-order extrapolated nonlinear term:

N LT 1 = 2(v n • ∇) v n -(v n-1 • ∇) v n-1 .
• Vector penalty-projection step with a penalty parameter 0 < ε ≤ 1:

3 v n+1 -4 v n + v n-1 2δt + N LT 2 -µ ∆ v n+1 - 1 ε ∇ ( ∇ • v n+1 ) (2.3) = 1 ε ∇ ( ∇ • v n+1 ) in Ω, v n+1 = 0 on Γ, (2.4)
where N LT 2 is the second-order extrapolated nonlinear term:

N LT 2 = 2(v n • ∇) v n -(v n-1 • ∇) v n-1 .
• Correction step for velocity and pressure:

v n+1 = v n+1 + v n+1 , (2.5) p n+1 = 2p n -p n-1 - 1 ε (∇ • v n+1 ) -r ∇ • v n+1 . (2.6)
Remark 2.1 (Nonlinear term in the projection step). It is useful to mention that the nonlinear term in the velocity correction step can be omitted since the purpose of this step is to perform an approximate divergence-free projection, see [START_REF]A fast vector penalty-projection method for incompressible non-homogeneous or multiphase Navier-Stokes problems[END_REF][START_REF]Fast discrete Helmholtz-Hodge decompositions in bounded domains[END_REF]. Hence, we can take N LT 2 = 0 and consequently replace the nonlinear term N LT 1 in the prediction step by

N LT 1 = 2(v n • ∇)v n -(v n-1 • ∇)v n-1 ,
which is better for the consistency of the scheme.

2.2.

Vector penalty-prediction step. Contrary to the first penalty-projection method introduced by Shen in [START_REF] Shen | On error estimates of some higher order projection and penalty-projection methods for Navier-Stokes equations[END_REF], the augmentation parameter r in the prediction step of the V P P method is totally independent from the time step δt as it is also the case of the scalar penalty-projection method presented by Jobelin et al. in [START_REF] Jobelin | A finite element penaltyprojection method for incompressible flows[END_REF]. It is useful to note that the augmentation parameter r plays the role of a preconditioner for the prediction step. Indeed, the parameter r is kept constant (r can be strictly positive or equal 0) and within small values (r ≤ 1) to avoid to degrade too severely the conditioning of the linear system associated with the prediction step.

Remark 2.2. From a numerical point of view, we observe that for r = 0, there is a poor convergence in time for velocity and pressure with very small values of ε and this is due to the accumulation of the round-off errors when ε is relatively small [START_REF]Vector penalty-projection methods for outflow boundary conditions with optimal second-order accuracy[END_REF]. Hence, in order to improve the convergence rate, it was proposed in [START_REF] Ph | Analysis for the fast vector penalty-projection solver of incompressible multiphase Navier-Stokes/brinkman problems[END_REF][START_REF]A spectacular vector penalty-projection method for Darcy and Navier-Stokes problems[END_REF][START_REF]A new fast method to compute saddle-points in constrained optimization and applications[END_REF] to reconstruct the pressure field from its gradient to avoid the effect of round-off errors when ε is very small. Thus, in the numerical experiments (see Section 5) with r = 0, the following estimation of the gradient of the pressure will be used directly for the pressure gradient correction:

(2.7)

∇p n+1 = 2∇p n -∇p n-1 - 3 v n+1 -4 v n + v n-1 2δt + µ ∆ v n+1 .
2.3. Vector penalty-projection step. The vector penalty-projection step is based on the Helmholtz-Hodge decompositions of L 2 (Ω) vector fields for bounded domains (see e.g. [START_REF] Ladyzhenskaya | The mathematical theory of viscous incompressible flow, Gordon and Breach[END_REF][START_REF] Leray | Essai sur les mouvements plans d'un liquide visqueux que limitent des parois[END_REF][START_REF]Navier-stokes equations; theory and numerical analysis, studies in mathematics and its appl[END_REF]). Besides, we notice that the vector penalty-projection step can be written as follows:

       ε ( v n+1 -v n δt + N LT 2 -µ ∆ v n+1 ) -∇(∇ • v n+1 ) = ∇(∇ • v n+1 ) in Ω, v n+1 = 0 on Γ. (2.8)
where we use the implicit Euler scheme to discretize in time for the sake of simplicity. Formally speaking, as ε is taken small enough, the right-hand side in the projection step lies in the range of the left-hand side. Hence, the vector penalty-projection step appears to be very fast and cheap in terms of the number of iterations whatever the spatial mesh size is. This crucial result was already shown theoretically in [6, Theorem 1.1 and Corollary 1.3] and in [5, Theorem 3.1] and also numerically confirmed in [START_REF]A fast vector penalty-projection method for incompressible non-homogeneous or multiphase Navier-Stokes problems[END_REF][START_REF]A new fast method to compute saddle-points in constrained optimization and applications[END_REF][START_REF] Cheaytou | Etude des méthodes de pénalité-projection vectorielle pour les équations de navier-stokes avec conditions aux limites ouvertes[END_REF][START_REF]Vector penalty-projection methods for outflow boundary conditions with optimal second-order accuracy[END_REF]. Finally, the vector correction step (??-2.5) carries out an approximate divergence-free projection of the velocity with the penalty parameter ε > 0 chosen as small as desired.

Remark 2.3 (Vector penalty-projection methods with variable density).

The vector penalty-projection methods can be generalized in a natural way for variable density as done recently in [START_REF]A kinematic vector penalty-projection method for incompressible flow with variable density[END_REF] where it is shown that the velocity correction step can be made completely independent on the mass density. Thus, this step is fully kinematic and only concerned with the Helmholtz-Hodge decomposition of the predicted velocity.

Remark 2.4 (Vector penalty-projection method with open boundary conditions).

The vector penalty-projection methods can naturally be extended also to the case of incompressible viscous flows with open boundary conditions. In fact, in [START_REF] Ph | Vector penalty-projection methods for incompressible fluid flows with open boundary conditions[END_REF][START_REF]Vector penalty-projection methods for outflow boundary conditions with optimal second-order accuracy[END_REF], the authors described in detail the V P P methods in this case and showed that for a second-order scheme used for time discretization, the V P P methods yield approximately O(δt 2 ) for both the velocity and the pressure for the homogeneous as well as and nonhomogeneous open boundary conditions.

Well-posedness and stability

Before starting the analysis, let us note that since the treatment of the nonlinear term does not affect in an essential way the analysis of the vector penalty-projection method, we shall carry out the well-posedness, the stability and later, the error estimates for the linearized Navier-Stokes equations only as in [START_REF]On the error estimates for the rotational pressure-correction projection methods[END_REF][START_REF]Velocity-correction methods for incompressible flows[END_REF], thus avoiding technicalities associated with the nonlinearities which obscure the essential difficulties. Besides, we suppose that the temporal derivative of the velocity is approximated by a second-order scheme in time, the pressure field is approximated by a first order scheme in time, i.e, p ⋆,n+1 = p n and the augmentation parameter r is set to 0 for the sake of simplicity.

Thus, to fix the ideas, the vector penalty-projection method is written now as follows. For given v 0 , v 1 , v 0 , v 1 and p 1 , we are looking for (v n+1 , p n+1 ) such that for all n ≥ 1 with (n + 1)δt ≤ T :

• Vector penalty-prediction step:

     3 v n+1 -4 v n + v n-1 2δt -µ ∆ v n+1 + ∇p n = f n+1 in Ω, v n+1 = 0 on Γ. (3.1)
• Vector penalty-projection step with a penalty parameter 0 < ε ≤ 1:

           3 v n+1 -4 v n + v n-1 2δt -µ ∆ v n+1 - 1 ε ∇ ( ∇ • v n+1 ) = 1 ε ∇ ( ∇ • v n+1 ) in Ω, v n+1 = 0 on Γ. (3.2)
• Correction step for the velocity and the pressure:

   v n+1 = v n+1 + v n+1 , p n+1 = p n - 1 ε (∇ • v n+1 ). (3.3)
Finally, the discrete problem resulting from the sum of the two steps, taking into account (3.3), becomes

3v n+1 -4v n + v n-1 2δt -µ ∆v n+1 + ∇p n+1 = f n+1 in Ω×]0, T [, (3.4) (εδt) p n+1 -p n δt + ∇ • v n+1 = 0 in Ω×]0, T [, (3.5) 
v n+1 = 0 on Γ×]0, T [. (3.6)
Remark 3.1. The initial condition on the velocity is v 0 = v 0 with v 0 = v 0 = v 0 and v 0 = 0. To start the second-order V P P scheme, we need v 1 and p 1 . For this reason, we first solve the V P P method using Euler scheme of first-order for a given v 0 instead of the BDF2 scheme. This permits to calculate v 1 and v 1 and consequently to find v 1 and p 1 .

3.1.

Well-posedness of the scheme.

Lemma 1. (Well-posedness of the prediction step) For given

f ∈ L 2 (Ω), v 0 , v 1 ∈ L 2 (Ω), p 1 ∈ L 2 0 (Ω)
given, and for all δt > 0, there exists at each time step a unique solution v n+1 ∈ H 1 0 (Ω) to the penalty-prediction step (3.1). Sketch of the proof. We take first the inner product of (3.1) with a test function φ in H 1 0 (Ω). It is an easy matter to prove with Lax-Milgram theorem that there exists a unique solution v n+1 to the prediction step (3.1) in the Hilbert space H 1 0 (Ω).

Lemma 2. (Well-posedness of the projection step)

For given f ∈ L 2 (Ω) and v n+1 ∈ H 1 0 (Ω), with 0 < ε ≤ 1 and δt > 0, there exists at each time step a unique solution v n+1 ∈ H 1 0 (Ω) to the penalty-projection step (3.2). Sketch of the proof. We take the inner product of (3.2) with a test function φ ∈ H 1 0 (Ω). Thanks to Lax-Milgram theorem, it is an easy matter to show that the projection step (3.2) has a unique solution v n+1 in the Hilbert space H 1 0 (Ω).

Lemma 3. (Global solvability of the

V P P method) For given f ∈ L 2 (Ω), v 0 , v 1 ∈ L 2 (Ω) and p 1 ∈ L 2 0 (Ω), for all 0 < δt ≤ T , 0 < ε ≤ 1 and for all n ∈ N * such that (n + 1)δt ≤ T , there exists a unique solution ( v n+1 , v n+1 , p n+1 ) in H 1 0 (Ω) × H 1 0 (Ω) × L 2 0
(Ω) to the V P P scheme such that:

3 v n+1 -4 v n + v n-1 2 δt -µ ∆v n+1 + ∇p n+1 = f n+1 in Ω, (3.7) ε(p n+1 -p n ) + ∇ • v n+1 = 0 in Ω. (3.8)

Proof.

The proof is made by induction for all n in N * such that (n + 1)δt ≤ T starting with the given initial conditions v 0 , v 1 in L 2 (Ω) d and p 1 in L 2 0 (Ω). Thanks to Lemma 1, there exists a unique solution v n+1 in H 1 0 (Ω) to the prediction step (3.1). Besides, according to Lemma 2, there exists a unique solution v n+1 in H 1 0 (Ω) to the projection step (3.2). Hence, we deduce that

v n+1 = v n+1 + v n+1 ∈ H 1 0 (Ω) with ∇ • v n+1 ∈ L 2 0 (Ω). Finally, since p 1 , ∇ • v n+1 and ∇ • v n+1 ∈ L 2 0 (Ω)
, it is easy to verify using the expression of the pressure (3.3), that p n+1 ∈ L 2 0 (Ω), which concludes the proof.

We are now in position to establish the stability of the scheme.

Stability. Theorem (Stability of the scheme)For

given f ∈ L 2 (0, T ; L 2 (Ω) d ), v 0 , v 1 ∈ L 2 (Ω) d and p 1 ∈ L 2 0 (Ω), there exists a positive constant C 0 = C 0 (Ω, T, µ, ||f || L 2 ((0,T )×Ω) , ||v 0 || 0 , ||v 1 || 0 , ||p 1 || 0 )
such that, for all 0 < δt ≤ T , for 0 < ε ≤ 1, the solution (v n+1 , p n+1 ) of the V P P method satisfies the following estimation for all n ∈ N * with (n + 1) δt ≤ T :

||v n+1 || 2 0 + ||2 v n+1 -v n || 2 0 + n ∑ k=1 ||δ 2 v k+1 || 2 0 + 2 µ n ∑ k=1 δt||∇v k+1 || 2 0 + 2 ε δt||p n+1 || 2 0 + 2 ε n ∑ k=1 δt||p k+1 -p k || 2 0 ≤ C 0 .
Proof.

Step 1:

Taking the inner product of (3.4) with 4δt v n+1 , applying Green formula and using the algebraic relation:

2(a k+1 , 3 a k+1 -4 a k + a k-1 ) = ||a k+1 || 2 + ||2 a k+1 -a k || 2 -||a k || 2 -||2 a k -a k-1 || 2 + ||δ 2 a k+1 || 2 , (3.9)
with δ 2 a k+1 = δ(δa k+1 ) and δa k+1 = a k+1 -a k , we obtain taking into account the fact that v n+1 = 0 on the whole boundary Γ:

||v n+1 || 2 0 -||v n || 2 0 + ||2 v n+1 -v n || 2 0 -||2 v n -v n-1 || 2 0 + ||δ 2 v n+1 || 2 0 + 4 µ δt ||∇v n+1 || 2 0 -4 δt (p n+1 , ∇ • v n+1 ) 0 = 4 δt (f n+1 , v n+1 ) 0 . (3.10)
Step 2: Taking the inner product of (3.5) with 4δtp n+1 and using the algebraic identity

(3.11) 2(a k+1 , a k+1 -b k+1 ) = ||a k+1 || 2 -||b k+1 || 2 + ||a k+1 -b k+1 || 2 ,
one gets:

2 ε δt ( ||p n+1 || 2 0 -||p n || 2 0 + ||p n+1 -p n || 2 0 ) + 4 δt (p n+1 , ∇ • v n+1 ) 0 = 0. (3.12)
Step 3: Summing (3.10) and (3.12), we obtain the following relation:

||v n+1 || 2 0 -||v n || 2 0 + ||2 v n+1 -v n || 2 0 -||2 v n -v n-1 || 2 0 + ||δ 2 v n+1 || 2 0 + 4 µ δt ||∇v n+1 || 2 0 + 2 ε δt ( ||p n+1 || 2 0 -||p n || 2 0 + ||p n+1 -p n || 2 0 ) (3.13) = 4 δt(f n+1 , v n+1 ) 0 .
The term in the right-hand side of the inequality above, which we denote by T 1, may be bounded using the Cauchy-Schwarz inequality, Young inequality and Poincaré inequality. We shall repeatedly use this standard trick hereafter without mentioning it anymore.

|T 1| ≤ 4 δt ||v n+1 || 0 ||f n+1 || 0 ≤ 2 µ δt ||∇v n+1 || 2 0 + 2 c p (Ω) 2 µ δt||f n+1 || 2 0 where c p (Ω) is the Poincaré constant.
Using this bound in (3.13), we get

||v n+1 || 2 0 -||v n || 2 0 + ||2 v n+1 -v n || 2 0 -||2 v n -v n-1 || 2 0 + ||δ 2 v n+1 || 2 0 + 2 µ δt ||∇v n+1 || 2 0 + 2 ε δt ( ||p n+1 || 2 0 -||p n || 2 0 + ||p n+1 -p n || 2 0 ) ≤ 2 c p (Ω) 2 µ δt||f n+1 || 2 0 .
We now write the previous inequality with the index k instead of n, and then sum it up for k = 1, ..., n. This yields, for all 0 < ε ≤ 1 and 0 < δt ≤ T , the following energy estimate for all n ∈ N * with (n + 1) δt ≤ T :

||v n+1 || 2 0 + ||2 v n+1 -v n || 2 0 + n ∑ k=1 ||δ 2 v k+1 || 2 0 + 2 µ n ∑ k=1 δt||∇v k+1 || 2 0 + 2 ε δt||p n+1 || 2 0 + 2 ε n ∑ k=1 δt ||p k+1 -p k || 2 0 ≤ ||v 1 || 2 0 + ||2 v 1 -v 0 || 2 0 + 2 ε δt ||p 1 || 2 0 + 2 c p (Ω) 2 µ n ∑ k=1 δt ||f k+1 || 2 0 ≤ C 0 (Ω, T, µ, ||f || L 2 ((0,T )×Ω) , ||v 0 || 0 , ||v 1 || 0 , ||p 1 || 0 ),
which concludes the proof.

Remark 3.3. The vector penalty-projection method is also stable for r > 0. We note that the V P P method with r ≥ 0 was also studied in [START_REF]Vector penalty-projection methods for the solution of unsteady incompressible flows[END_REF][START_REF]A new fast method to compute saddle-points in constrained optimization and applications[END_REF] using a first order scheme in time.

Error estimates

4.1. Notations and assumptions. Let v(t n+1 ) = v n+1 and p(t n+1 ) = p n+1 the exact solution of the Stokes problem at time t n+1 and let v n+1 and p n+1 the solution obtained by the vector penalty-projection method (3.1)- (3.3). Then, we define the velocity and the pressure error respectively:

e n+1 = v n+1 -v n+1 = v(t n+1 ) -v n+1 , π n+1 = p n+1 -p n+1 = p(t n+1 ) -p n+1 .
In addition, we assume that the solution of the continuous Stokes problem satisfies the following regularity conditions: (4.1)

∫ T 0 ∂ 3 v ∂t 3 2 0 dt ≤ M,
and, (4.2)

∫ T 0 ∂p ∂t 2 0 dt ≤ M.
We will use M as a generic positive constant which depends eventually on Ω, T , f , µ and v 0 .

Moreover, we need to assume that the initial errors are sufficiently controlled, i.e. there exists a constant c ′ > 0 such that

(4.3) ||e 1 || 2 0 + ||2 e 1 -e 0 || 2 0 + 2 ε δt ||π 1 || 2 0 ≤ c ′4 ,
and

(4.4) µ δt||∇e 1 || 2 0 ≤ c ′4 ,
Finally, we define R n+1 as:

R n+1 = 3v(t n+1 ) -4v(t n ) + v(t n-1 ) 2δt - ∂v(t n+1 ) ∂t .
Finally, throughout this paper, we will make use of the following theorems whose proofs can be found in [START_REF] Boyer | Mathematical tools for the study of the incompressible Navier-Stokes equations and related models[END_REF]. 

(4.6) ||u|| -1 ≤ c 2 ( ||∇u|| -1 + 1 |Ω| ∫ Ω u dx
) .

Basic error estimates.

Lemma 4. For given f and v 0 which are smooth enough and assuming that the solution (v, p) of the Stokes problem is smooth enough in space and time such that: v ∈ W 3,2 (0, T ; L 2 (Ω)) and p ∈ W 1,2 (0, T ; L 2 (Ω)), then, there exists a constant M (Ω, T, µ, f , v 0 ) > 0 such that the following estimations are satisfied for all n ∈ N * with (n + 1) δt ≤ T ,

(a) n ∑ k=1 δt||R k+1 || 2 0 ≤ M (Ω, T, µ, f , v 0 ) δt 4 , (b) n ∑ k=1 δt||δp k+1 || 2 0 ≤ M (Ω, T, µ, f , v 0 ) δt 2 , (c) n ∑ k=1 δt δp k+1 δt 2 0 ≤ M (Ω, T, µ, f , v 0 ).
Sketch of the Proof.

Note that we can reformulate R k+1 as a residual integral of Taylor series 2 2 2 2

R k+1 = 3v(t k+1 ) -4v(t k ) + v(t k-1 ) 2δt - ∂v(t k+1 ) ∂t = 4 2 δt ∫ t k+1 t k (t k -t)
∂ 3 v(t) ∂t 3 dt - 1 2 δt ∫ t k+1 t k-1 (t k-1 -t)
∂ 3 v(t) ∂t 3 dt.
Then, the proof of (a) can be concluded as done in [START_REF] Févrière | On the penalty-projection method for the Navier-Stokes equations with the MAC mesh[END_REF].

For the proof of (b), we proceed as follows.

δp k+1 = p(t k+1 ) -p(t k ) = ∫ t k+1 t k ∂p(t) ∂t dt, then ||δp k+1 || 2 0 ≤ δt ∫ t k+1 t k ∂p(t) ∂t 2 0 dt.
We obtain after summing it for k = 1, ..., n and using (4.2),

n ∑ k=1 δt||δp k+1 || 2 0 ≤ δt 2 ∫ T 0 ∂p(t) ∂t 2 0 dt ≤ M δt 2 ,
which concludes the proof of (b). The inequality (c) is a direct consequence of (b).

Theorem 4.3. Under Lemma 4 and the assumption (4.3) and for all 0 < ε ≤ 1, 0 < δt ≤ max(1, T ), there exists a positive constant

C 0 = C 0 (Ω, T, µ, ||f || L 2 ((0,T )×Ω) , ||e 0 || 0 , ||e 1 || 0 , ||π 1 || 0 )
such that the solution of the V P P method (3.1) - (3.3) verifies for all n ≥ 1 such that (n + 1) δt ≤ T the following:

(i) ||e n+1 || 2 0 + ||2 e n+1 -e n || 2 0 + n ∑ k=1 ||δ 2 e k+1 || 2 0 + 2 µ n ∑ k=1 δt||∇e k+1 || 2 0 +2 ε δt||π n+1 || 2 0 + ε n ∑ k=1 δt||π k+1 -π k || 2 0 ≤ C 0 (δt 4 + ε δt), (ii) n ∑ k=1 δt||∇ • e k+1 || 2 0 ≤ C 0 (δt 3 + ε) ε δt.
Proof. (i) Error estimate for the velocity.

Step 1:

We have for the Stokes equations at time t n+1

(4.7) 3v(t n+1 ) -4v(t n ) + v(t n-1 ) 2δt -µ ∆v(t n+1 ) + ∇p(t n+1 ) = f (t n+1 ) + R n+1 , with R n+1 = 3v(t n+1 ) -4v(t n ) + v(t n-1 ) 2δt - ∂v(t n+1 ) ∂t .
By subtracting (3.4) from (4.7), we get the following error equation

3 e n+1 -4 e n + e n-1 2δt -µ ∆e n+1 + ∇π n+1 = R n+1 . (4.8)
Taking the inner product of (4.8) with 4δt e n+1 and taking into account that e n+1 = 0 on Γ, we obtain:

||e n+1 || 2 0 -||e n || 2 0 + ||2 e n+1 -e n || 2 0 -||2 e n -e n-1 || 2 0 + ||δ 2 e n+1 || 2 0 + 4 µ δt ||∇e n+1 || 2 0 -4 δt(π n+1 , ∇ • e n+1 ) 0 = 4 δt(R n+1 , e n+1 ) 0 . (4.9)
Step 2: By adding +ε p(t n+1 ) and -ε p(t n+1 ) to the pressure equation (3.5) and by adding +ε p(t n ) and -ε p(t n ) to (3.5), we get

ε(π n+1 -π n ) + ∇ • e n+1 = ε δp n+1 , (4.10) where ∇ • v n+1 = -∇ • e n+1 and δp n+1 = p n+1 -p n .
Taking the inner product of (4.10) with 4δt π n+1 and using the identity (3.11), we obtain: (4.11) 2 ε δt

( ||π n+1 || 2 0 -||π n || 2 0 + ||π n+1 -π n || 2 0 ) +4 δt(π n+1 , ∇•e n+1 ) 0 = 4 ε δt (π n+1 , δp n+1 ) 0 .
Step 3: Summing (4.9) and (4.11) and writing π n+1 in the right hand side of (4.11) as

π n+1 = π n + (π n+1 -π n ), we obtain ||e n+1 || 2 0 -||e n || 2 0 + ||2 e n+1 -e n || 2 0 -||2 e n -e n-1 || 2 0 + ||δ 2 e n+1 || 2 0 + 4 µ δt||∇e n+1 || 2 0 + 2 ε δt ( ||π n+1 || 2 0 -||π n || 2 0 + ||π n+1 -π n || 2 0 ) (4.12) = 4 ε δt(π n , δp n+1 ) 0 + 4 ε δt(π n+1 -π n , δp n+1 ) 0 + 4 δt (R n+1 , e n+1 ) 0 ,
where the terms in the right-hand side of (4.12) are denoted respectively by T1, T2, T3; so that,

|T 1| ≤ 4 ε δt||π n || 0 ||δp n+1 || 0 ≤ 2 ε δt 2 ||π n || 2 0 + 2 ε δt 2 δp n+1 δt 2 0 , |T 2| ≤ 4 ε δt ||π n+1 -π n || 0 ||δp n+1 || 0 ≤ ε δt ||π n+1 -π n || 2 0 + 4 ε δt 3 δp n+1 δt 2 0 , |T 3| ≤ 4 δt||R n+1 || 0 ||e n+1 || 0 ≤ 2 c p (Ω) 2 µ δt||R n+1 || 2 0 + 2 µ δt||∇e n+1 || 2 0
with c p (Ω) the constant of Poincaré.

Step 4: Combining the bounds obtained above with (4.12) and replacing the index n by k and then summing for k = 0,...,n, yield the following energy estimate for all n ∈ N * such that (n + 1)δt ≤ T :

||e n+1 || 2 0 + ||2 e n+1 -e n || 2 0 + n ∑ k=1 ||δ 2 e k+1 || 2 0 + 2 µ n ∑ k=1 δt||∇e k+1 || 2 0 + 2 ε δt||π n+1 || 2 0 + ε n ∑ k=1 δt||π k+1 -π k || 2 0 ≤ 2 ε δt n ∑ k=1 δt||π k || 2 0 + ||e 1 || 2 0 + ||2 e 1 -e 0 || 2 0 + 2 ε δt||π 1 || 2 0 + 2 c p (Ω) 2 µ n ∑ k=1 δt||R k+1 || 2 0 + (2 ε δt + 4 ε δt 2 ) n ∑ k=1 δt δp k+1 δt 2 0 .
Finally, using assumption (4.3), Lemma 4 and applying the discrete Gronwall Lemma, we conclude the proof.

(ii) Error estimate for the velocity divergence.

Based on (4.10), the velocity divergence error can be written as follows:

∇ • e n+1 = ε δp n+1 -ε (π n+1 -π n ).
Thanks to Lemma 4 and to part (i) of Theorem 4.3, we get the desired estimation

for δt ≤ max(1, T ) n ∑ k=1 δt||∇ • e k+1 || 2 0 ≤ 2 M ε 2 δt 2 + 2 ε C 0 (δt 4 + ε δt) ≤ C 0 (Ω, T, µ, ||f || L 2 ((0,T )×Ω) , ||e 0 || 0 , ||e 1 || 0 , ||π 1 || 0 ) (δt 3 + ε) ε δt.
which concludes the proof.

Remark 4.4 (Convergence rate and splitting error of the velocity approximation). Theorem 4.3 (part (i))

shows that the second-order vector penaltyprojection method yields optimal error estimates in time for the velocity; particularly, we obtain a convergence rate of O(δt 2 ) for the velocity in l ∞ (L 2 (Ω)). The same result for the velocity (in l ∞ -norm) was already obtained in [START_REF] Févrière | On the penalty-projection method for the Navier-Stokes equations with the MAC mesh[END_REF] with the second-order scalar penalty-projection method and also in [START_REF]On the error estimates for the rotational pressure-correction projection methods[END_REF][START_REF] Guermond | An overview of projection methods for incompressible flows[END_REF] with the incremental and rotational pressure-correction methods (in l 2 -norm).

Indeed, the interesting result is that the velocity splitting error is of order

O( √ ε δt) in l ∞ (L 2 (Ω)) ∩ l 2 (H 1 (Ω)).
Practically speaking, if we choose the penalty parameter ε equal to δt 5 , for example, the splitting error of the velocity will be of order O(δt 3 ) and hence, the second-order accuracy in time for the velocity is provided. Now, in order to derive an error estimate for the pressure approximation, we need the following lemma:

Lemma 5. n ∑ k=1 3 e k+1 -4 e k + e k-1 2 0 ≤ C 0 (Ω, T, µ, ||f || L 2 ((0,T )×Ω) , e 0 , e 1 , ||∇e 1 || 0 , ||π 1 || 0 ) (δt 4 + ε δt).
Sketch of the Proof.

Step 1:

After rewriting 3 e n+1 -4 e n + e n-1 in (4.8) as: 3 e n+1 -4 e n + e n-1 = (e n+1 -2 e n + e n-1 ) + 2 (e n+1 -e n ) = δ 2 e n+1 + 2 (e n+1 -e n ), (4.13) we take the inner product of (4.8) with 2 δt(e n+1 -e n ). We derive

(δ 2 e n+1 , e n+1 -e n ) 0 + 2 ||e n+1 -e n || 2 0 + µ δt(||∇e n+1 || 2 0 -||∇e n || 2 0 + ||∇(e n+1 -e n )|| 2 0 ) -2 δt(π n+1 , ∇ • (e n+1 -e n )) 0 = 2 δt(R n+1 , e n+1 -e n ) 0 . (4.14)
Step 2: Now, we write Eq. (4.10) at time t n+1 and t n respectively and we subtract after that the resulted equations. Hence, it yields

ε δ 2 π n+1 + ∇ • (e n+1 -e n ) = ε δ 2 p n+1 where δ 2 π n+1 = π n+1 -2π n + π n-1 .
Taking the inner product of the previous equation with 2 δt π n+1 and rewriting δ 2 π n+1 as:

δ 2 π n+1 = (3 π n+1 -4 π n + π n-1 ) -2(π n+1 -π n ), it yields ε δt ( ||π n+1 || 2 0 -||π n || 2 0 + ||2 π n+1 -π n || 2 0 -||2 π n -π n-1 || 2 0 + ||δ 2 π n+1 || 2 0 ) -2 ε δt ( ||π n+1 || 2 0 -||π n || 2 0 + ||π n+1 -π n || 2 0 ) +2 δt(π n+1 , ∇ • (e n+1 -e n )) 0 = 2 ε δt ( π n+1 , δ 2 p n+1 ) 0 . (4.15)
Step 3: Summing (4.14) and (4.15), we find after writing π n+1 in the right-hand side of (4.15) as

π n+1 = π n + (π n+1 -π n ): 2 ||e n+1 -e n || 2 0 + µ δt ( ||∇e n+1 || 2 0 -||∇e n || 2 0 + ||∇(e n+1 -e n )|| 2 0 ) + ε δt(||π n+1 || 2 0 -||π n || 2 0 ) + ε δt ( ||2 π n+1 -π n || 2 0 -||2 π n -π n-1 || 2 0 + ||δ 2 π n+1 || 2 0 ) = 2 ε δt (||π n+1 || 2 0 -||π n || 2 0 ) + 2 ε δt ||π n+1 -π n || 2 0 (4.16) + 2 δt(R n+1 , e n+1 -e n ) -(δ 2 e n+1 , e n+1 -e n ) 0 + 2 ε δt 2 ( π n , δ 2 p n+1 δt ) 0 + 2 ε δt 2 ( π n+1 -π n , δ 2 p n+1 δt ) 0 ,
where we denote by T 1, T 2, T 3, T 4 the last four terms in the right-hand side of (4.16), so that,

|T 1| ≤ 2 δt||R n+1 || 0 ||e n+1 -e n || 0 ≤ 2 δt 2 ||R n+1 || 2 0 + 1 2 ||e n+1 -e n || 2 0 , |T 2| ≤ ||δ 2 e n+1 || 0 ||e n+1 -e n || 0 ≤ 1 2 ||δ 2 e n+1 || 2 0 + 1 2 ||e n+1 -e n || 2 0 , |T 3| ≤ 2 ε δt 2 ||π n || 0 δ 2 p n+1 δt 0 ≤ ε δt 2 ||π n || 2 0 + ε δt 2 δ 2 p n+1 δt 2 0 , |T 4| ≤ 2 ε δt 2 ||π n+1 -π n || 0 δ 2 p n+1 δt 0 ≤ ε δt 2 ||π n+1 -π n || 2 0 + ε δt 2 δ 2 p n+1 δt 2 0 .
Combining the above inequalities with (4.16). Then, replace the index n by k in the resulting inequality and sum it for k = 1 to n. After that, apply the discrete Gronwall lemma by taking into account assumptions (4.3) 

+ ε δt ||π n+1 || 2 0 + ε δt ||2 π n+1 -π n || 2 0 + ε δt n ∑ k=1 ||δ 2 π k+1 || 2 0 ≤ C(Ω, T, µ, ||f || L 2 ((0,T )×Ω) , e 0 , e 1 , ||∇e 1 || 0 , ||π 1 || 0 ) (δt 4 + ε δt). (4.17)
Since we have 3 e n+1 -4 e n + e n-1 2 0 ≤ 2(||δ 2 e n+1 || 2 0 + 4||e n+1 -e n || 2 0 ), it is an easy matter to show (thanks to (4.17) and Theorem 4.3) that

n ∑ k=1 3 e k+1 -4 e k + e k-1 2 0 ≤ n ∑ k=1 2(||δ 2 e k+1 || 2 0 + 4||e k+1 -e n || 2 0 ) ≤ C 0 (Ω, T, µ, ||f || L 2 ((0,T )×Ω) , e 0 , e 1 , ||∇e 1 || 0 , ||π 1 || 0 ) (δt 4 + ε δt).
Now, we can get the approximation for the pressure.

Theorem 4.5. Under the assumptions of Theorem 4.3 and using Lemma 5 and for all 0 < ε ≤ 1, 0 < δt ≤ max(1, T ), there exists a positive constant

C 0 = C 0 (Ω, T, µ, ||f || L 2 ((0,T )×Ω) , ||e 0 || 0 , ||e 1 || 0 , ||π 1 || 0 )
such that the solution of the V P P method (3.1) - (3.3) verifies for all n ≥ 1 with (n + 1) δt ≤ T the following inequality:

n ∑ k=1 δt||π k+1 || 2 0 ≤ C 0 (δt 3 + ε).
Sketch of the Proof.

Step 1:

We rearrange (4.8) as:

∇π n+1 = R n+1 + µ ∆e n+1 - ( 3 e n+1 -4 e n + e n-1 2 δt
) .

Using respectively both inequalities (a

-b) 2 ≤ 2(a 2 + b 2 ) and (a + b) 2 ≤ 2(a 2 + b 2 ), owing to Sobolev injection L 2 (Ω) → H -1
(Ω) and to the injection of the Laplacian ∆: H 1 (Ω) -→ H -1 (Ω), one gets: .

||∇π n+1 || 2 -1 ≤ 4||R n+1 || 2 0 + 4 µ 2 ||e n+1 || 2 1 + 2
Step 2: Using Neçás inequality, there exists a constant C > 0 such that (4. [START_REF] Fortin | Augmented lagrangians: Application to the numerical solution of boundary value problems[END_REF])

||π n+1 || 0 ≤ C ||∇π n+1 || -1 .
Finally, using (4.18) and thanks to Lemma 4, Lemma 5 and part (i) of Theorem 4.3, we derive the desired estimation.

Improvement of the basic error estimates.

In order to improve the basic error estimates for the velocity divergence and the pressure, the critical step here consists in establishing estimates for the time increment. First, we impose the following regularities on the continuous Stokes problem (4.20)

∂ 3 v(t) ∂t 3 ∈ L 2 (0, T ; L 2 (Ω))
, and

(4.21) ∂ 2 p(t) ∂t 2 ∈ L 2 (0, T ; L 2 (Ω)
). Then, we define the increment error in time

δR n+1 = R n+1 -R n , δ 2 p n+1 = δp n+1 -δp n , δe n+1 = e n+1 -e n , δπ n+1 = π n+1 -π n .
Finally, we suppose that the initial errors are well-controlled as follows, i.e, there exists a constant c ′ > 0 such that

(4.22) ||e 1 || 2 0 + ||2 e 1 -e 0 || 2 0 + 2 ε δt ||π 1 || 2 0 ≤ c ′6 , (4.23) ||δe 1 || 2 0 ≤ c ′6 , Lemma 6.
For f and v 0 given and smooth enough, we suppose that the solution (v, p) of the Stokes problem is smooth enough in space and time such that:

v ∈ W 3,2 (0, T ; L 2 (Ω)) and p ∈ W 2,2 (0, T ; L 2 (Ω)). Then, there exists a constant M (Ω, T, f , v 0 ) > 0 such that (a) n ∑ k=2 δt||δR k+1 || 2 0 ≤ M (Ω, T, f , v 0 ) δt 6 , (b) n ∑ k=1 δt||δ 2 p k+1 || 2 0 ≤ M (Ω, T, f , v 0 ) δt 4 , (c) n ∑ k=1 δt δ 2 p k+1 δt 2 0 ≤ M (Ω, T, f , v 0 ) δt 2 .
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Sketch of the proof.

We can reformulate R k+1 and R k as the residual integral of the Taylor series. Then, thanks to the regularity hypothesis imposed on the velocity, we obtain as in [START_REF]On the error estimates for the rotational pressure-correction projection methods[END_REF][START_REF] Guermond | Error analysis of pressure-correction schemes for the time-dependent Stokes equations with open boundary conditions[END_REF]:

n ∑ k=2 δt||δR k+1 || 2 0 = n ∑ k=2 δt||R k+1 -R k || 2 0 ≤ M δt 6 ,
which concludes the proof of (a).

For the proof of (b), we note that δ 2 p k+1 is defined as follows:

δ 2 p k+1 = δ(δp k+1 ) = δ(p(t k+1 ) -p(t k )) = p(t k+1 ) -2 p(t k ) + p(t k-1 ).
By reformulating δ 2 p k+1 as the residual integral of the Taylor series, it yields

||p(t k+1 ) -2p(t k ) + p(t k-1 )|| 2 0 = ∫ t k t k-1 (t -t k-1 ) ∂ 2 p(t) ∂t 2 dt + ∫ t k+1 t k (t k+1 -t) ∂ 2 p(t) ∂t 2 dt 2 0 ≤ 2 ∫ t k t k-1 (t -t k-1 ) 2 dt ∫ t k t k-1 ∂ 2 p(t) ∂t 2 2 0 dt +2 ∫ t k+1 t k (t k+1 -t) 2 dt ∫ t k+1 t k ∂ 2 p(t) ∂t 2 2 0 dt.
Therefore, using the assumption (4.21), we deduce

n ∑ k=1 δt||δ 2 p k+1 || 2 0 ≤ M δt 4 , which concludes (b).
Finally, the proof of (c) is deduced easily from (b).

Lemma 7. Provided that

∂ 3 v(t) ∂t 3 ∈ L ∞ (0, T ; L 2 (Ω)) and ∂ 2 p(t) ∂t 2 ∈ L ∞ (0, T ; L 2 (Ω)
) and using both assumptions (4.22) and (4.23) and Lemma 6 with 0 < ε ≤ 1, 0 < δt ≤ max(1, T ), then, there exists a positive constant

C 0 = C 0 ( Ω, T, µ, ||f || L 2 ((0,T )×Ω) , ||e 0 || 0 , ||e 1 || 0 , ||δe 1 || 0 , ||π 1 || 0 )
such that for all n ≥ 2,

||δe n+1 || 2 0 + ||2 δe n+1 -δe n || 2 0 + n ∑ k=2 ||δ 2 (δe k+1 )|| 2 0 + 2 µ n ∑ k=2 δt||∇(δe k+1 )|| 2 0 +2 ε δt||δπ n+1 || 2 0 + ε n ∑ k=2 δt||δπ k+1 -δπ k || 2 0 ≤ C 0 (δt 6 + ε δt 3 ).
Sketch of the Proof. The proof of this lemma follows the same principle adopted in the proof of Theorem 4.3 (part (i)). First, we form the equation which governs the error increments δe n+1 by subtracting the error equation for the velocity at two consecutive discrete times. We do the same thing with the error equation for the pressure in order to form the equation governing the error increments δπ n+1 . Secondly, we take the scalar product of of the equation which has been obtained by δe n+1 and δπ n+1 respectively. Then, we proceed as for part (i) of the proof of Theorem 4.3 with the necessary modifications, i.e, by replacing: e n+1 par δe n+1 , π n+1 by δπ n+1 , R n+1 by δR n+1 and δp n+1 by δ 2 p n+1 .

Owing to assumptions (4.22) and (4.23), we can show that (4.24)

||δe 2 || 2 0 + ||2 δe 2 -δe 1 || 2 0 + 2 ε δt||δπ 2 || 2 0 ≤ c ′6 + ε δt 3
). Finally, by using Lemma 6, the majoration (4.24) and by applying the discrete Gronwall lemma, we get the desired estimate.

Corollary 1. Based on Lemma 4 and Lemma 7 and for all 0 < ε ≤ 1, 0 < δt ≤ max(1, T ), there exists a positive constant

C 0 = C 0 ( Ω, T, µ, ||f || L 2 ((0,T )×Ω) , ||e 0 || 0 , ||e 1 || 0 , ||δe 1 || 0 , ||π 1 || 0 )
such that:

(i) n ∑ k=1 δt||∇ • e k+1 || 2 0 ≤ C 0 (δt 3 + ε)ε δt 2 . (ii) n ∑ k=1 δt||π k+1 || 2 0 ≤ C 0 (δt 4 + ε δt).

Sketch of the Proof (i). Error estimate for the velocity divergence.

Using (4.10), we have

∇ • e n+1 = ε δp n+1 -ε (π n+1 -π n ).
Therefore, Lemma 4 and Lemma 7 allow to conclude the proof as follows

n ∑ k=1 δt||∇ • e k+1 || 2 0 ≤ 2 ε 2 δt 2 n ∑ k=1 δt δp k+1 δt 2 0 + ε n ∑ k=1 2 ε δt||δπ k+1 || 2 0 ≤ C 0 (δt 3 + ε) ε δt 2 .
Remark 4.6. The error analysis carried out here shows that the splitting error of the velocity divergence is of order O(ε δt) in the norm l 2 (L 2 (Ω)).

(ii). Error estimate for the pressure.

The key of the improvement of the approximation of the pressure lies in writing 3 e n+1 -4 e n + e n-1 as the velocity error increment in time, i.e. :

3 e n+1 -4 e n + e n-1 = 3(e n+1 -e n ) -(e n -e n-1 ) = 3δe n+1 -δe n . Thus, ||3 e n+1 -4 e n + e n-1 || 2 0 ≤ 2 ( 9||e n+1 -e n || 2 0 + ||e n -e n-1 || 2 0 ) = 2 ( 9||δe n+1 || 2 0 + ||δe n || 2 0
) .

Hence, thanks to Lemma 7, we infer

(4.25) n ∑ k=1 δt||3 e k+1 -4 e k + e k-1 || 2 0 ≤ 20 n ∑ k=1 δt||δe k+1 || 2 0 ≤ C 0 (δt 5 + ε δt 2 ).
Finally, thanks to Neçás inequality and using inequality (4.25), Lemma 4 and Theorem 4.3, the desired estimate of the pressure is concluded for δt ≤ max(1, T ).

Remark 4.7 (Another improvement of the splitting errors). It is worth mentioning that the splitting error of the velocity can be also improved to reach the order of O(

√ ε δt 3 + ε 2 δt 3 2 ) in l ∞ (L 2 (Ω)) ∩ l 2 (H 1 (Ω)).
The key improvement is to treat directly the term 4 ε δt (π n+1 , δp n+1 ) 0 in (4.11) by using the Neçás lemma and the equation (4.8). Note that this improvement will consequently affect the splitting errors of Corollary 1 and improve them. Hence, it is no more useful to use the discrete Gronwall inequality and the resulting splitting error of the velocity in Theorem 4.3.

Remark 4.8 (Convergence rate and splitting error of the pressure approximation).

There exists in the literature a large number of works dedicated to theoretical investigations on the convergence rate of the pressure. In fact, the standard form of the second-order pressure-correction scheme guarantees a convergence rate only of order 1 for the pressure in l ∞ (L 2 (Ω)). The rotational form of this method improves the convergence rate to 3/2 in l 2 (L 2 (Ω)). Note also that the second-order velocity-correction method in its rotational form [START_REF]Velocity-correction methods for incompressible flows[END_REF] as well as the scalar penalty-projection method [START_REF] Févrière | On the penalty-projection method for the Navier-Stokes equations with the MAC mesh[END_REF] provide also a convergence rate of order 3/2 in l 2 (L 2 (Ω)). To the best of our knowledge, this is the best possible convergence rate established for the pressure approximation.

However, the result in part (ii) of Corollary 1 deserves attention since it shows that the second-order vector penalty-projection method yields optimal error estimates in time for the pressure. In fact, the temporal convergence rate of the pressure obtained here is of order 2 in l 2 (L 2 (Ω)) and this is because, contrary to the usual projection methods, there is no artificial Neumann boundary condition for the pressure, which, if it exists, will thus limit the accuracy of the scheme.

Finally, we notice that the pressure splitting error is of order O( √ ε δt) in l 2 (L 2 (Ω)) which is a remarkable result because the splitting error can be made as small as desired (with ε small enough) until machine precision and thus completely negligible with respect to the time error of the scheme, i.e, O(δt 2 ) in the present case.

Numerical experiments

In this section, we give some numerical results in order to verify the theoretical results obtained in Section 4. First, we examine the accuracy of the method on a standard Navier-Stokes benchmark, namely the computation of Taylor-Green vortices. Second, we test the time accuracy of the velocity and the pressure in the case of the Stokes flow with Dirichlet boundary conditions. In addition, we check the L 2 -norm of the velocity divergence. Finally, we conduct a comparative and qualitative study between the V P P method presented in this paper and some pressure-correction schemes often used in the literature for the solution of nonstationary incompressible flow problems (see, e.g., [START_REF] Févrière | On the penalty-projection method for the Navier-Stokes equations with the MAC mesh[END_REF][START_REF] Guermond | An overview of projection methods for incompressible flows[END_REF]).

Before presenting the numerical experiments, we note that the simulations presented are performed with a formally second-order scheme in time, i.e., the secondorder backward difference formula (BDF2) to march in time and the second-order Richardson's extrapolation to extrapolate the pressure. Concerning the spatial discretization, the V P P method is implemented with a finite volume solver on the classical Marker and Cells grid (MAC mesh) of Harlow and Welch [START_REF] Harlow | Numerical calculation of time dependent viscous incompressible flow of fluid with free surface[END_REF]. In our implementations, pressure unknowns are calculated at the cell-center and velocity components at mid-faces. Additionally, the method is initialized with a first time step performed with a standard backward Euler scheme. Finally, in order to solve the symmetric linear systems obtained in the prediction and projection steps, we are running the Conjugate Gradient (CG) method with the zero-order Incomplete Cholesky (IC(0)) as a preconditioner. The stopping criterion for the iterative (CG) method is chosen such that ||res|| 2 ≤ 10 -6 , where res denotes the residuals at the current CG iteration. 5.1. Taylor-Green vortex. As a first benchmark for the proposed method, the non-dimensional unsteady incompressible nonlinear Navier-Stokes equations are solved on a two-dimensional square domain for the Taylor-Green vortex decaying problem. In fluid dynamics, the Taylor-Green vortex is a two-dimensional, unsteady flow of a decaying vortex which has exactly the same closed form solution of incompressible Navier-Stokes equations in Cartesian coordinates. We adjust the source term f in such a way that the exact solutions of the nonlinear Navier-Stokes problem for velocity and pressure become 4µt).

The chosen computational domain is the square ]0, 1[×]0, 1[ and the velocity is imposed on the whole boundary. The viscosity is set to µ = 0.01 where µ = 1 Re . We vary the time step δt to investigate the temporal accuracy. We choose δt sufficiently small to satisfy the usual CFL condition.

Fig. 1 shows the difference between the numerical and the analytical solution at T = 2 measured in the L 2 -norm for the velocity and for the pressure. These curves are drawn for the 128 × 128 mesh with r = 10 -2 and ε=10 -10 . In both cases, the error decreases with the time step. We observe that the convergence rate is of order 1.85 for the velocity and the pressure. Note that the saturations observed for very small time steps are due to the approximation error in space which becomes dominant for very small time steps.

Moreover, we compute the L 2 -norm of the velocity divergence as a function of ε. We repeat this test for two different values of Reynolds number: Re = 1 and Re = 100. The time step δt is set to 5 × 10 -1 . The results are illustrated in Fig. 2 at the final time T=2. Both curves show that when ε tends to 0, the L 2 -norm of the velocity divergence tends also to 0. For example, taking ε = 10 -4 with Re = 1, the value of the L 2 -norm of velocity divergence is approximately equal to 10 -6 . It is equal to 10 -5 for Re = 100. Moreover, we observe that the velocity divergence is vanishing approximately with an order of O(ε δt). Finally, we notice that the values of the L 2 -norm of velocity divergence for Re = 1 seem smaller than those computed for Re = 100. v(x, y, t) = (sin(x + t) sin(y + t), cos(x + t) cos(y + t)), p(x, y, t) = cos(x -y + t), This test case is the same studied in [START_REF] Févrière | On the penalty-projection method for the Navier-Stokes equations with the MAC mesh[END_REF][START_REF] Jobelin | A finite element penaltyprojection method for incompressible flows[END_REF]. In order to check the accuracy in time, we plot the errors of the velocity and the pressure (or the pressure gradient) in the L 2 -norm for different values of the augmentation parameter r ranging between 0 and 1 at time T = 2. In the computations reported herein, the mesh size h is equal to 1/128 so that the spatial discretization errors are negligible compared with the time discretization errors. The time steps tested are in the range 10 -3 ≤ δt ≤ 10 0 . We choose a penalty parameter small enough: ε = 10 -10 .

First, we present in Fig. 3 and Fig. 4 the L 2 -norm of the error of the velocity and the pressure gradient respectively as a function of the time step while choosing the augmentation parameter r equal 0. We observe in Fig. 3 that the convergence rate in time for the velocity is clearly of order 2, as predicted by Theorem 4.3. In addition, a convergence order of 2 is observed for the pressure gradient in Fig. 4. This result is in agreement with the error estimates established in Corollary 1.

Indeed, the vector penalty-projection method with three different nonzero values of r: 10 -4 , 10 -2 and 1 gives for the velocity and the pressure the same temporal convergence rate as the case of r = 0, i.e, we obtain a convergence order of 2 in L 2 -norm for both velocity and pressure (see Fig. 5 and Fig. 6 

respectively).

As a conclusion on the convergence rate in time in presence of Dirichlet conditions on the boundaries, the V P P method improves the order of pressure from O(δt) to O(δt 2 ) compared to the standard incremental pressure-correction scheme [START_REF] Guermond | An overview of projection methods for incompressible flows[END_REF]. The V P P method provides also a higher-order than the rotational incremental pressurecorrection (order of 3/2 in L ∞ -norm) and the scalar penalty-projection scheme [START_REF] Févrière | On the penalty-projection method for the Navier-Stokes equations with the MAC mesh[END_REF]. However, the convergence rate of order 2 for the velocity remains the same as in the standard and rotational pressure-correction methods [START_REF] Guermond | An overview of projection methods for incompressible flows[END_REF] and also in the scalar penalty-projection scheme [START_REF] Févrière | On the penalty-projection method for the Navier-Stokes equations with the MAC mesh[END_REF].

Besides, we plot in Fig. 7 the L 2 -norm of the velocity divergence as a function of the penalty parameter ε. We fix δt at 10 -1 and the augmentation parameter r at 0. The curve shows that when the penalty parameter is chosen small enough and tends to 0, the velocity divergence decreases and tends also to 0. Additionally, we observe that the L 2 -norm of the velocity divergence vanishes roughly as O(εδt) with ε sufficiently small. Finally, Fig. 8 illustrates the L 2 -norm of the velocity divergence as a function of the time step δt with ε = 10 -6 . We notice that the velocity divergence is approximately of order O(εδt) with a penalty parameter ε small enough. We repeat in Fig. 9 and Fig. 10 the same tests with an augmentation parameter r equal to 10 -2 . Again, we observe that the L 2 -norm of the velocity divergence vanishes as O(εδt).

Concluding remarks

In this article, we have analyzed the second-order vector penalty-projection method for the incompressible Stokes problem with Dirichlet conditions enforced on the entire boundary. Our conclusions are twofold.

First, we have shown the stability of the scheme using BDF2 to discretize in time. Moreover, we have shown that, while the Dirichlet boundary conditions imposed on the velocity degenerate into a nonrealistic Neumann boundary condition for the pressure in the case of the usual projection methods [START_REF] Guermond | An overview of projection methods for incompressible flows[END_REF], the second-order vector penalty-projection method leads to optimal error estimates since it preserves the original Dirichlet conditions. Consequently, the pressure approximation is no longer plagued by an artificial Neumann boundary condition. As a result, the V P P method provides optimal temporal convergence of order 2 theoretically as well as numerically; more precisely, the vector penalty-projection method yields O(δt 2 ) accuracy for both the velocity and the pressure in the norm of l ∞ (L 2 (Ω)) and l 2 (L 2 (Ω)) respectively. The counterpart in this method is that the divergence of the velocity at each time step is not exactly zero, as for the projection methods (at least in the semi-discrete setting in time), since the V P P velocity correction step is proved to be an approximate divergence-free projection [START_REF]Fast discrete Helmholtz-Hodge decompositions in bounded domains[END_REF][START_REF] Ph | Analysis for the fast vector penalty-projection solver of incompressible multiphase Navier-Stokes/brinkman problems[END_REF]. However, it is not really a drawback since the velocity divergence is in practice of order O(εδt) with a penalty parameter ε taken as small as desired up to machine precision.

Second, we have shown that this family of methods opens the way to the splitting methods with an order of time convergence greater than 2 since the splitting error for velocity and pressure varies as O(ε) which can be made negligible with respect to the consistency error of higher-order schemes when ε is chosen sufficiently small.
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 21 Figure 1. Taylor-Green vortex (Nonlinear case) -Error on the velocity and the pressure in L 2 -norm vs δt for Re = 100, r = 10 -2 and ε=10 -10 .

Figure 2 .

 2 Figure 2. Taylor-Green vortex (Nonlinear case) -Velocity divergence L 2 -norm vs ε at T = 2 with 1/h = 128, for Re = 1 and Re = 100 respectively.

Figure 3 .

 3 Figure 3. Stokes problem -Error on the velocity in L 2 -norm vs δt at T = 2, mesh size 1/h = 128, ε = 10 -10 and r = 0.

Figure 4 .

 4 Figure 4. Stokes problem -Error on the gradient pressure in L 2norm vs δt at T = 2, mesh size 1/h = 128, ε = 10 -10 and r = 0.

Figure 5 .

 5 Figure 5. Stokes problem -Error on the velocity in L 2 -norm vs δt at T = 2, mesh size 1/h = 128 and ε = 10 -10 .

Figure 6 .

 6 Figure 6. Stokes problem -Error on the pressure in L 2 -norm vs δt at T = 2, mesh size 1/h = 128 and ε = 10 -10 .

Figure 7 .

 7 Figure 7. Stokes problem -Velocity divergence L 2 -norm vs ε at T=2, mesh size 1/h = 128 and r = 0.

Figure 8 .

 8 Figure 8. Stokes problem -Velocity divergence L 2 -norm vs δt at T=2, mesh size 1/h = 128, ε=10 -6 and r = 0.

Figure 9 .

 9 Figure 9. Stokes problem -Velocity divergence L 2 -norm versus ε at T=2, mesh size 1/h = 128 and r = 10 -2 .

Figure 10 .

 10 Figure 10. Stokes problem -Velocity divergence L 2 -norm versus time step at T=2, mesh size 1/h = 128 and ε=10 -6 .
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