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ON THE ERROR ESTIMATES OF THE VECTOR

PENALTY-PROJECTION METHODS: SECOND-ORDER SCHEME

PHILIPPE ANGOT AND RIMA CHEAYTOU

Abstract. In this paper, we study the vector penalty-projection method for
incompressible unsteady Stokes equations with Dirichlet boundary conditions.

The time derivative is approximated by the backward difference formula of
second-order scheme (BDF2), namely Gear’s scheme, whereas the approxi-
mation in space is performed by the finite volume scheme on a Marker And

Cell (MAC) grid. After proving the stability of the method, we show that it
yields second-error estimates in the time step for both velocity and pressure
in the norm of l∞(L2(Ω)) and l2(L2(Ω)) respectively. Besides, we show that

the splitting error for both velocity and pressure is of order O(
√
ε δt) where

ε is a penalty parameter chosen as small as desired and δt is the time step.
Numerical results in agreement with the theoretical study are also provided.

1. Introduction

For T > 0, we consider the time-dependent incompressible Navier-Stokes equa-
tions in the primitive variables on a finite time interval [0,T]:

ρ

(
∂v

∂t
+ (v · ∇)v

)
− µ∆v +∇p = f in Ω×]0, T [,(1.1)

∇ · v = 0 in Ω×]0, T [,(1.2)

v = 0 on Γ×]0, T [,(1.3)

where Ω ⊂ Rd (d = 2 or 3 in practice) is an open bounded and connected domain
with a Lipschitz continuous boundary Γ = ∂Ω. The generic point in Ω is denoted by
x. We denote by v=(u, v)T the fluid velocity with initial value v(t = 0) = v0, p the
pressure field, ρ the fluid density (the density is taken equal to 1), µ the dynamic
viscosity (here, µ = 1/Re with Re a Reynolds number) and f the external body
forces. We impose homogeneous Dirichlet condition (1.3) on the whole boundary
Γ for the sake of simplicity. Finally, the reader will keep in mind that bold letters
such as v, f, etc., indicate vector valued quantities.

One of the main numerical difficulties in solving ((1.1)-(1.3)) arises from the
coupling between the velocity and the pressure by the incompressibility constraint
at each time step. Undoubtedly, the most popular way to overcome this difficulty
consists of using the projection methods introduced initially by Chorin [15] and
Temam [43] in the late sixties. Projection methods are fractional-step schemes
which consist in splitting the time evolution into two sub-steps. In the first step,
an intermediate velocity, that does not satisfy the incompressibility constraint, is
computed by solving an advection diffusion problem. In the second step, according
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to the Helmholtz-Hodge decomposition [17], the intermediate velocity is projected
to the space of the divergence-free vector fields to get the pressure and the corrected
velocity that satisfies the incompressibility condition. Projection methods gained
popularity due to the fact that the computations of the velocity and the pressure are
decoupled by the two-step predictor-corrector procedure which significantly reduces
the computational cost. However, Chorin-Temam’s projection method suffers from
an inconsistent Neumann boundary condition satisfied by the pressure approxi-
mation. This artificial condition induces a loss of the temporal accuracy in the
solution; hence the numerical scheme is not satisfactory since its splitting error is
irreducibly of O(δt) [39] where δt is the time step. Over the years, several vari-
ants of projection methods have been developed to improve the temporal accuracy
among which are pressure-correction methods [20, 32, 45, 21, 26] (incremental or
rotational form), velocity-correction methods [36, 25, 37] (incremental or rotational
form), consistent splitting scheme [24, 42, 31], scalar penalty-projection methods
[40, 30, 18] and more recently vector penalty-projection methods [3, 1]. Hereafter
we present a short review on some theoretical results obtained from some of these
variants in the presence of Dirichlet boundary conditions.

Incremental pressure-correction methods [20, 32] were widely used in practice and
have been rigorously analyzed by E and Li [16] and Shen [41] in the semi-discrete
case and by Guermond [21] in the fully discrete case. Second-order accuracy in
time on the velocity in L2-norm has been proved but only O(δt) estimates on the
pressure approximation are available due to the presence of a numerical boundary
layer.

Timmermans et al. [45] proposed a modified version of the incremental pressure-
correction methods, referred by Guermond and Shen in [23, 26] as incremental
pressure-correction methods in rotational form. Brown, Cortez and Minion [12]
showed, using normal mode analysis in a periodic channel, that the pressure ap-
proximation in this particular case is second-order accurate. In this regard, a
rigorous normal mode error analysis was carried out by Pyo and Shen [38] for two
second-order projection type methods. Finally, Guermond and Shen showed in [26]
that the best possible convergence rate for pressure approximation in the L2-norm
is of order 3/2 in general domains.

Another class of projection methods namely velocity correction methods has been
introduced and rigorously analyzed (in its incremental and rotational form) by
Guermond and Shen [25]. Error estimates lead to a second-order accuracy for the
velocity in the L2-norm for both versions. In addition, they proved better error
estimates for the rotational form, i.e., O(δt3/2) in the H1-norm of the velocity and
the L2-norm of the pressure (see also [28] for the fully discrete case). It was also
shown that this family of projection methods can be related to a set of methods in
[36, 33].

For more details regarding both numerical and theoretical results of different
projection methods, the reader can refer to the complete review of Guermond et
al. [27].

Moreover, the scalar penalty projection method is another variant of projection
methods, proposed and numerically investigated by Jobelin et al. [30]. It was
also theoretically analyzed in [10] and verified later by Févrière et al. [18] using a
spatial discretization by finite volumes on staggered grids. The basic idea behind
the development of this scheme originated from a paper of Shen in 1992 [40] and
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consists in adding to the velocity prediction step a penalty term similar to the aug-
mentation term used in the so-called Augmented Lagrangian method (e.g. [19]),
which constrains the divergence of the intermediate velocity. The same idea has
been exploited independently later, in 1999, by Caltagirone and Breil [13] with a
different projection step called by the authors ”vector projection step”. From the
point of view of convergence properties, the authors show in [10] that for low value
of the penalty parameter r, splitting error estimates of the so-called rotational pro-
jection scheme are recovered, i.e. O(δt2) and O(δt3/2) convergence for the velocity
and the pressure, respectively. Indeed, for high values of the penalty parameter,
they obtain the δt/r behavior for the velocity splitting error known for the penalty
scheme.

In 2008, Angot et al. [3] introduced a new fractional-step scheme called Vec-
tor Penalty-Projection (V PP ) methods to solve incompressible fluid flows and to
overcome most of the drawbacks of the usual projection methods. This family of
methods represents a compromise between the best properties of both classes: the
Augmented Lagrangian (without iterations) and splitting methods under a vector
form. In fact, an original penalty-correction step for the velocity replaces the stan-
dard scalar pressure-correction one to calculate flows with divergence-free velocity.
This allows to impose the desired boundary condition to the end-of-step velocity
pressure variables. The V PP methods were improved in [1, 4, 5] where they showed
that such methods are also very efficient to compute incompressible multiphase vis-
cous flows or Darcy flows whatever the density, viscosity or permeability jumps are
and also in the presence of outflow boundary conditions [8, 9]. Indeed, they showed
to favorably compete with the best incremental projection methods or Augmented
Lagrangian methods in terms of accuracy, cheapness and robustness.

In [3, 1, 4], the V PP methods were implemented using the first-order Euler
implicit scheme in time with Dirichlet conditions on the boundary. The authors
found that the scheme is O(h2) in space for velocity and pressure, where h is the
spatial mesh step of the MAC scheme and O(δt) in time for velocity and pressure
(δt is the time step). However, in the literature, the V PP methods concern only
the case of the first-order time discretization with Dirichlet boundary conditions.
The present paper is devoted to the extension of such methods to a second-order
time discretization. Remember that in view of all the previous results of different
types of projection methods, one can notice that, while a temporally second order
convergence for the velocity can be readily obtained analytically, the computed
pressure can not reach the full second-order accuracy in time. We believe that this
paper provides interesting results in this regard as well as for the splitting error of
the scheme.

The main task of the present paper is to provide stability and rigorous error anal-
ysis of the second-order vector penalty-projection method with Dirichlet boundary
conditions. Our results indicate that the V PP method guarantees O(δt2) for both
velocity and pressure in the norm of l∞(L2(Ω)) and l2(L2(Ω)) respectively. Besides,
we show that the splitting error of the method varies as O(ε) where the penalty
parameter ε can be chosen as small as desired. This feature is very interesting since
it offers the possibility to reduce the splitting error, up to make it negligible with
respect to the consistency error of higher-order schemes.

The rest of the paper is organized as follows. In Section 2, we describe the
vector penalty-projection method using a second-order scheme to discretize in time
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and we underline the role of each step of the method. In Section 3, we show the
well-posedness and the stability of the method. Section 4 is devoted to giving the
error estimates for the V PP method. In Section 5, we present some numerical
experiments which are consistent with the theoretical results. Concluding remarks
are reported in Section 6.

2. Vector penalty-projection method

In this section, we describe the vector penalty-projection method for the incom-
pressible Navier-Stokes problem using a second-order backward difference formula
(BDF2) to march in time. In addition, we highlight briefly the role of each step of
the method.

2.1. Description of the scheme. Before presenting the scheme, let us first in-
troduce the following functional spaces:

L2(Ω) =
(
L2(Ω)

)d
,

H1(Ω) =
{
u ∈ L2(Ω); ∇u ∈ (L2(Ω))d×d

}
,

L2
0(Ω) =

{
q ∈ L2(Ω);

∫
Ω

q dx = 0

}
.

We denote L2(Ω)-norm by ∥ . ∥0, the H1(Ω)-norm by ∥ . ∥1, the H−1(Ω)-norm by
∥ . ∥−1 and L2(Ω)-inner product by (. , .)0.

Now, let 0 = t0 < t1 < ... < tN = T be a partition of the time interval of
computation [0,T] which we suppose uniform for the sake of simplicity. We denote
by δt = tn+1−tn > 0 the time step. Let ϕ0, ϕ1, . . . ,ϕN be a sequence of functions
in a Hilbert space H. We denote this sequence by ϕδt and we define the following
discrete norm: ∥ ϕδt ∥l2(H):= (δtΣN

n=0 ∥ ϕn ∥2H)1/2. The notation vn is used to
represent an approximation of v(tn), where tn = n δt.

We use a semi-implicit time-integration scheme. We approximate the time de-
rivative the BDF2 scheme. The convective term is handled explicitly. Finally, the
viscous term is treated implicitly. Hence, the V PP method reads as follows.

Let n ≥ 1 such that (n + 1)δt ≤ T , ṽ0, ṽ1,v0,v1 ∈ L2(Ω) and p0, p1 ∈ L2
0(Ω)

given. Find (vn+1, pn+1) such that:

• Vector penalty-prediction step with an augmentation parameter
r ≥ 0:

3ṽn+1 − 4ṽn + ṽn−1

2δt
+NLT1 − µ∆ṽn+1 − r∇(∇ · ṽn+1)(2.1)

+ ∇p⋆,n+1 = fn+1 in Ω,

ṽn+1 = 0 on Γ,(2.2)

where p⋆,n+1 is the second-order Richardson extrapolation for pn+1:

p⋆,n+1 = 2pn − pn−1,

and NLT1 is the second-order extrapolated nonlinear term:

NLT1 = 2(vn · ∇)ṽn − (vn−1 · ∇)ṽn−1.

• Vector penalty-projection step with a penalty parameter 0 < ε ≤ 1:
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3v̂n+1 − 4v̂n + v̂n−1

2δt
+NLT2 − µ∆v̂n+1 − 1

ε
∇
(
∇ · v̂n+1

)
(2.3)

=
1

ε
∇
(
∇ · ṽn+1

)
in Ω,

v̂n+1 = 0 on Γ,(2.4)

where NLT2 is the second-order extrapolated nonlinear term:

NLT2 = 2(vn · ∇)v̂n − (vn−1 · ∇)v̂n−1.

• Correction step for velocity and pressure:

vn+1 = ṽn+1 + v̂n+1,(2.5)

pn+1 = 2pn − pn−1 − 1

ε
(∇ · vn+1)− r∇ · ṽn+1.(2.6)

Remark 2.1 (Nonlinear term in the projection step). It is useful to mention
that the nonlinear term in the velocity correction step can be omitted since the
purpose of this step is to perform an approximate divergence-free projection, see
[5, 7]. Hence, we can take NLT2 = 0 and consequently replace the nonlinear term
NLT1 in the prediction step by

NLT1 = 2(vn · ∇)vn − (vn−1 · ∇)vn−1,

which is better for the consistency of the scheme.

2.2. Vector penalty-prediction step. Contrary to the first penalty-projection
method introduced by Shen in [40], the augmentation parameter r in the prediction
step of the V PP method is totally independent from the time step δt as it is also
the case of the scalar penalty-projection method presented by Jobelin et al. in
[30]. It is useful to note that the augmentation parameter r plays the role of a
preconditioner for the prediction step. Indeed, the parameter r is kept constant
(r can be strictly positive or equal 0) and within small values (r ≤ 1) to avoid
to degrade too severely the conditioning of the linear system associated with the
prediction step.

Remark 2.2. From a numerical point of view, we observe that for r = 0, there is a
poor convergence in time for velocity and pressure with very small values of ε and
this is due to the accumulation of the round-off errors when ε is relatively small
[9]. Hence, in order to improve the convergence rate, it was proposed in [1, 4, 6]
to reconstruct the pressure field from its gradient to avoid the effect of round-off
errors when ε is very small. Thus, in the numerical experiments (see Section 5)
with r = 0, the following estimation of the gradient of the pressure will be used
directly for the pressure gradient correction:

(2.7) ∇pn+1 = 2∇pn −∇pn−1 − 3v̂n+1 − 4v̂n + v̂n−1

2δt
+ µ∆v̂n+1.
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2.3. Vector penalty-projection step. The vector penalty-projection step is based
on the Helmholtz-Hodge decompositions of L2(Ω) vector fields for bounded domains
(see e.g. [34, 35, 44]). Besides, we notice that the vector penalty-projection step
can be written as follows:

ε

(
v̂n+1 − v̂n

δt
+NLT2 − µ∆v̂n+1

)
−∇(∇ · v̂n+1) = ∇(∇ · ṽn+1) in Ω,

v̂n+1 = 0 on Γ.

(2.8)

where we use the implicit Euler scheme to discretize in time for the sake of simplicity.
Formally speaking, as ε is taken small enough, the right-hand side in the projection
step lies in the range of the left-hand side. Hence, the vector penalty-projection step
appears to be very fast and cheap in terms of the number of iterations whatever
the spatial mesh size is. This crucial result was already shown theoretically in
[6, Theorem 1.1 and Corollary 1.3] and in [5, Theorem 3.1] and also numerically
confirmed in [5, 6, 14, 9]. Finally, the vector correction step (??-2.5) carries out an
approximate divergence-free projection of the velocity with the penalty parameter
ε > 0 chosen as small as desired.

Remark 2.3 (Vector penalty-projection methods with variable density).
The vector penalty-projection methods can be generalized in a natural way for
variable density as done recently in [2] where it is shown that the velocity correction
step can be made completely independent on the mass density. Thus, this step is
fully kinematic and only concerned with the Helmholtz-Hodge decomposition of the
predicted velocity.

Remark 2.4 (Vector penalty-projection method with open boundary con-
ditions). The vector penalty-projection methods can naturally be extended also
to the case of incompressible viscous flows with open boundary conditions. In fact,
in [8, 9], the authors described in detail the V PP methods in this case and showed
that for a second-order scheme used for time discretization, the V PP methods yield
approximately O(δt2) for both the velocity and the pressure for the homogeneous
as well as and nonhomogeneous open boundary conditions.

3. Well-posedness and stability

Before starting the analysis, let us note that since the treatment of the nonlinear
term does not affect in an essential way the analysis of the vector penalty-projection
method, we shall carry out the well-posedness, the stability and later, the error es-
timates for the linearized Navier-Stokes equations only as in [26, 25], thus avoiding
technicalities associated with the nonlinearities which obscure the essential difficul-
ties. Besides, we suppose that the temporal derivative of the velocity is approxi-
mated by a second-order scheme in time, the pressure field is approximated by a
first order scheme in time, i.e, p⋆,n+1 = pn and the augmentation parameter r is
set to 0 for the sake of simplicity.

Thus, to fix the ideas, the vector penalty-projection method is written now as
follows. For given ṽ0, ṽ1,v0,v1 and p1, we are looking for (vn+1, pn+1) such that
for all n ≥ 1 with (n+ 1)δt ≤ T :

• Vector penalty-prediction step:
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
3ṽn+1 − 4ṽn + ṽn−1

2δt
− µ∆ṽn+1 +∇pn = fn+1 in Ω,

ṽn+1 = 0 on Γ.

(3.1)

• Vector penalty-projection step with a penalty parameter 0 < ε ≤ 1:


3v̂n+1 − 4v̂n + v̂n−1

2δt
− µ∆v̂n+1 − 1

ε
∇
(
∇ · v̂n+1

)
=

1

ε
∇
(
∇ · ṽn+1

)
in Ω,

v̂n+1 = 0 on Γ.

(3.2)

• Correction step for the velocity and the pressure:

vn+1 = ṽn+1 + v̂n+1,

pn+1 = pn − 1

ε
(∇ · vn+1).

(3.3)

Finally, the discrete problem resulting from the sum of the two steps, taking into
account (3.3), becomes

3vn+1 − 4vn + vn−1

2δt
− µ∆vn+1 +∇pn+1 = fn+1 in Ω×]0, T [,(3.4)

(εδt)
pn+1 − pn

δt
+∇ · vn+1 = 0 in Ω×]0, T [,(3.5)

vn+1 = 0 on Γ×]0, T [.(3.6)

Remark 3.1. The initial condition on the velocity is v0 = v0 with ṽ0 = v0 = v0

and v̂0 = 0. To start the second-order V PP scheme, we need v1 and p1. For
this reason, we first solve the V PP method using Euler scheme of first-order for
a given v0 instead of the BDF2 scheme. This permits to calculate ṽ1 and v̂1 and
consequently to find v1 and p1.

3.1. Well-posedness of the scheme.

Lemma 1. (Well-posedness of the prediction step) For given f ∈ L2(Ω), ṽ0,
ṽ1 ∈ L2(Ω), p1 ∈ L2

0(Ω) given, and for all δt > 0, there exists at each time step a
unique solution ṽn+1 ∈ H1

0(Ω) to the penalty-prediction step (3.1).

Sketch of the proof.
We take first the inner product of (3.1) with a test function φ in H1

0(Ω).
It is an easy matter to prove with Lax-Milgram theorem that there exists a

unique solution ṽn+1 to the prediction step (3.1) in the Hilbert space H1
0(Ω). �

Lemma 2. (Well-posedness of the projection step) For given f ∈ L2(Ω) and
ṽn+1 ∈ H1

0(Ω), with 0 < ε ≤ 1 and δt > 0, there exists at each time step a unique
solution v̂n+1 ∈ H1

0(Ω) to the penalty-projection step (3.2).

Sketch of the proof.
We take the inner product of (3.2) with a test function φ ∈ H1

0(Ω).
Thanks to Lax-Milgram theorem, it is an easy matter to show that the projection

step (3.2) has a unique solution v̂n+1 in the Hilbert space H1
0(Ω). �
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Lemma 3. (Global solvability of the V PP method) For given f ∈ L2(Ω), v0,
v1 ∈ L2(Ω) and p1 ∈ L2

0(Ω), for all 0 < δt ≤ T , 0 < ε ≤ 1 and for all n ∈ N∗ such
that (n + 1)δt ≤ T , there exists a unique solution (ṽn+1,vn+1, pn+1) in H1

0(Ω) ×
H1

0(Ω) × L2
0(Ω) to the V PP scheme such that:

3vn+1 − 4vn + vn−1

2 δt
− µ∆vn+1 +∇pn+1 = fn+1 in Ω,(3.7)

ε(pn+1 − pn) +∇ · vn+1 = 0 in Ω.(3.8)

Proof.
The proof is made by induction for all n in N∗ such that (n+ 1)δt ≤ T starting

with the given initial conditions v0, v1 in L2(Ω)d and p1 in L2
0(Ω). Thanks to

Lemma 1, there exists a unique solution ṽn+1 in H1
0(Ω) to the prediction step (3.1).

Besides, according to Lemma 2, there exists a unique solution v̂n+1 in H1
0(Ω) to

the projection step (3.2). Hence, we deduce that vn+1 = ṽn+1 + v̂n+1 ∈ H1
0(Ω)

with ∇ · vn+1 ∈ L2
0(Ω).

Finally, since p1, ∇ · vn+1 and ∇ · ṽn+1 ∈ L2
0(Ω), it is easy to verify using the

expression of the pressure (3.3), that pn+1 ∈ L2
0(Ω), which concludes the proof. �

We are now in position to establish the stability of the scheme.

3.2. Stability.

Theorem 3.2. (Stability of the scheme)For given f ∈ L2(0, T ;L2(Ω)d), v0,v1 ∈
L2(Ω)d and p1 ∈ L2

0(Ω), there exists a positive constant

C0 = C0(Ω, T, µ, ||f ||L2((0,T )×Ω), ||v0||0, ||v1||0, ||p1||0)

such that, for all 0 < δt ≤ T , for 0 < ε ≤ 1, the solution (vn+1, pn+1) of the V PP
method satisfies the following estimation for all n ∈ N∗ with (n+ 1) δt ≤ T :

||vn+1||20 + ||2vn+1 − vn||20 +
n∑

k=1

||δ2vk+1||20 + 2µ
n∑

k=1

δt||∇vk+1||20

+ 2 ε δt||pn+1||20 + 2 ε

n∑
k=1

δt||pk+1 − pk||20

≤ C0.

Proof.
Step 1:
Taking the inner product of (3.4) with 4δtvn+1, applying Green formula and using
the algebraic relation:

2(ak+1, 3 ak+1 − 4 ak + ak−1) = ||ak+1||2 + ||2 ak+1 − ak||2 − ||ak||2

− ||2 ak − ak−1||2 + ||δ2ak+1||2,(3.9)

with δ2ak+1 = δ(δak+1) and δak+1 = ak+1 − ak,
we obtain taking into account the fact that vn+1 = 0 on the whole boundary Γ:

||vn+1||20 − ||vn||20 + ||2vn+1 − vn||20 − ||2vn − vn−1||20 + ||δ2vn+1||20
+ 4µ δt ||∇vn+1||20 − 4 δt (pn+1,∇ · vn+1)0

= 4 δt (fn+1,vn+1)0.(3.10)
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Step 2:
Taking the inner product of (3.5) with 4δtpn+1 and using the algebraic identity

(3.11) 2(ak+1, ak+1 − bk+1) = ||ak+1||2 − ||bk+1||2 + ||ak+1 − bk+1||2,

one gets:

2 ε δt
(
||pn+1||20 − ||pn||20 + ||pn+1 − pn||20

)
+ 4 δt (pn+1,∇ · vn+1)0 = 0.(3.12)

Step 3:
Summing (3.10) and (3.12), we obtain the following relation:

||vn+1||20 − ||vn||20 + ||2vn+1 − vn||20 − ||2vn − vn−1||20 + ||δ2vn+1||20
+ 4µ δt ||∇vn+1||20 + 2 ε δt

(
||pn+1||20 − ||pn||20 + ||pn+1 − pn||20

)
(3.13)

= 4 δt(fn+1,vn+1)0.

The term in the right-hand side of the inequality above, which we denote by
T1, may be bounded using the Cauchy-Schwarz inequality, Young inequality and
Poincaré inequality. We shall repeatedly use this standard trick hereafter without
mentioning it anymore.

|T1| ≤ 4 δt ||vn+1||0||fn+1||0

≤ 2µ δt ||∇vn+1||20 +
2 cp(Ω)

2

µ
δt||fn+1||20 where cp(Ω) is the Poincaré constant.

Using this bound in (3.13), we get

||vn+1||20 − ||vn||20 + ||2vn+1 − vn||20 − ||2vn − vn−1||20 + ||δ2vn+1||20
+ 2µ δt ||∇vn+1||20 + 2 ε δt

(
||pn+1||20 − ||pn||20 + ||pn+1 − pn||20

)
≤ 2 cp(Ω)

2

µ
δt||fn+1||20.

We now write the previous inequality with the index k instead of n, and then
sum it up for k = 1, ..., n. This yields, for all 0 < ε ≤ 1 and 0 < δt ≤ T , the
following energy estimate for all n ∈ N∗ with (n+ 1) δt ≤ T :

||vn+1||20 + ||2vn+1 − vn||20 +
n∑

k=1

||δ2vk+1||20 + 2µ
n∑

k=1

δt||∇vk+1||20

+ 2 ε δt||pn+1||20 + 2 ε
n∑

k=1

δt ||pk+1 − pk||20

≤ ||v1||20 + ||2v1 − v0||20 + 2 ε δt ||p1||20 +
2 cp(Ω)

2

µ

n∑
k=1

δt ||fk+1||20

≤ C0(Ω, T, µ, ||f ||L2((0,T )×Ω), ||v0||0, ||v1||0, ||p1||0),

which concludes the proof. �

Remark 3.3. The vector penalty-projection method is also stable for r > 0. We
note that the V PP method with r ≥ 0 was also studied in [3, 6] using a first order
scheme in time.
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4. Error estimates

4.1. Notations and assumptions. Let v(tn+1) = vn+1 and p(tn+1) = pn+1 the
exact solution of the Stokes problem at time tn+1 and let vn+1 and pn+1 the solution
obtained by the vector penalty-projection method (3.1)-(3.3). Then, we define the
velocity and the pressure error respectively:
en+1 = vn+1 − vn+1 = v(tn+1)− vn+1,
πn+1 = pn+1 − pn+1 = p(tn+1)− pn+1.

In addition, we assume that the solution of the continuous Stokes problem sat-
isfies the following regularity conditions:

(4.1)

∫ T

0

∥∥∥∥∂3v

∂t3

∥∥∥∥2
0

dt ≤ M,

and,

(4.2)

∫ T

0

∥∥∥∥∂p∂t
∥∥∥∥2
0

dt ≤ M.

We will use M as a generic positive constant which depends eventually on Ω, T , f ,
µ and v0.

Moreover, we need to assume that the initial errors are sufficiently controlled,
i.e. there exists a constant c′ > 0 such that

(4.3) ||e1||20 + ||2 e1 − e0||20 + 2 ε δt ||π1||20 ≤ c′4,

and

(4.4) µ δt||∇e1||20 ≤ c′4,

Finally, we define Rn+1 as:

Rn+1 =
3v(tn+1)− 4v(tn) + v(tn−1)

2δt
− ∂v(tn+1)

∂t
.

Finally, throughout this paper, we will make use of the following theorems whose
proofs can be found in [11].

Theorem 4.1. Let Ω be an open, bounded and lipshitz domain of Rd. There exists
a constant c1 > 0 such that for all u ∈ L2(Ω)

(4.5) ||u||0 ≤ c1 (||u||−1 + ||∇u||−1) .

Theorem 4.2. Let Ω be an open, bounded, connected, lipshitz domain of Rd. There
exists a constant c2 > 0 such that, for all u ∈ L2(Ω)

(4.6) ||u||−1 ≤ c2

(
||∇u||−1 +

1

|Ω|

∣∣∣∣∫
Ω

u dx

∣∣∣∣) .

4.2. Basic error estimates.

Lemma 4. For given f and v0 which are smooth enough and assuming that the
solution (v, p) of the Stokes problem is smooth enough in space and time such that:
v ∈ W3,2(0, T ;L2(Ω)) and p ∈ W 1,2(0, T ;L2(Ω)), then, there exists a constant
M(Ω, T, µ, f ,v0) > 0 such that the following estimations are satisfied for all n ∈ N∗
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with (n+ 1) δt ≤ T ,

(a)
n∑

k=1

δt||Rk+1||20 ≤ M(Ω, T, µ, f ,v0) δt
4,

(b)

n∑
k=1

δt||δpk+1||20 ≤ M(Ω, T, µ, f ,v0) δt
2,

(c)
n∑

k=1

δt

∥∥∥∥δpk+1

δt

∥∥∥∥2
0

≤ M(Ω, T, µ, f ,v0).

Sketch of the Proof.
Note that we can reformulate Rk+1 as a residual integral of Taylor series

Rk+1 =
3v(tk+1)− 4v(tk) + v(tk−1)

2δt
− ∂v(tk+1)

∂t

=
4

2 δt

∫ tk+1

tk

(tk − t)2

2

∂3v(t)

∂t3
dt− 1

2 δt

∫ tk+1

tk−1

(tk−1 − t)2

2

∂3v(t)

∂t3
dt.

Then, the proof of (a) can be concluded as done in [18].
For the proof of (b), we proceed as follows.

δpk+1 = p(tk+1)− p(tk) =

∫ tk+1

tk

∂p(t)

∂t
dt,

then

||δpk+1||20 ≤ δt

∫ tk+1

tk

∥∥∥∥∂p(t)∂t

∥∥∥∥2
0

dt.

We obtain after summing it for k = 1, ..., n and using (4.2),

n∑
k=1

δt||δpk+1||20 ≤ δt2
∫ T

0

∥∥∥∥∂p(t)∂t

∥∥∥∥2
0

dt ≤ M δt2,

which concludes the proof of (b).
The inequality (c) is a direct consequence of (b). �

Theorem 4.3. Under Lemma 4 and the assumption (4.3) and for all 0 < ε ≤ 1,
0 < δt ≤ max(1, T ), there exists a positive constant

C0 = C0(Ω, T, µ, ||f ||L2((0,T )×Ω), ||e0||0, ||e1||0, ||π1||0)

such that the solution of the V PP method (3.1) - (3.3) verifies for all n ≥ 1 such
that (n+ 1) δt ≤ T the following:

(i) ||en+1||20 + ||2 en+1 − en||20 +
n∑

k=1

||δ2ek+1||20 + 2µ

n∑
k=1

δt||∇ek+1||20

+2 ε δt||πn+1||20 + ε
n∑

k=1

δt||πk+1 − πk||20 ≤ C0 (δt
4 + ε δt),

(ii)
n∑

k=1

δt||∇ · ek+1||20 ≤ C0 (δt
3 + ε) ε δt.
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Proof.
(i) Error estimate for the velocity.
Step 1:
We have for the Stokes equations at time tn+1

(4.7)
3v(tn+1)− 4v(tn) + v(tn−1)

2δt
− µ∆v(tn+1) +∇p(tn+1) = f(tn+1) +Rn+1,

with

Rn+1 =
3v(tn+1)− 4v(tn) + v(tn−1)

2δt
− ∂v(tn+1)

∂t
.

By subtracting (3.4) from (4.7), we get the following error equation

3 en+1 − 4 en + en−1

2δt
− µ∆en+1 +∇πn+1 = Rn+1.(4.8)

Taking the inner product of (4.8) with 4δt en+1 and taking into account that en+1 =
0 on Γ, we obtain:

||en+1||20 − ||en||20 + ||2 en+1 − en||20 − ||2 en − en−1||20 + ||δ2en+1||20 + 4µ δt ||∇en+1||20
−4 δt(πn+1,∇ · en+1)0 = 4 δt(Rn+1, en+1)0.(4.9)

Step 2:
By adding +ε p(tn+1) and −ε p(tn+1) to the pressure equation (3.5) and by adding
+ε p(tn) and −ε p(tn) to (3.5), we get

ε(πn+1 − πn) +∇ · en+1 = ε δpn+1,(4.10)

where ∇ · vn+1 = −∇ · en+1 and δpn+1 = pn+1 − pn.
Taking the inner product of (4.10) with 4δt πn+1 and using the identity (3.11),

we obtain:
(4.11)
2 ε δt

(
||πn+1||20 − ||πn||20 + ||πn+1 − πn||20

)
+4 δt(πn+1,∇·en+1)0 = 4 ε δt (πn+1, δpn+1)0.

Step 3:
Summing (4.9) and (4.11) and writing πn+1 in the right hand side of (4.11) as
πn+1 = πn + (πn+1 − πn), we obtain

||en+1||20 − ||en||20 + ||2 en+1 − en||20 − ||2 en − en−1||20 + ||δ2en+1||20
+ 4µ δt||∇en+1||20 + 2 ε δt

(
||πn+1||20 − ||πn||20 + ||πn+1 − πn||20

)
(4.12)

= 4 ε δt(πn, δpn+1)0 + 4 ε δt(πn+1 − πn, δpn+1)0 + 4 δt (Rn+1, en+1)0,

where the terms in the right-hand side of (4.12) are denoted respectively by T1,
T2, T3; so that,

|T1| ≤ 4 ε δt||πn||0||δpn+1||0 ≤ 2 ε δt2||πn||20 + 2 ε δt2
∥∥∥∥δpn+1

δt

∥∥∥∥2
0

,

|T2| ≤ 4 ε δt ||πn+1 − πn||0||δpn+1||0 ≤ ε δt ||πn+1 − πn||20 + 4 ε δt3
∥∥∥∥δpn+1

δt

∥∥∥∥2
0

,

|T3| ≤ 4 δt||Rn+1||0||en+1||0 ≤ 2 cp(Ω)
2

µ
δt||Rn+1||20 + 2µ δt||∇en+1||20

with cp(Ω) the constant of Poincaré.
Step 4:

Combining the bounds obtained above with (4.12) and replacing the index n by k
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and then summing for k = 0,...,n, yield the following energy estimate for all n ∈ N∗

such that (n+ 1)δt ≤ T :

||en+1||20 + ||2 en+1 − en||20 +
n∑

k=1

||δ2ek+1||20 + 2µ
n∑

k=1

δt||∇ek+1||20

+ 2 ε δt||πn+1||20 + ε
n∑

k=1

δt||πk+1 − πk||20

≤ 2 ε δt

n∑
k=1

δt||πk||20 + ||e1||20 + ||2 e1 − e0||20 + 2 ε δt||π1||20

+
2 cp(Ω)

2

µ

n∑
k=1

δt||Rk+1||20 + (2 ε δt+ 4 ε δt2)
n∑

k=1

δt

∥∥∥∥δpk+1

δt

∥∥∥∥2
0

.

Finally, using assumption (4.3), Lemma 4 and applying the discrete Gronwall
Lemma, we conclude the proof. �

(ii) Error estimate for the velocity divergence.

Based on (4.10), the velocity divergence error can be written as follows:

∇ · en+1 = ε δpn+1 − ε (πn+1 − πn).

Thanks to Lemma 4 and to part (i) of Theorem 4.3, we get the desired estimation
for δt ≤ max(1, T )

n∑
k=1

δt||∇ · ek+1||20 ≤ 2M ε2 δt2 + 2 εC0 (δt
4 + ε δt)

≤ C0(Ω, T, µ, ||f ||L2((0,T )×Ω), ||e0||0, ||e1||0, ||π1||0) (δt3 + ε) ε δt.

which concludes the proof. �

Remark 4.4 (Convergence rate and splitting error of the velocity approx-
imation). Theorem 4.3 (part (i)) shows that the second-order vector penalty-
projection method yields optimal error estimates in time for the velocity; par-
ticularly, we obtain a convergence rate of O(δt2) for the velocity in l∞(L2(Ω)).
The same result for the velocity (in l∞-norm) was already obtained in [18] with
the second-order scalar penalty-projection method and also in [26, 27] with the
incremental and rotational pressure-correction methods (in l2-norm).

Indeed, the interesting result is that the velocity splitting error is of order
O(

√
ε δt) in l∞(L2(Ω))∩ l2(H1(Ω)). Practically speaking, if we choose the penalty

parameter ε equal to δt5, for example, the splitting error of the velocity will be
of order O(δt3) and hence, the second-order accuracy in time for the velocity is
provided.

Now, in order to derive an error estimate for the pressure approximation, we
need the following lemma:

Lemma 5.
n∑

k=1

∥∥3 ek+1 − 4 ek + ek−1
∥∥2
0
≤ C0(Ω, T, µ, ||f ||L2((0,T )×Ω), e

0, e1, ||∇e1||0, ||π1||0) (δt4 + ε δt).
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Sketch of the Proof.
Step 1:

After rewriting 3 en+1 − 4 en + en−1 in (4.8) as:

3 en+1 − 4 en + en−1 = (en+1 − 2 en + en−1) + 2 (en+1 − en)

= δ2en+1 + 2 (en+1 − en),(4.13)

we take the inner product of (4.8) with 2 δt(en+1 − en). We derive

(δ2en+1, en+1 − en)0 + 2 ||en+1 − en||20 + µ δt(||∇en+1||20 − ||∇en||20 + ||∇(en+1 − en)||20)
− 2 δt(πn+1,∇ · (en+1 − en))0 = 2 δt(Rn+1, en+1 − en)0.(4.14)

Step 2:
Now, we write Eq. (4.10) at time tn+1 and tn respectively and we subtract after
that the resulted equations. Hence, it yields

ε δ2πn+1 +∇ · (en+1 − en) = ε δ2pn+1 where δ2πn+1 = πn+1 − 2πn + πn−1.

Taking the inner product of the previous equation with 2 δt πn+1 and rewriting
δ2πn+1 as: δ2πn+1 = (3πn+1 − 4πn + πn−1)− 2(πn+1 − πn), it yields

ε δt
(
||πn+1||20 − ||πn||20 + ||2πn+1 − πn||20 − ||2πn − πn−1||20 + ||δ2πn+1||20

)
−2 ε δt

(
||πn+1||20 − ||πn||20 + ||πn+1 − πn||20

)
+2 δt(πn+1,∇ · (en+1 − en))0 = 2 ε δt

(
πn+1, δ2pn+1

)
0
.(4.15)

Step 3:
Summing (4.14) and (4.15), we find after writing πn+1 in the right-hand side of
(4.15) as πn+1 = πn + (πn+1 − πn):

2 ||en+1 − en||20 + µ δt
(
||∇en+1||20 − ||∇en||20 + ||∇(en+1 − en)||20

)
+ ε δt(||πn+1||20 − ||πn||20)
+ ε δt

(
||2πn+1 − πn||20 − ||2πn − πn−1||20 + ||δ2πn+1||20

)
= 2 ε δt (||πn+1||20 − ||πn||20) + 2 ε δt ||πn+1 − πn||20(4.16)

+ 2 δt(Rn+1, en+1 − en)− (δ2en+1, en+1 − en)0

+ 2 ε δt2
(
πn,

δ2pn+1

δt

)
0

+ 2 ε δt2
(
πn+1 − πn,

δ2pn+1

δt

)
0

,

where we denote by T1, T2, T3, T4 the last four terms in the right-hand side of
(4.16), so that,

|T1| ≤ 2 δt||Rn+1||0||en+1 − en||0 ≤ 2 δt2||Rn+1||20 +
1

2
||en+1 − en||20,

|T2| ≤ ||δ2en+1||0||en+1 − en||0 ≤ 1

2
||δ2en+1||20 +

1

2
||en+1 − en||20,

|T3| ≤ 2 ε δt2||πn||0
∥∥∥∥δ2pn+1

δt

∥∥∥∥
0

≤ ε δt2||πn||20 + ε δt2
∥∥∥∥δ2pn+1

δt

∥∥∥∥2
0

,

|T4| ≤ 2 ε δt2||πn+1 − πn||0
∥∥∥∥δ2pn+1

δt

∥∥∥∥
0

≤ ε δt2||πn+1 − πn||20 + ε δt2
∥∥∥∥δ2pn+1

δt

∥∥∥∥2
0

.

Combining the above inequalities with (4.16). Then, replace the index n by k in
the resulting inequality and sum it for k = 1 to n. After that, apply the discrete
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Gronwall lemma by taking into account assumptions (4.3) and (4.4), Lemma 4,

Theorem 4.3 and the fact that
∑n

k=1 δt

∥∥∥∥δ2pk+1

δt

∥∥∥∥2
0

≤ M δt2 (see Lemma 6), it

yields

n∑
k=1

||ek+1 − ek||20 + µ δt||∇en+1||20 + µ

n∑
k=1

δt||∇(ek+1 − ek)||20

+ ε δt ||πn+1||20 + ε δt ||2πn+1 − πn||20 + ε δt
n∑

k=1

||δ2πk+1||20

≤ C(Ω, T, µ, ||f ||L2((0,T )×Ω), e
0, e1, ||∇e1||0, ||π1||0) (δt4 + ε δt).(4.17)

Since we have
∥∥3 en+1 − 4 en + en−1

∥∥2
0
≤ 2(||δ2en+1||20 + 4||en+1 − en||20), it is an

easy matter to show (thanks to (4.17) and Theorem 4.3) that

n∑
k=1

∥∥3 ek+1 − 4 ek + ek−1
∥∥2
0
≤

n∑
k=1

2(||δ2ek+1||20 + 4||ek+1 − en||20)

≤ C0(Ω, T, µ, ||f ||L2((0,T )×Ω), e
0, e1, ||∇e1||0, ||π1||0) (δt4 + ε δt).

�
Now, we can get the approximation for the pressure.

Theorem 4.5. Under the assumptions of Theorem 4.3 and using Lemma 5 and
for all 0 < ε ≤ 1, 0 < δt ≤ max(1, T ), there exists a positive constant

C0 = C0(Ω, T, µ, ||f ||L2((0,T )×Ω), ||e0||0, ||e1||0, ||π1||0)

such that the solution of the V PP method (3.1) - (3.3) verifies for all n ≥ 1 with
(n+ 1) δt ≤ T the following inequality:

n∑
k=1

δt||πk+1||20 ≤ C0 (δt
3 + ε).

Sketch of the Proof.
Step 1:
We rearrange (4.8) as:

∇πn+1 = Rn+1 + µ∆en+1 −
(
3 en+1 − 4 en + en−1

2 δt

)
.

Using respectively both inequalities (a− b)2 ≤ 2(a2 + b2) and (a+ b)2 ≤ 2(a2 + b2),
owing to Sobolev injection L2(Ω) ↪→ H−1(Ω) and to the injection of the Laplacian
∆: H1(Ω) −→ H−1(Ω), one gets:

||∇πn+1||2−1 ≤ 4||Rn+1||20 + 4µ2||en+1||21 + 2

∥∥∥∥3 en+1 − 4 en + en−1

2 δt

∥∥∥∥2
0

.

Taking into account that en+1 ∈ H1
0 (Ω), we have ||en+1||21 = ||∇en+1||20. Multi-

plying then the above inequality by δt and summing it up for k from 1 to n, we
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get
n∑

k=1

δt||∇πk+1||2−1 ≤ 4
n∑

k=1

δt||Rk+1||20 + 4µ2
n∑

k=1

δt ||∇ek+1||20(4.18)

+ 2
n∑

k=1

δt

∥∥∥∥3 ek+1 − 4 ek + ek−1

2 δt

∥∥∥∥2
0

.

Step 2:
Using Neçás inequality, there exists a constant C > 0 such that

(4.19) ||πn+1||0 ≤ C ||∇πn+1||−1.

Finally, using (4.18) and thanks to Lemma 4, Lemma 5 and part (i) of Theorem
4.3, we derive the desired estimation.

4.3. Improvement of the basic error estimates. In order to improve the basic
error estimates for the velocity divergence and the pressure, the critical step here
consists in establishing estimates for the time increment.

First, we impose the following regularities on the continuous Stokes problem

(4.20)
∂3v(t)

∂t3
∈ L2(0, T ;L2(Ω)),

and

(4.21)
∂2p(t)

∂t2
∈ L2(0, T ;L2(Ω)).

Then, we define the increment error in time

δRn+1 = Rn+1 −Rn,

δ2pn+1 = δpn+1 − δpn,

δen+1 = en+1 − en,

δπn+1 = πn+1 − πn.

Finally, we suppose that the initial errors are well-controlled as follows, i.e, there
exists a constant c′ > 0 such that

(4.22) ||e1||20 + ||2 e1 − e0||20 + 2 ε δt ||π1||20 ≤ c′6,

(4.23) ||δe1||20 ≤ c′6,

Lemma 6. For f and v0 given and smooth enough, we suppose that the solution
(v, p) of the Stokes problem is smooth enough in space and time such that:
v ∈ W3,2(0, T ;L2(Ω)) and p ∈ W 2,2(0, T ;L2(Ω)). Then, there exists a constant
M(Ω, T, f ,v0) > 0 such that

(a)

n∑
k=2

δt||δRk+1||20 ≤ M(Ω, T, f ,v0) δt
6,

(b)
n∑

k=1

δt||δ2pk+1||20 ≤ M(Ω, T, f ,v0) δt
4,

(c)
n∑

k=1

δt

∥∥∥∥δ2pk+1

δt

∥∥∥∥2
0

≤ M(Ω, T, f ,v0) δt
2.
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Sketch of the proof.

We can reformulate Rk+1 and Rk as the residual integral of the Taylor series.
Then, thanks to the regularity hypothesis imposed on the velocity, we obtain as in
[26, 22]:

n∑
k=2

δt||δRk+1||20 =

n∑
k=2

δt||Rk+1 −Rk||20 ≤ M δt6,

which concludes the proof of (a).
For the proof of (b), we note that δ2pk+1 is defined as follows:

δ2pk+1 = δ(δpk+1) = δ(p(tk+1)− p(tk)) = p(tk+1)− 2 p(tk) + p(tk−1).

By reformulating δ2pk+1 as the residual integral of the Taylor series, it yields

||p(tk+1)− 2p(tk) + p(tk−1)||20 =∥∥∥∥∫ tk

tk−1(t− tk−1)
∂2p(t)

∂t2
dt+

∫ tk+1

tk
(tk+1 − t)

∂2p(t)

∂t2
dt

∥∥∥∥2
0

≤ 2
∫ tk

tk−1(t− tk−1)2 dt
∫ tk

tk−1

∥∥∥∥∂2p(t)

∂t2

∥∥∥∥2
0

dt

+2
∫ tk+1

tk
(tk+1 − t)2 dt

∫ tk+1

tk

∥∥∥∥∂2p(t)

∂t2

∥∥∥∥2
0

dt.

Therefore, using the assumption (4.21), we deduce

n∑
k=1

δt||δ2pk+1||20 ≤ M δt4,

which concludes (b).
Finally, the proof of (c) is deduced easily from (b). �

Lemma 7. Provided that
∂3v(t)

∂t3
∈ L∞(0, T ;L2(Ω)) and

∂2p(t)

∂t2
∈ L∞(0, T ;L2(Ω))

and using both assumptions (4.22) and (4.23) and Lemma 6 with 0 < ε ≤ 1,
0 < δt ≤ max(1, T ), then, there exists a positive constant

C0 = C0

(
Ω, T, µ, ||f ||L2((0,T )×Ω), ||e0||0, ||e1||0, ||δe1||0, ||π1||0

)
such that for all n ≥ 2,

||δen+1||20 + ||2 δen+1 − δen||20 +
n∑

k=2

||δ2(δek+1)||20 + 2µ

n∑
k=2

δt||∇(δek+1)||20

+2 ε δt||δπn+1||20 + ε
n∑

k=2

δt||δπk+1 − δπk||20 ≤ C0 (δt
6 + ε δt3).

Sketch of the Proof.
The proof of this lemma follows the same principle adopted in the proof of Theorem
4.3 (part (i)). First, we form the equation which governs the error increments
δen+1 by subtracting the error equation for the velocity at two consecutive discrete
times. We do the same thing with the error equation for the pressure in order to
form the equation governing the error increments δπn+1. Secondly, we take the
scalar product of of the equation which has been obtained by δen+1 and δπn+1
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respectively. Then, we proceed as for part (i) of the proof of Theorem 4.3 with the
necessary modifications, i.e, by replacing: en+1 par δen+1, πn+1 by δπn+1, Rn+1

by δRn+1 and δpn+1 by δ2pn+1.
Owing to assumptions (4.22) and (4.23), we can show that

(4.24) ||δe2 ||20 + ||2 δe2 − δe1||20 + 2 ε δt||δπ2||20 ≤ c′6 + ε δt3).

Finally, by using Lemma 6, the majoration (4.24) and by applying the discrete
Gronwall lemma, we get the desired estimate.

Corollary 1. Based on Lemma 4 and Lemma 7 and for all 0 < ε ≤ 1, 0 < δt ≤
max(1, T ), there exists a positive constant

C0 = C0

(
Ω, T, µ, ||f ||L2((0,T )×Ω), ||e0||0, ||e1||0, ||δe1||0, ||π1||0

)
such that:

(i)

n∑
k=1

δt||∇ · ek+1||20 ≤ C0 (δt
3 + ε)ε δt2.

(ii)
n∑

k=1

δt||πk+1||20 ≤ C0 (δt
4 + ε δt).

Sketch of the Proof
(i). Error estimate for the velocity divergence.

Using (4.10), we have

∇ · en+1 = ε δpn+1 − ε (πn+1 − πn).

Therefore, Lemma 4 and Lemma 7 allow to conclude the proof as follows
n∑

k=1

δt||∇ · ek+1||20 ≤ 2 ε2δt2
n∑

k=1

δt

∥∥∥∥δpk+1

δt

∥∥∥∥2
0

+ ε
n∑

k=1

2 ε δt||δπk+1||20

≤ C0 (δt
3 + ε) ε δt2.

Remark 4.6. The error analysis carried out here shows that the splitting error of
the velocity divergence is of order O(ε δt) in the norm l2(L2(Ω)).

(ii). Error estimate for the pressure.

The key of the improvement of the approximation of the pressure lies in writing
3 en+1 − 4 en + en−1 as the velocity error increment in time, i.e. :

3 en+1 − 4 en + en−1 = 3(en+1 − en)− (en − en−1) = 3δen+1 − δen.

Thus,

||3 en+1 − 4 en + en−1||20 ≤ 2
(
9||en+1 − en||20 + ||en − en−1||20

)
= 2

(
9||δen+1||20 + ||δen||20

)
.

Hence, thanks to Lemma 7, we infer

(4.25)
n∑

k=1

δt||3 ek+1 − 4 ek + ek−1||20 ≤ 20
n∑

k=1

δt||δek+1||20 ≤ C0(δt
5 + ε δt2).

Finally, thanks to Neçás inequality and using inequality (4.25), Lemma 4 and The-
orem 4.3, the desired estimate of the pressure is concluded for δt ≤ max(1, T ).
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Remark 4.7 (Another improvement of the splitting errors). It is worth men-
tioning that the splitting error of the velocity can be also improved to reach the

order of O(
√

ε δt3 + ε2 δt
3
2 ) in l∞(L2(Ω)) ∩ l2(H1(Ω)). The key improvement is

to treat directly the term 4 ε δt (πn+1, δpn+1)0 in (4.11) by using the Neçás lemma
and the equation (4.8). Note that this improvement will consequently affect the
splitting errors of Corollary 1 and improve them. Hence, it is no more useful to use
the discrete Gronwall inequality and the resulting splitting error of the velocity in
Theorem 4.3.

Remark 4.8 (Convergence rate and splitting error of the pressure approx-
imation). There exists in the literature a large number of works dedicated to
theoretical investigations on the convergence rate of the pressure. In fact, the stan-
dard form of the second-order pressure-correction scheme guarantees a convergence
rate only of order 1 for the pressure in l∞(L2(Ω)). The rotational form of this
method improves the convergence rate to 3/2 in l2(L2(Ω)). Note also that the
second-order velocity-correction method in its rotational form [25] as well as the
scalar penalty-projection method [18] provide also a convergence rate of order 3/2
in l2(L2(Ω)). To the best of our knowledge, this is the best possible convergence
rate established for the pressure approximation.

However, the result in part (ii) of Corollary 1 deserves attention since it shows
that the second-order vector penalty-projection method yields optimal error es-
timates in time for the pressure. In fact, the temporal convergence rate of the
pressure obtained here is of order 2 in l2(L2(Ω)) and this is because, contrary to
the usual projection methods, there is no artificial Neumann boundary condition
for the pressure, which, if it exists, will thus limit the accuracy of the scheme.

Finally, we notice that the pressure splitting error is of orderO(
√
ε δt) in l2(L2(Ω))

which is a remarkable result because the splitting error can be made as small as de-
sired (with ε small enough) until machine precision and thus completely negligible
with respect to the time error of the scheme, i.e, O(δt2) in the present case.

5. Numerical experiments

In this section, we give some numerical results in order to verify the theoretical
results obtained in Section 4. First, we examine the accuracy of the method on
a standard Navier-Stokes benchmark, namely the computation of Taylor-Green
vortices. Second, we test the time accuracy of the velocity and the pressure in
the case of the Stokes flow with Dirichlet boundary conditions. In addition, we
check the L2-norm of the velocity divergence. Finally, we conduct a comparative
and qualitative study between the V PP method presented in this paper and some
pressure-correction schemes often used in the literature for the solution of non-
stationary incompressible flow problems (see, e.g., [18, 27]).

Before presenting the numerical experiments, we note that the simulations pre-
sented are performed with a formally second-order scheme in time, i.e., the second-
order backward difference formula (BDF2) to march in time and the second-order
Richardson’s extrapolation to extrapolate the pressure. Concerning the spatial dis-
cretization, the V PP method is implemented with a finite volume solver on the
classical Marker and Cells grid (MAC mesh) of Harlow and Welch [29]. In our
implementations, pressure unknowns are calculated at the cell-center and velocity
components at mid-faces. Additionally, the method is initialized with a first time
step performed with a standard backward Euler scheme. Finally, in order to solve
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the symmetric linear systems obtained in the prediction and projection steps, we
are running the Conjugate Gradient (CG) method with the zero-order Incomplete
Cholesky (IC(0)) as a preconditioner. The stopping criterion for the iterative (CG)
method is chosen such that ||res||2 ≤ 10−6, where res denotes the residuals at the
current CG iteration.

5.1. Taylor-Green vortex. As a first benchmark for the proposed method, the
non-dimensional unsteady incompressible nonlinear Navier-Stokes equations are
solved on a two-dimensional square domain for the Taylor-Green vortex decay-
ing problem. In fluid dynamics, the Taylor-Green vortex is a two-dimensional,
unsteady flow of a decaying vortex which has exactly the same closed form solution
of incompressible Navier-Stokes equations in Cartesian coordinates. We adjust the
source term f in such a way that the exact solutions of the nonlinear Navier-Stokes
problem for velocity and pressure become

u(x, y, t) = − sin(
πx

2
) cos(

πy

2
) exp(−2µt),

v(x, y, t) = cos(
πx

2
) sin(

πy

2
) exp(−2µt),

p(x, y, t) =
1

4π
(cos(πx) + cos(πy)) exp(−4µt).

The chosen computational domain is the square ]0, 1[×]0, 1[ and the velocity is

imposed on the whole boundary. The viscosity is set to µ = 0.01 where µ =
1

Re
.

We vary the time step δt to investigate the temporal accuracy. We choose δt
sufficiently small to satisfy the usual CFL condition.

Fig. 1 shows the difference between the numerical and the analytical solution at
T = 2 measured in the L2-norm for the velocity and for the pressure. These curves
are drawn for the 128 × 128 mesh with r = 10−2 and ε=10−10. In both cases,
the error decreases with the time step. We observe that the convergence rate is of
order 1.85 for the velocity and the pressure. Note that the saturations observed for
very small time steps are due to the approximation error in space which becomes
dominant for very small time steps.

Moreover, we compute the L2-norm of the velocity divergence as a function of
ε. We repeat this test for two different values of Reynolds number: Re = 1 and
Re = 100. The time step δt is set to 5× 10−1. The results are illustrated in Fig. 2
at the final time T=2. Both curves show that when ε tends to 0, the L2-norm of
the velocity divergence tends also to 0. For example, taking ε = 10−4 with Re = 1,
the value of the L2-norm of velocity divergence is approximately equal to 10−6. It
is equal to 10−5 for Re = 100. Moreover, we observe that the velocity divergence
is vanishing approximately with an order of O(ε δt). Finally, we notice that the
values of the L2-norm of velocity divergence for Re = 1 seem smaller than those
computed for Re = 100.

5.2. A Stokes flow with Dirichlet boundary conditions. We consider a square
domain Ω =]0, 1[2 and we enforce nonhomogeneous Dirichlet boundary conditions
on ∂Ω. The tests are performed using the following analytical solution which defines
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the right hand-side of the balance momentum equation of the linearized Navier-
Stokes equations (known as Stokes equations).

v(x, y, t) = (sin(x+ t) sin(y + t), cos(x+ t) cos(y + t)),

p(x, y, t) = cos(x− y + t),

This test case is the same studied in [18, 30]. In order to check the accuracy in
time, we plot the errors of the velocity and the pressure (or the pressure gradient) in
the L2-norm for different values of the augmentation parameter r ranging between 0
and 1 at time T = 2. In the computations reported herein, the mesh size h is equal
to 1/128 so that the spatial discretization errors are negligible compared with the
time discretization errors. The time steps tested are in the range 10−3 ≤ δt ≤ 100.
We choose a penalty parameter small enough: ε = 10−10.

First, we present in Fig. 3 and Fig. 4 the L2-norm of the error of the velocity
and the pressure gradient respectively as a function of the time step while choosing
the augmentation parameter r equal 0. We observe in Fig. 3 that the convergence
rate in time for the velocity is clearly of order 2, as predicted by Theorem 4.3. In
addition, a convergence order of 2 is observed for the pressure gradient in Fig. 4.
This result is in agreement with the error estimates established in Corollary 1.

Indeed, the vector penalty-projection method with three different nonzero values
of r: 10−4, 10−2 and 1 gives for the velocity and the pressure the same temporal
convergence rate as the case of r = 0, i.e, we obtain a convergence order of 2 in
L2-norm for both velocity and pressure (see Fig. 5 and Fig. 6 respectively).

As a conclusion on the convergence rate in time in presence of Dirichlet conditions
on the boundaries, the V PP method improves the order of pressure from O(δt) to
O(δt2) compared to the standard incremental pressure-correction scheme [27]. The
V PP method provides also a higher-order than the rotational incremental pressure-
correction (order of 3/2 in L∞ − norm) and the scalar penalty-projection scheme
[18]. However, the convergence rate of order 2 for the velocity remains the same
as in the standard and rotational pressure-correction methods [27] and also in the
scalar penalty-projection scheme [18].

Besides, we plot in Fig.7 the L2-norm of the velocity divergence as a function
of the penalty parameter ε. We fix δt at 10−1 and the augmentation parameter r
at 0. The curve shows that when the penalty parameter is chosen small enough
and tends to 0, the velocity divergence decreases and tends also to 0. Additionally,
we observe that the L2-norm of the velocity divergence vanishes roughly as O(εδt)
with ε sufficiently small. Finally, Fig. 8 illustrates the L2-norm of the velocity
divergence as a function of the time step δt with ε = 10−6. We notice that the
velocity divergence is approximately of order O(εδt) with a penalty parameter ε
small enough. We repeat in Fig.9 and Fig. 10 the same tests with an augmentation
parameter r equal to 10−2. Again, we observe that the L2-norm of the velocity
divergence vanishes as O(εδt).

6. Concluding remarks

In this article, we have analyzed the second-order vector penalty-projection
method for the incompressible Stokes problem with Dirichlet conditions enforced
on the entire boundary. Our conclusions are twofold.

First, we have shown the stability of the scheme using BDF2 to discretize in time.
Moreover, we have shown that, while the Dirichlet boundary conditions imposed
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Figure 9. Stokes problem - Velocity divergence L2-norm versus
ε at T=2, mesh size 1/h = 128 and r = 10−2.
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on the velocity degenerate into a nonrealistic Neumann boundary condition for
the pressure in the case of the usual projection methods [27], the second-order
vector penalty-projection method leads to optimal error estimates since it preserves
the original Dirichlet conditions. Consequently, the pressure approximation is no
longer plagued by an artificial Neumann boundary condition. As a result, the V PP
method provides optimal temporal convergence of order 2 theoretically as well as
numerically; more precisely, the vector penalty-projection method yields O(δt2)
accuracy for both the velocity and the pressure in the norm of l∞(L2(Ω)) and
l2(L2(Ω)) respectively. The counterpart in this method is that the divergence of
the velocity at each time step is not exactly zero, as for the projection methods (at
least in the semi-discrete setting in time), since the V PP velocity correction step
is proved to be an approximate divergence-free projection [7, 1]. However, it is not
really a drawback since the velocity divergence is in practice of order O(εδt) with
a penalty parameter ε taken as small as desired up to machine precision.

Second, we have shown that this family of methods opens the way to the splitting
methods with an order of time convergence greater than 2 since the splitting error
for velocity and pressure varies as O(ε) which can be made negligible with respect
to the consistency error of higher-order schemes when ε is chosen sufficiently small.
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