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AN AUGMENTED IIM & PRECONDITIONING TECHNIQUE

FOR JUMP EMBEDDED BOUNDARY CONDITIONS

PHILIPPE ANGOT1 AND ZHILIN LI2

Abstract. A second-order accurate augmented method is proposed and analyzed in this paper

for a general elliptic PDE with a general boundary condition using the jump embedded boundary

conditions (JEBC) formulation. First of all, the existence and uniqueness of an interface problem

with given are discussed. Then, the well-posedness theory is extended to the interface problems

with given jump conditions. In the proposed numerical method, one novel idea is to precondition-

ing the PDE first so that the coefficient of the highest derivative is of O(1). The second idea is

to introduce two augmented variables corresponding to the jump in the solution and its normal

derivative along the boundary to get an interface problem. For a piecewise constant coefficient, the

fast Poisson solver then can be utilized in a rectangular domain. The augmented variables can be

determined from a Schur complement system. We also propose two preconditioning techniques for

the GMRES iterative method for the Schur complement; one is from the flux jump condition, and

the other one is from the algebraic preconditioner based on the interpolation scheme in the aug-

mented algorithm. The presented numerical results show that the proposed method has not only

obtained second order accurate solutions in the L∞ norm globally, but also second order accurate

normal derivatives at the boundary from each side of the interface. The proposed preconditioning

technique can speed up 50-90% compared with the method without preconditioning.

Key words. Jump embedded boundary conditions (JEBC), augmented immersed interface

method, fast Poisson solver, irregular domain, PDE and algebraic preconditioner.

1. Introduction and mathematical formulation

Let Ω ⊂ R
d (d=2 or 3 in practice) be an open bounded and connected set with a

Lipschitz continuous boundary Γ := ∂Ω, and ν be the outward unit normal vector

on Γ. The domain Ω is composed of two disjoint Lipschitz subdomains, the interior

domain Ω− and the exterior one Ω+ separated by a Lipschitz continuous interface

Σ ⊂ R
d−1 such that Ω = Ω− ∪ Σ ∪ Ω+, as shown in Figure 1. The extension to

several closed interfaces is straightforward. The case of more general situations

when Σ cuts Γ can be treated as well but it is more technical and we refer to [9]

for the trace theory. Let n be the unit normal vector on the interface Σ arbitrarily

oriented from Ω− to Ω+.

We use the standard notations for the Lebesgue and Sobolev spaces, e.g. [8, 15].

In particular, ‖.‖0,Ω denotes the L2(Ω)-norm, ‖.‖1,Ω the H1(Ω)-norm, ‖.‖−1,Ω for

the H−1(Ω)-norm, (., .)0,Ω for the L2(Ω)-inner product, and 〈., .〉−1,Ω for the duality

pairing between H−1(Ω) and H1
0 (Ω) or 〈., .〉−1/2,Σ for the duality pairing between

H−1/2(Σ) and H1/2(Σ). We also define the Hilbert spaces below with their usual
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Figure 1. Configuration of the interface problem with a closed

surface Σ bordering the subdomain Ω− and Ω = Ω− ∪ Σ ∪ Ω+.

The domain and the interface are used in the numerical experi-

ments.

respective inner products and associated norms:

Hdiv(Ω) =
{
u ∈ L2(Ω)d; ∇·u ∈ L2(Ω)

}
,

H1
0Γ(Ω) =

{
u ∈ H1(Ω); u = 0 on Γ

}
.

For any quantity ψ defined all over Ω, the restrictions on Ω− or Ω+ are respec-

tively denoted by ψ− := ψ|Ω− and ψ+ := ψ|Ω+ . For a function ψ having a jump on

Σ, let ψ−
|Σ and ψ+

|Σ be the traces of ψ− and ψ+ on each side of Σ (at least defined

in a weak sense), respectively. Following the general framework defined in [3] for

scalar elliptic problems with jump interface conditions or its extension to vector

problems in [4], let us define the jump of ψ on Σ oriented by n and the arithmetic

mean of traces of ψ by :

[[ψ]]Σ :=
(
ψ+ − ψ−

)
|Σ
, and ψΣ :=

1

2

(
ψ+ + ψ−

)
|Σ
.

Thus we have also :

ψ+
|Σ = ψΣ +

1

2
[[ψ]]Σ, and ψ−

|Σ = ψΣ −
1

2
[[ψ]]Σ.

The interest for choosing such reduced quantities [[ψ]]Σ and ψΣ will appear later

with the weak formulation. Let us already notice that when [[ψ]]Σ = 0, then we

have continuous traces across Σ and ψΣ = ψ−
|Σ = ψ+

|Σ = ψ|Σ.

1.1. The classical interface problem with given jumps. The standard scalar

elliptic problem considered by Immersed Interface Methods (IIM) [13] reads as
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follows where the jumps of both the solution and normal flux are given on Σ:

(1)





−∇· (a∇u) = f in Ω− ∪ Ω+,

u = 0 on Γ,

[[u]]Σ = U on Σ ,

[[(a∇u)·n]]Σ = φ on Σ .

The diffusion tensor a ∈ L∞(Ω)d×d is bounded, symmetric and uniformly positive

definite, i.e. there exists a0 > 0 such that:

(a(x) ξ) · ξ ≥ a0 |ξ|
2, for all ξ ∈ R

d, for a.e. x ∈ Ω,

where |.| denotes the Euclidean norm in R
d.

Let us recall the solvability result of this problem by considering the Hilbert

space:

W :=
{
u ∈ L2(Ω); u− = u|Ω− ∈ H1(Ω−), u+ = u|Ω+ ∈ H1

0Γ(Ω
+)

}
,

equipped with the Hilbertian norm (and associated natural inner product) defined

by:

‖u‖2W := ‖u‖20,Ω + ‖∇u‖20,Ω− + ‖∇u‖20,Ω+ , ∀u ∈ W.

Theorem 1.1 (Well-posedness of the interface problem (1) with jumps).

With the data f ∈ L2(Ω), U ∈ H1/2(Σ) and φ ∈ H−1/2(Σ), the problem (1) admits

a unique solution u ∈W .

When U = 0, the solution u belongs to H1
0 (Ω) and satisfies the weak form below

for all ϕ ∈ H1
0 (Ω):

(2)

∫

Ω−

(a∇u)·∇ϕdx +

∫

Ω+

(a∇u)·∇ϕdx =

∫

Ω

f ϕdx− 〈φ, ϕ〉−1/2,Σ .

Proof.

i) Existence and uniqueness for the case U = 0.

With f ∈ L2(Ω) and u ∈ H1(Ω), since the surface Σ is closed completely bor-

dering Ω−, we have (a∇u)± ∈ Hdiv(Ω
±) and thus (a∇u)± admit normal traces

defined in a weak sense (a∇u)·n±
|Σ ∈ H−1/2(Σ) on both sides of the interface Σ;

see e.g. [9].

Then, taking the L2-inner product of the Poisson equation in problem (1) over the

subdomains Ω− and Ω+ and using Green’s formula, we get respectively for any test

function ϕ ∈ H1
0 (Ω) since [[ϕ]]Σ = 0 and ϕ|Σ ∈ H1/2(Σ):

∫

Ω−

(a∇u)·∇ϕdx−
〈
(a∇u)·n−

|Σ, ϕ
〉
−1/2,Σ

=

∫

Ω−

f ϕdx,

∫

Ω+

(a∇u)·∇ϕdx+
〈
(a∇u)·n+

|Σ, ϕ
〉
−1/2,Σ

=

∫

Ω+

f ϕdx.

By summing the two previous equalities, we have for all ϕ ∈ H1
0 (Ω):

(3)

∫

Ω−

(a∇u)·∇ϕdx+

∫

Ω+

(a∇u)·∇ϕdx

+ 〈[[(a∇u)·n]]Σ, ϕ〉−1/2,Σ =

∫

Ω−∪Ω+

f ϕdx.
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Now, introducing the given normal flux jump φ ∈ H−1/2(Σ), it appears that any

solution u to the problem (1) satisfies the weak form (2).

Then, as an easy consequence of the Lax-Milgram theorem with Poincaré in-

equality, there exists a unique solution u ∈ H1
0 (Ω) satisfying the weak form (2).

Conversely, let us consider u ∈ H1
0 (Ω), with thus [[u]]Σ = 0, and verifying (2).

By choosing in (2) any test function ϕ ∈ H1
0 (Ω) such that ϕ− ∈ H1

0 (Ω
−) extended

by ϕ+ = 0, it appears immediately using a standard integration by part that u−

satisfies the Poisson equation of (1) in Ω−. Similarly, choosing any ϕ ∈ H1
0 (Ω) such

that ϕ+ ∈ H1
0 (Ω

+) and ϕ− = 0, shows that u+ verifies the Poisson equation of (1)

in Ω+. Thus, u satisfies the Poisson equation of (1) in the L2 sense and the weak

form (3) holds for all ϕ ∈ H1
0 (Ω).

It remains to recover the flux jump equation on Σ. By considering the difference

between the equations (3) and (2), we get:

〈[[(a∇u)·n]]Σ, ϕ〉−1/2,Σ = 〈φ, ϕ〉−1/2,Σ , ∀ϕ ∈ H1
0 (Ω).

It yields finally that u satisfies the equation for the given normal flux jump on Σ:

[[(a∇u)·n]]Σ = φ ∈ H−1/2(Σ).

Indeed, any function ψ ∈ H1/2(Σ) can be interpreted as the trace on Σ of a function

ϕ ∈ H1
0 (Ω). It suffices to define ϕ ∈ H1

0 (Ω) by its restrictions ϕ− and ϕ+ as

the solutions of the Dirichlet problems in Ω− and Ω+ respectively and verifying

[[ϕ]]Σ = 0: 



∆ϕ = 0 in Ω− ∪ Ω+,

ϕ = 0 on Γ,

ϕ−
|Σ = ϕ+

|Σ = ψ on Σ.

Thus, we have proved that the unique solution u ∈ H1
0 (Ω) to the weak form (2)

satisfies the problem (1).

ii) Existence for the general case U 6= 0.

Let us construct a suitable extension v ∈ W of the given function U ∈ H1/2(Σ)

such that [[v]]Σ = U on Σ. That will hold by considering the restrictions v− and v+

as the solutions of the Dirichlet problems below in Ω− and Ω+ respectively:

(4)





−∇· (a∇v+) = f+ in Ω+,

v+ = 0 on Γ,

v+
∣∣
Σ
= U/2 on Σ.

(5)

{
−∇· (a∇v−) = f− in Ω−,

v−
∣∣
Σ
= −U/2 on Σ.

There exists a unique solution v+ ∈ H1
0Γ(Ω

+) to the non-homogeneous Dirichlet

problem (4). Similarly, there exists a unique solution v− ∈ H1(Ω−) to the non-

homogeneous Dirichlet problem (5). Hence, this defines a function v ∈ W all over

Ω verifying [[v]]Σ = U on Σ with (a∇v)·n±
|Σ ∈ H−1/2(Σ) since f ∈ L2(Ω) and thus

[[(a∇v)·n]]Σ ∈ H−1/2(Σ).
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Then, we consider the difference w := u − v where u satisfies (1). Using the

linearity of the problem, w necessarily satisfies by construction [[w]]Σ = 0 and the

problem below:

(6)





−∇· (a∇w) = 0 in Ω− ∪ Ω+,

w = 0 on Γ,

[[w]]Σ = 0 on Σ,

[[(a∇w)·n]]Σ = φ− [[(a∇v)·n]]Σ on Σ.

Since now (φ − [[(a∇v)·n]]Σ) belongs to H−1/2(Σ) and [[w]]Σ = 0, it results from

the first part i) that the problem (6) admits a unique solution w ∈ H1
0 (Ω).

Hence, we have constructed as least one solution u ∈ W to problem (1) by

defining u := v + w.

iii) Uniqueness.

Let us suppose that there exists two solutions u and v in W to the problem (1).

Then, with the linearity of the problem, the difference w := u− v satisfies the same

problem with null data:




−∇· (a∇w) = 0 in Ω− ∪ Ω+,

w = 0 on Γ,

[[w]]Σ = 0 on Σ,

[[(a∇w)·n]]Σ = 0 on Σ.

This immediately gives w = 0 and thus u = v, which ends the proof. �

1.2. The interface problem with JEBC.

The so-called Jump Embedded Boundary Conditions (JEBC) were introduced

in [2, 3] in order to generalize the interface problem (1) with given jumps. They

still consider jumps of both the solution and normal flux on Σ, but they are no

longer explicitly given and formulated using the reduced quantities [[ψ]]Σ and ψΣ

for the solution and normal flux.

The scalar elliptic problem with JEBC on Σ reads:

(7)





−∇· (a∇u) = f in Ω− ∪ Ω+,

u = 0 on Γ,

[[(a∇u)·n]]Σ = αuΣ + g on Σ ,

(a∇u)·nΣ = γ [[u]]Σ + z on Σ .

Here, f ∈ L2(Ω) is given as well as the data on Σ: the positive and bounded

functions 0 ≤ α, γ ∈ L∞(Σ) and g, z ∈ H−1/2(Σ).

In the special case with α = γ = 0, the problem (7) amounts to solve a

mixed Dirichlet-Neumann problem in Ω+ and a pure Neumann problem in Ω− with

(a∇u)·n−
|Σ = z − g/2. Thus, the latter problem requires the usual compatibility

condition of the data:

〈z − g/2, 1〉−1/2,Σ +

∫

Ω−

f− dx = 0,
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to get a unique solution u− ∈ H1(Ω−)/R up to an additive constant.

Following [2, 3], let us give a nice weak form of problem (7) in the Hilbert space

W . It is useful here to introduce on W the following suitable norms and associated

inner products:

‖u‖2W := ‖∇u−‖20,Ω− + ‖∇u+‖20,Ω+ + ‖[[u]]Σ‖0,Σ, ∀u ∈ W

or ‖u‖2W := ‖∇u−‖20,Ω− + ‖∇u+‖20,Ω+ + ‖uΣ‖0,Σ, ∀u ∈W

Indeed, it is an easy matter to show that each of them defines an Hilbertian norm

on W using the Poincaré inequality in the subdomain Ω+.

Using Green’s formula in Ω− and Ω+ respectively, we have for a solution u ∈W

of problem (7) and for all ϕ ∈ W :
∫

Ω−

(a∇u)·∇ϕdx −
〈
(a∇u)·n−

|Σ, ϕ
−
|Σ

〉
−1/2,Σ

=

∫

Ω−

f ϕdx,

∫

Ω+

(a∇u)·∇ϕdx +
〈
(a∇u)·n+

|Σ, ϕ
+
|Σ

〉
−1/2,Σ

=

∫

Ω+

f ϕdx.

We sum up these equations using the key ”± equality” below:

(8)〈
(a∇u)·n+

|Σ, ϕ
+
|Σ

〉
−1/2,Σ

−
〈
(a∇u)·n−

|Σ, ϕ
−
|Σ

〉
−1/2,Σ

= 〈[[(a∇u)·n]]Σ, ϕΣ〉−1/2,Σ +
〈
(a∇u)·nΣ, [[ϕ]]Σ

〉
−1/2,Σ

.

Then, we get:

(9)

∫

Ω−

(a∇u)·∇ϕdx+

∫

Ω+

(a∇u)·∇ϕdx

+ 〈[[(a∇u)·n]]Σ, ϕΣ〉−1/2,Σ +
〈
(a∇u)·nΣ, [[ϕ]]Σ

〉
−1/2,Σ

=

∫

Ω−∪Ω+

f ϕdx, for all ϕ ∈W.

Now inputting the jump interface conditions JEBC on Σ and using the continuous

embedding H1/2(Σ) →֒ L2(Σ) →֒ H−1/2(Σ), it yields the weak form of problem (7)

in W :

(10)∫

Ω−

(a∇u)·∇ϕdx+

∫

Ω+

(a∇u)·∇ϕdx

+

∫

Σ

αuΣ ϕΣ ds+

∫

Σ

γ [[u]]Σ [[ϕ]]Σ ds

=

∫

Ω−∪Ω+

f ϕdx− 〈g, ϕΣ〉−1/2,Σ − 〈z, [[ϕ]]Σ〉−1/2,Σ , ∀ϕ ∈ W.

Let us prove for completeness the solvability result of problem (7), excluding the

particular case when α = γ = 0 for sake of shortness.

Theorem 1.2 (Well-posedness of the interface problem (7) with JEBC).

With the data f ∈ L2(Ω), g, z ∈ H−1/2(Σ) and 0 ≤ α, γ ∈ L∞(Σ) (excluding the

particular case α = γ = 0), the problem (7) admits a unique solution u ∈ W which
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satisfies the weak problem (10) and the following energy equality:

∫

Ω−∪Ω+

(a∇u)·∇u dx+

∫

Σ

α |uΣ|
2 ds+

∫

Σ

γ |[[u]]Σ|
2 ds

=

∫

Ω−∪Ω+

f u dx− 〈g, uΣ〉−1/2,Σ − 〈z, [[u]]Σ〉−1/2,Σ .

Moreover, if the data g, r are given in L2(Σ), then we get the extra-regularity of

the normal fluxes: [[(a∇u)·n]]Σ, (a∇u)·nΣ ∈ L2(Σ) and thus (a∇u)·n±
|Σ ∈ L2(Σ).

Proof.

We have already shown that any solution u ∈W of problem (7) also satisfies the

weak form (10). By applying the Lax-Milgram theorem in W equipped with one

of the suitable Hilbertian norms defined above (to deal with the particular cases

when α = 0 with γ 6= 0 or α 6= 0 with γ = 0), there exists a unique solution u ∈W

to the weak problem (10).

Conversely, if u ∈ W is the solution of (10), we have already u|Γ = 0, and it is easy

to show that u satisfies the Poisson equation of problem (7) in the L2 sense both in

Ω− and Ω+. Indeed, it suffices to choose in (10) any test function ϕ ∈ H1
0 (Ω) ⊂W

such that, either ϕ− ∈ H1
0 (Ω

−) extended with ϕ+ = 0, or ϕ+ ∈ H1
0 (Ω

+) with

ϕ− = 0. Thus, the weak form (9) also holds since f ∈ L2(Σ).

It remains to recover the jump interface conditions JEBC on Σ.

By doing the difference between (9) and (10), we have for all ϕ ∈W :

(11)

〈[[(a∇u)·n]]Σ, ϕΣ〉−1/2,Σ +
〈
(a∇u)·nΣ, [[ϕ]]Σ

〉
−1/2,Σ

= 〈(αuΣ + g), ϕΣ〉−1/2,Σ + 〈(γ [[u]]Σ + z), [[ϕ]]Σ〉−1/2,Σ
.

Let us now take any function ψ ∈ H1/2(Σ) and let us consider ϕ ∈ H1
0 (Ω) such

that [[ϕ]]Σ = 0 by definition of H1(Ω) and ϕΣ = ϕ|Σ = ψ defined by its restrictions

ϕ− and ϕ+ as the solutions of the Dirichlet problems below over Ω− and Ω+:





∆ϕ = 0 in Ω− ∪ Ω+,

ϕ = 0 on Γ,

ϕ−
|Σ = ϕ+

|Σ = ψ on Σ.

Then (11) gives:

〈[[(a∇u)·n]]Σ, ψ〉−1/2,Σ
= 〈(αuΣ + g), ψ〉−1/2,Σ , ∀ψ ∈ H1/2(Σ).

Thus, the first jump interface condition of problem (7) is satisfied in the weak sense

of H−1/2(Σ).
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Let us now take ϕ ∈W such that [[ϕ]]Σ = ψ with ϕΣ = 0 defined by its restrictions

ϕ− and ϕ+ as the solutions of the Dirichlet problems below in Ω− and Ω+:




∆ϕ = 0 in Ω− ∪ Ω+,

ϕ = 0 on Γ,

ϕ+
|Σ = ψ/2 on Σ,

ϕ−
|Σ = −ψ/2 on Σ.

Then (11) gives:
〈
(a∇u)·nΣ, ψ

〉
−1/2,Σ

= 〈(γ [[u]]Σ + z), ψ〉−1/2,Σ , ∀ψ ∈ H1/2(Σ).

Hence, the second jump interface condition of problem (7) is also satisfied in the

weak sense of H−1/2(Σ), which concludes the proof. �

1.3. Main interests of JEBC.

The jump interface conditions in problem (7) have many interesting features.

First, the weak form (10) can be directly exploited for the numerical approximation

of (7) with finite elements, extended finite elements, finite volumes with gradient

schemes or discontinuous Galerkin methods. We refer for example to the finite

volumes scheme proposed and analysed in [2] for an interface-fitted unstructured

mesh. This scheme is also numerically experimented for the JEBC with Cartesian

grids and nested multi-level mesh refinements, either in the case of a diffuse or

spread discrete interface in [17] as for the Immersed BC method [16], or for a sharp

interface in [18].

Other interests lie in the different sub-models which can be obtained from prob-

lem (7):

a) The choice α = g = 0 gives the condition of the imperfect contact on Σ

with no flux jump [[(a∇u)·n]]Σ = 0:

(a∇u)·n|Σ = γ [[u]]Σ + z on Σ.

The perfect transmission is easily recovered with h = 0 and a surface

penalty γ = 1/ε with 0 < ε ≪ 1, which gives [[u]]Σ = 0 at the limit

when ε→ 0; see [3].

b) In the same spirit, the model with flux jumps and no jump of solution is

obtained with z = 0 and γ = 1/ε, which gives [[u]]Σ = 0 at the limit when

ε→ 0 and the Stefan-like interface condition:

[[(a∇u)·n]]Σ = αu|Σ + g on Σ.

c) The problem (1) can be also easily recovered from (7) by taking α = 0,

g = φ, γ = 1/ε with z = −U/ε, which gives [[u]]Σ = U at the limit when

ε → 0; see [4, Theorem 1.2]. By the way, this result gives another proof of

existence of solution to problem (1) by passing to the limit in problem (7)

when the penalty parameter ε goes to zero.

d) It is also discussed and analysed in [3] how to get the Dirichlet, Neumann,

or even the Robin (Fourier) boundary conditions on Σ in the framework of

fictitious domain method.
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e) The JEBC are naturally generalized in [4] for vector elliptic problems like

the Stokes, Brinkman or elasticity problems.

f) The general framework introduced in [4] provides the means to study several

jump interface conditions of the velocity and stress vectors for the incom-

pressible viscous flow at a fluid-porous interface. Indeed, the Stokes/Brinkman

and Stokes/Darcy problems are theoretically analysed in [5, 6].

In this paper, we apply the augmented immersed interface method (AIIM) based

on a finite difference discretization to solve the problem (7) by introducing two

augmented variables q1 = [[u]] and q2 = [[un]] = [[∂nu]] so that we can decouple

the complicated interface conditions in (7) and to obtained an accurate discretiza-

tion using the IIM. The augmented variables are only defined along the interface

and have co-dimension one compared with that of the solution. The augmented

variables should satisfy a Schur complement system that is solved by the GMRES

iteration. Both preconditioning techniques based on the continuous form of the

problem and an efficient algebraic preconditioner are developed and studied. The

preconditioner techniques provide about 50 − 90% speed-up compared with that

without preconditioning.

2. The numerical method

For simplicity of the discussion, we assume that the coefficient a(x) is a piecewise

constant,

a(x) =

{
β+ if x ∈ Ω+,

β− if x ∈ Ω−,
(12)

and a(x) ≥ β0 > 0. For variable coefficients, the approach should also work with

the recent work in [14].

With given augmented variable q1 ∈ C2(Σ) and q2 ∈ C1(Σ), we precondition the

governing PDE (7) and solve the following problem,

−∆u =
1

β
f(x), x ∈ Ω+ ∪ Ω− − Σ,(13)

[[u ]]Σ = q1, [[∇u · n ]]Σ = q2.(14)

With the immersed interface method [13], this step is equivalent to a fast Poisson

solver such as an FFT [1].

The solution u(x) above is a functional of q1(X) and q2(X) and can be written

as uq1,q2 . The solution to the original problem (7) is the one with particular choice

of (q∗1 , q
∗
2) such that

[[β∇uq∗
1
,q∗

2
· n ]]

X
= α uq∗

1
,q∗

2

∣∣
X
+ g(X), X ∈ Σ,(15)

β∇uq∗
1
,q∗

2
· n

∣∣∣
X

= γ[[uq∗
1
,q∗

2
]]
X
+ z(X), X ∈ Σ.(16)

The (13)-(16) are the continuous version of the augmented method.
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2.1. The augmented method in discrete form. Without loss of generality, we

assume that Ω+ ∪ Ω− is a rectangular domain [a b] × [c d]. In discretization, we

assume that b − a = d − c for convenience of presentation. Given a parameter N ,

we set up a uniform Cartesian grid with h = (b− a)/N ,

(17) xi = a+ ih; yj = c+ jh, i, j = 0, 1, · · · , N.

We use a cubic periodic spline [11] to represent the closed interface by providing

a set of control points Xk = (Xk, Yk), k = 1, 2, · · · , Nb. Then the augmented

variables and the interface conditions are defined and discretized at the control

points. With the values at control points for a surface function, we can find the

value, the first and second order surface derivatives at any point on the surface with

order O(h3s) for the function, O(h2s) for the first order, and O(hs) for the second

order derivatives, respectively, where hs is the mesh size of the discretization of the

interface and we choose hs ∼ h. We also obtain the tangential and normal directions

with accuracy of O(h2s) and the curvature with accuracy of O(hs) information of

the interface.

With the immersed interface method, given discrete values of q1 and q2, we use

the standard centered five point finite difference stencil to discretize the PDE at all

grid points where the solution is unknown as

−
Ui−1,j + Ui+1,j + Ui,j−1 + Ui,j+1 − 4Ui,j

h2
=

1

β±
fi,j + Ci,j ,(18)

where Ui,j ≈ u(xi, yj) is the finite difference solution at (xi, yj), the ’+’ and ’−’ in

β± are determined according to the location of the grid point. If a grid point is

on the interface, then we pre-define it as on one particular side. At a regular grid

point (xi, yj), that is, all grid points involved in the finite difference scheme above

are from one side of the interface, the correction term Ci,j is zero. At an irregular

grid point where at least one grid point involved in the finite difference scheme

above is from a different side of the interface, the correction term Ci,j typically is

non-zero and determined from the IIM, see for example, [13]. The correction term

Ci,j depends on the discrete augmented variables Q1,k ≈ q1(Xk), Q2,k ≈ q2(Xk),

k = 1, 2, · · ·Nb linearly.

Let us put the discrete solution {Uij} together as a vector U whose dimension is

O(MN), where M and N are the number of grid lines in the x- and y- directions,

respectively. We denote also the vector of the discrete values of (q1, q2) at the

control points {Xk} by Q whose dimension is O(2Nb). Then the discrete solution

of (18) given Q can be written as

AU+BQ = F1(19)

for some vector F1 and sparse matrices A and B.

The next step is to evaluate the residual of the augmented equations (7). This

step involves local interpolations and it is equivalent to discretize the interface

conditions in (7).

At each control point Xl, we interpolate the discrete solution {Uij} to get their

values, normal and tangential derivatives from each side of the interface, U±
k , (∂U∂n )

±
k ,

(∂U∂τ )
±
k and so on. Note that, for Poisson/Helmholtz equations with known jump
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conditions in the solution and the normal derivative, the computed solution and

first order partial derivatives at grid points are second order accurate with central

finite difference schemes plus correction terms, see for example, [7]. From the second

order accurate values at grid points, we also get second order accurate values at

the control points since the coefficients of the interpolation are O(1).

The discretized residual of the interface conditions (15)-(16) can be written

(20) R(Q) = CU+DQ− F̃2

for some sparse matrices C and D. The approximate solution (U,Q) should satisfy

R(Q) = 0 and (19), or the following system of equations,

(21)

[
A B

C D

] [
U

Q

]
=

[
F̃1

F̃2

]
.

The Schur complement for Q is

(D − CA−1B)Q = F̃2 − CA−1F̃1 = F̄, or SQ = F̄,(22)

where A−1F̃1 is the result of the Poisson solver for a regular problem given the

source term F̃1. It has been shown in [13] and other related papers, that the

matrix-vector multiplication SQ given Q is simply

SQ = R(Q) + F̄ = R(Q)−R(0),(23)

where R(Q) = SQ − F̄. The right hand side of SQ = F̄ can be computed from

−R(0) which corresponds to the residual of the interface condition with zero values

of augmented variables, which is the result from the regular Poisson equations on

the rectangular domain.

It is time and memory consuming to form those matrices and the Schur comple-

ment at each iteration. Instead, we use the GMRES iterative method to solve for

Q. The GMRES iterative method only requires the matrix-vector multiplication

which contains the two steps: (1) solve for U from AU = F1 − BQ; (2) compute

the residual of the boundary condition R(Q) = CU+DQ−F2. We skip the details

here since they can be found in [12].

2.2. Preconditioning strategies. Because of the general boundary conditions

in (7), in general, we do not have fast convergence of the GMRES method. The

number of GMRES iterations depends on the geometry and the mesh size. There

are several different ways both in continuous and discrete level to precondition the

system. Dividing the coefficient from the highest derivative terms in (13) itself is

an efficient preconditioning technique in the continuous level.

In [10], an efficient preconditioning strategy is developed for the fast immersed

interface method corresponding to the augmented Poisson equation (13)-(16) for

interface problems, that is, γ is large and α is small. The idea is to force the flux
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jump condition as much as we can by using,

(24)

If β+ < β− :





U+
n is determined by an interpolation,

U−
n =

V − β+Q

β+ − β−
,

If β+ > β− :





U−
n is determined by an interpolation,

U+
n =

V − β−Q

β+ − β−
.

where V = α uq∗
1
,q∗

2

∣∣
X

+ g(X) in discrete form from (7), we refer the readers to

[10, 13] for more details. This preconditioning is still quite efficient if γ is large

enough so that the original problem is close to a standard interface problem in

which we know the jump in the solution and the flux for the elliptic interface

problem. However, the preconditioning techniques has only marginal effect for

modest or small γ.

In [19], a sophisticated preconditioning technique is developed for the augmented

IIM as well as for general linear system of equations. The implementation is non-

trivial though. In this paper, we have developed an alternative and simpler algebraic

preconditioning technique that takes advantage of the algorithm and structure of

the numerical method explained above, which is somewhat similar to right block

diagonal preconditioning technique.

Let the dimension of the Schur complement matrix be Ns ×Ns with Ns = 2Nb.

In the simple preconditioning strategy, we take a parameter L as the number of

the targeted block preconditioning, an integer between 10 ∼ 30 such that Ns/L is

close to an integer. Also L/2 should be close to the number of interpolation grid

points involved in discretizing the boundary conditions (15)-(16). Let Ns = KL+r,

that is, we use K blocks plus remainder r as the left block preconditioning. We

construct

Ī =




IL
IL
IL
...

IL

ĨL




, where ĨL =
[
Ir 0r×r

]
(25)

where IL is the identity matrix of L by L, Ir is the identity matrix of r by r, the

zero matrix has dimension of r by L− r. Let

P̄ = SĪ =




B1

B2

B3

...

BK

B̃r




,(26)
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where B̃r = [Br, B̄L−r] and Br is an nr by nr matrix. To get Bi, only matrix and

vector multiplications are needed. Then we define the preconditioning matrix as

P−1 =




B−1
1

B−1
2

B−1
3

. . .

B−1
K

B−1
r




(27)

The new system of equations is P−1S Q = P−1F̄.

The preconditioning technique works well for elliptic and parabolic problems

because that the diagonal blocks are close to the identity matrices after the pre-

conditioning while the magnitudes of off-diagonal blocks decay like O(1/r), or a

O(1/ log r) away from the diagonal using the fundamental solutions of elliptic and

parabolic equations. In Table 1-3 (b) and Table 4, we list a comparison of the

number of GMRES iterations from one of examples. We can see that the number

of GMRES iterations is significantly reduced with suitable choice of L.

3. Numerical experiments

We use a general example to show the efficiency of the augmented method. The

computational domain is [−2, 2] × [−2, 2]. We present errors in L∞ norms and

estimate the convergence order using

p =
1

log 2
log

‖E2h‖∞
‖Eh‖∞

.

The tolerance of the GMRES iteration is set to be 10−8 and the initial value is set

to be 0 in all computations. The interface Σ is expressed using the cubic spline

package [11],

rΣ = r0 + 0.1 sin(5θ), 0 ≤ θ < 2π.(28)

The analytic solution is chosen as

(29) u(x, y) =




x2 − y2 in Ω−,

sin(x) cos(y) in Ω+,

The source term is then determined as

(30) f(x, y) =





0, in Ω−,

− 2β+ sinx cos y in Ω+,
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The jump in the solution, the jump in the flux, the average of the solutions, and

the flux are

[[u]] = sin(X) cos(Y )−X2 + Y 2,

[[βun]] = β+ (cos(X) cos(Y ) cos θ − sin(X) sin(Y ) sin θ)

− β− (2X cos θ − 2Y sin θ) ,

u =
1

2

(
X2 − Y 2 + sinX cosY

)
,

βun =
1

2

(
β+ (cos(X) cos(Y ) cos θ − sin(X) sin(Y ) sin θ)

+β− (2X cos θ − 2Y sin θ)
)
,

where n = (cos θ, sin θ) is the unit normal direction at an interface point (X,Y )

pointing to the Ω+ direction. Then, the function z(X) and g(X) are determined

from the analytic solution and given parameters α and γ from the relations (7).

The tolerance for the GMRES iteration is taken as ǫ = 10−8. In Fig.2, we show a

computed solution from which we can see that the solution is discontinuous across

a five-star interface.

Table 1. (a) A grid refinement analysis with β− = 1, β+ = 1,

α = 1, γ = 0.1.

N E(u) p E(u−n ) p E(u+n ) p

40 1.0790e-02 1.1860e-02 3.6240e-02

80 7.6510e-04 3.8179 4.0440e-04 4.8742 2.0870e-03 4.1181

160 1.6510e-04 2.2123 9.8680e-05 2.0350 4.5740e-04 2.1899

320 2.8280e-05 2.5455 1.1270e-05 3.1303 6.8080e-05 2.7482

640 6.3860e-06 2.1468 2.6370e-06 2.0955 1.5590e-05 2.1266

(b) The number of iterations without and with the new preconditioning strategy.

N 40 80 160 320 640

No-Pre 46 65 97 142 202

New-Pre 16 25 34 50 83

In Table 1-3 (a), we show the errors of the computed solution E(u) at all grid

points, that is, the error in the infinity norm, and errors of the normal derivative

E(u−n ) and E(u+n ), at the control points Xk from each side of the interface with

different jump of the coefficient β− and β+. We set the parameters α = 1 and

γ = 0.5. Not only we see more than second order convergency for the solution, but

also better than second order convergency for the normal derivative from each side

of the interface at the control points of the interface used for the spline interpolation.

While it is surprising that the convergence rates are more than second order, we

can see the trend that the convergence rates approach number two as we refine the

mesh further.

In Table 1-3 (b), we show the number of GMRES iterations for the Schur comple-

ment system with and without preconditioning technique. The number of GMRES
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Table 2. (a), A grid refinement analysis with β− = 1000, β+ = 1.

The average convergence orders are 3.3288, 4.2931, and 4.2812,

respectively for the three quantities.

N E(u) p E(u−n ) p E(u+n ) p

40 9.3120e-01 8.5460e-03 1.1640e+01

80 5.2030e-02 4.1617 3.1310e-05 8.0925 4.2750e-02 8.0890

160 2.6230e-02 0.98813 1.7070e-05 0.87516 2.3290e-02 0.87621

320 2.3590e-04 6.7969 1.5360e-07 6.7961 2.3210e-04 6.6488

640 9.1360e-05 1.3685 5.7850e-08 1.4088 8.1450e-05 1.5108

(b) The number of iterations without and with the two preconditioning strategies.

N 40 80 160 320 640

No-Pre 64 102 182 330 512

Pre-(24) 60 88 127 191 277

New-Pre 17 26 37 54 87

iterations is roughly how many fast Poisson solvers are called to obtain the solution

globally, and the normal derivative at the interface from each side at the control

points.

Although we have preconditioned the partial differential equation by dividing

the coefficient from the highest derivative term, without other preconditioning tech-

niques applied, the number of GMRES iteration increases with mesh size and the

jump ratio as expected, but not doubled as we refine the mesh indicating that the

preconditioning the PDE does help. In the table, Pre-(24) (β− 6= β+) is the precon-

ditioning technique from equation (24) proposed in [10] which is still efficient if γ is

large corresponding to an interface problem in the traditional definition; New-Pre

is the algebraic preconditioning techniques described in this paper with L = 20.

Table 3. A grid refinement analysis with β− = 1, β+ = 1000,

α = 1, γ = 0.1.

N E(u) r E(u−n ) r E(u+n ) r

40 8.1020e-01 5.2620e-01 2.8090e-03

80 3.1440e-02 4.6876 1.7750e-02 4.8897 1.0180e-04 4.7862

160 6.9890e-04 5.4914 5.3390e-04 5.0551 2.1880e-06 5.5400

320 7.8090e-05 3.1619 4.4300e-05 3.5912 2.1860e-07 3.3232

640 1.2040e-05 2.6973 4.2500e-06 3.3818 2.8000e-08 2.9648

(b) The number of iterations without and with the preconditioning strategy.

N 40 80 160 320 640

No-Pre 66 106 183 343 510

New-Pre 15 23 33 49 82
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With the new algebraic preconditioning technique, the number of GMRES iter-

ations is nearly independent of the coefficient, see Table 1-3 (b), and only slightly

increases as the mesh gets finer.

Table 4. Comparison of number of GMRES iterations with and

without the pre-conditioning strategies. β− = 1000, β+ = 1, α =

1, γ = 1000.

N 40 80 160 320 640

No-Pre 67 117 205 375 637

Pre-(24) 42 46 53 78 118

New-Pre 15 20 26 40 68

In Table 4, we show the comparison of the number of GMRES iterations for

large γ = 1000, for which the problem is close to a classical interface problem given

the jump conditions in the solution and the normal derivative. We can see that

the preconditioning technique in [10] using the flux jump condition has significantly

reduced the number of GMRES iterations. But still, the algebraic preconditioning

technique is the best. Of course, the algebraic preconditioning technique is more

complicated and require some extra cost in the realization.
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Figure 2. The plot of the computed solution with a 60× 60 grid.

Both the solution and the normal derivative are discontinuous.

Using the augmented strategy, we observe second order accurate

solution (globally) and the normal derivative at the interface from

each side of the interface.

4. Conclusions

In this paper, we proposed an efficient augmented method for solving an elliptic

PDE with the JEBC formulations. The advantage of JEBC is the uniform treat-

ment and variational form for a class of boundary value and interface problems. In

our proposed augmented method applied to the preconditioned PDE, we introduce
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two augmented variables as the jump variables of the solution and the normal deriv-

ative so that a fast Poisson solver can be utilized for piecewise constant coefficient.

The augmented variables are solved through the GMRES iterative method with

some new preconditioning techniques. The preconditioning technique uses matrix-

vector multiplication only and makes use of the algorithm, that is, the interpolation

scheme. The preconditioning technique will be effective in general for elliptic and

parabolic problems since the off-diagonal blocks will decay from the fundamental

solutions. Numerical experiments show that the proposed method provides not

only second-order accuracy for the solution globally, but also second-order accurate

normal (or first order partial) derivatives from each side of the interfaces. The

preconditioning technique speedup is nearly 50-75%.
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