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This paper is a Summary Note sketching in a rather self-contained but condensed way the results recently presented through a series of lectures at the Albert Einstein Institute (AEI, Berlin/Postdam), october, 23-27, 2017. The initial motivation for studying the methods used in this paper has been a 1000$ challenge proposed in 1970 by J. Wheeler in the physics department of Princeton University while the author of this paper was a student of D.C. Spencer in the closeby mathematics department: Is it possible to express the generic solutions of Einstein equations in vacuum by means of the derivatives of a certain number of arbitrary functions like the potentials for Maxwell equations ?. After recalling the negative answer we already provided in 1995, the main purpose of this paper is to use again these new techniques of biduality in order to revisit the mathematical foundations of the concepts and equations leading to gravitational waves.

1) INTRODUCTION

The purpose of these (self-contained but difficult) lectures is to revisit general relativity (GR) and gauge theory (GT) in view of the latest mathematical developments existing today in group theory, system theory and module theory, namely:

• Systems : The order of the Weyl-type tensor and its Bianchi-type identities highly depend on the dimension, a result recently confirmed by A. Quadrat (INRIA) for 3,4,5 with computer algebra.

• Groups : The Ricci tensor has only to do with the second order jets of the conformal group, called elations by Cartan (1922).

• Modules : In contrast with the Maxwell equations, the Einstein equations are parametrizing the Cauchy stress equations but cannot be parametrized themselves. Such a result is not coherent with a "reflexivity " test in homological algebra involving the so-called first and second extension modules. As a byproduct, the Cauchy stress equations must not be confused with the divergencetype condition for the Einstein tensor obtained by contracting the Bianchi identities.

We briefly recall the historical framework leading to these new results. The concept of "group" has been introduced in mathematics for the first time by E. GALOIS (1830) and slowly passed from algebra to geometry with the work of S. LIE on Lie groups (1880) and Lie pseudogroups (1890) of transformations. The concept of a finite length differential sequence, now called Janet sequence, has been described for the first time as a footnote by M. JANET (1920). Then, the work of D. C. SPENCER (1970) has been the first attempt to use the formal theory of systems of partial differential equations in order to study the formal theory of Lie pseudogroups. However, the linear and nonlinear Spencer sequences for Lie pseudogroups, though never used in physics, largely supersede the "Cartan structure equations " (1905) and are quite different from the "Vessiot structure equations " (1903), introduced for the same purpose but still not known today because they have never been acknowledged by E. CARTAN or successors.
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Meanwhile, mixing differential geometry with homological algebra, M. KASHIWARA (1970) created "algebraic analysis ", in order to study differential modules and double duality by using differential modules and their corresponding extension modules.

By chance, unexpected arguments have been introduced by the brothers E. and F. COSSERAT (1909) in order to revisit elasticity and by H. WEYL (1918) in order to revisit electromagnetism through a unique differential sequence only depending on the structure of the conformal group. However, while the Cosserat brothers were only using translations and rotations, Weyl has only been dealing with dilatation and elations as we shall explain.

2) PARAMETRIZATION

Starting with the well known linear map C :

S 2 T * → S 2 T * : R ij → E ij = R ij -1
2 ω ij tr(R) between symmetric covariant tensors, where ω is a metric with det(ω) = 0 and tr(R) = ω ij R ij , we may introduce the linear second order operators Ricci : Ω → E and Einstein : Ω → E obtained by linearization over ω and we have the relation Einstein = C • Ricci where C does not depend on any conformal factor. We recall the method used in any textbook for studying gravitational waves, which "surprisingly " brings the same map C : Ω → Ω = Ω -1 2 ω tr(Ω) in order to introduce the key unknown composite operator X : Ω → Ω → E, having therefore Einstein = X • C.

My first goal will be to prove that only the use of algebraic analysis, a mixture of differential geometry (differential sequences, formal adjoint) and homological algebra module theory, biduality, extension modules) totally unknown by physicists, is able to explain why the Einstein operator (with 6 terms) defined above is useless as it can be replaced by the Ricci operator (with 4 terms) in the search for gravitational waves equations. Indeed, using the fact that the Einstein operator is self-adjoint (with a slight abuse of language) when ω is the Minkowski metric (contrary to the Ricci operator as we shall see) and taking the respective (formal) adjoint operators, we get:

ad(Einstein) = ad(C) • ad(X ) ⇒ Einstein = C • ad(X ) ⇒ ad(X ) = Ricci ⇒ X = ad(Ricci)
Meanwhile, the Riemann operator can be considered as an operator describing the (second order) compatibility conditions (CC) for the Killing operator ξ ∈ T → L(ξ)ω = Ω ∈ S 2 T * with standard notations where L is the Lie derivative. In this new framework, we shall prove that we no longer need to use the Bianchi operator as the first order CC for the Riemann operator. Also, we shall prove that the relative parametrization with div-type differential constraints needed in order to keep only the Dalembert operator in the wave equations has nothing to do with any gauge transformation in the corresponding adjoint differential sequence, but with the search for a minimal parametrization, exactly like Maxwell did in 1870 for elasticity.

EXAMPLE: When n = 2, the stress equations become ∂ 1 σ 11 + ∂ 2 σ 12 = 0, ∂ 1 σ 21 + ∂ 2 σ 22 = 0.
Their second order parametrization σ 11 = ∂ 22 φ, σ 12 = σ 21 = -∂ 12 φ, σ 22 = ∂ 11 φ has been provided by George Biddell Airy (1801-1892) in 1863. It can be simply recovered in the following manner:

∂ 1 σ 11 -∂ 2 (-σ 12 ) = 0 ⇒ ∃ϕ, σ 11 = ∂ 2 ϕ, σ 12 = -∂ 1 ϕ ∂ 2 σ 22 -∂ 1 (-σ 21 ) = 0 ⇒ ∃ψ, σ 22 = ∂ 1 ψ, σ 21 = -∂ 2 ψ σ 12 = σ 21 ⇒ ∂ 1 ϕ -∂ 2 ψ = 0 ⇒ ∃φ, ϕ = ∂ 2 φ, ψ = ∂ 1 φ
When constructing a long prismatic dam with concrete, we may transform a problem of 3dimensional elasticity into a problem of 2-dimensional elasticity by supposing that the axis x 3 of the dam is perpendicular to the river with Ω ij (x 1 , x 2 ), ∀i, j = 1, 2 and Ω 33 = 0 because of the rocky banks of the river are supposed to be fixed. We may introduce the two Lamé constants (λ, µ) in order to describe the usual constitutive relations of an homogeneous isotropic medium as follows, passing from the standard case n = 3 to the restricted case n = 2 just by setting:

σ = 1 2 λ tr(Ω) ω + µ Ω, tr(Ω) = Ω 11 + Ω 22 ⇒ µ Ω = σ - λ 2(λ + µ)
tr(σ) ω, tr(σ) = σ 11 + σ 22 even though σ 33 = 1 2 λ(Ω 11 + Ω 22 ) = 1 2 λtr(Ω). Let us consider the right square of the diagram below with locally exact rows, where any vector bundle is simply denoted by its fiber dimension:

2 Killing -→ 3 Riemann -→ 1 → 0 . . . ↓↑ . . . 0 ← 2 Cauchy ←- 3 Airy ←- 1
Taking into account the linearization of the only component of the Riemann tensor over the Euclidean metric ω when n = 2 and substituting the Airy parametrization, we obtain:

tr(R) ≡ d 11 Ω 22 + d 22 Ω 11 -2d 12 Ω 12 = 0 ⇒ µ tr(R) ≡ λ + 2µ 2(λ + µ) ∆∆φ = 0 ⇒ ∆∆φ = 0
where the linearized scalar curvature tr(R) is allowing to define the Riemann operator in the previous diagram, namely the only compatibility condition (CC) of the Killing operator. It remains to exhibit an arbitrary homogeneous polynomial solution of degree 3 and to determine its 4 coefficients by the boundary pressure conditions on the upstream and downstream walls of the dam. The Airy potential φ has nothing to do with the perturbation Ω of the metric ω and the Airy parametrization is nothing else but the formal adjoint of the Riemann operator, that is Airy = ad(Riemann).

EXAMPLE: When n = 3, we may now use the left square of the following diagram with locally exact rows:

3 Killing -→ 6 Riemann -→ 6 . . . ↓↑ . . . 0 ← 3 Cauchy ←- 6 Beltrami ←- 6
where the self-adjoint operator Beltrami = ad(Riemann) has ben introduced by E. Beltrami in 1892. We may substitute the 3-dimensional constitutive relations with Lamé constants (λ, µ) in the Cauchy stress equations and get, when f = g (gravity) is now the right member:

(λ + µ) ∇( ∇. ξ) + µ∆ ξ = f ∇ ⇒ (λ + 2µ)∆tr(Ω) = 0 ⇒ ∆tr(Ω) = 0 ⇒ ∆tr(σ) = 0
We discover at once that the origin of elastic waves is shifted by one step backwards, from the right square to the left square of the diagram. Indeed, using inertial forces f = ρ ∂ 2 ξ/∂t 2 for a medium with mass ρ per unit volume in the right member of Cauchy stress equations because of Newton law and the vector identity ∇ ∧ ( ∇ ∧ ξ) = ∇( ∇. ξ) -∆ ξ, we discover the existence of two types of elastic waves A exp i ( k. xωt) with wave vector k, period T , pulsation ω = 2π/T along standard notations, namely the longitudinal and transversal waves with different speeds v T < v L , which are really existing because that are responsible for earthquakes:

   ∇. ξ = 0 ⇒ k. A = 0 ⇒ µ△ ξ = f ⇒ v T = µ ρ ∇ ∧ ξ = 0 ⇒ k ∧ A = 0 ⇒ (λ + 2µ)△ ξ = f ⇒ v L = λ+2µ ρ
These comments pushed the author to a systematic use of the formal adjoint of an operator.

Let us explain the origin of the definition of extension modules in homological algebra by means of an elementary example. With

∂ 22 ξ = η 2 , ∂ 12 ξ = η 1 for D, we get ∂ 1 η 2 -∂ 2 η 1 = ζ for the CC D 1 . Then ad(D 1 ) is defined by µ 2 = -∂ 1 λ, µ 1 = ∂ 2 λ while ad(D) is defined by ν = ∂ 12 µ 1 + ∂ 22 µ 2 but the CC of ad(D 1 ) are simply generated by ν ′ = ∂ 1 µ 1 + ∂ 2 µ 2 .
Using operators, we have the two differential sequences:

ξ D -→ η D1 -→ ζ ν ad(D) ←-µ ad(D1) ←-λ ւ ν ′
where D 1 generates the CC of D in the upper sequence but ad(D) does not generate the CC of ad(D 1 ) in the lower sequence, even though D 1 • D = 0 ⇒ ad(D) • ad(D 1 ) = 0, contrary to what happens in the Poincaré sequence for the exterior derivatve used in electromagnetism for exhibiting the Maxwell equations when n = 4. We shall see that this comment brings the need to introduce the first extension module ext 1 (M ) of the differential module M = coker(D) determined by D.

In the general case, using the same notation for a vector bundle and its set of local sections,

when E D -→ F is a given operator, its formal adjoint is ∧ n T * ⊗ E * ad(D)
←-∧ n T * ⊗ F * where E * and F * are respectively obtained from E and F by inverting the transition matrices, like T and T * .

Before going ahead, let us prove that there may be mainly two types of differential sequences, the Janet sequence introduced by M. Janet in 1920, having to do with the tools we have studied, and a different sequence called Spencer sequence introduced by D. C. Spencer in 1970 with totally different operators. For this, if E is a vector bundle over the base X, we shall introduce the q-jet bundle J q (E) with sections ξ q : (x)

→ (ξ k (x), ξ k i (x), ξ k ij (x), ...) transforming like the sections j q (ξ) : (x) → (ξ k (x), ∂ i ξ k (x), ∂ ij ξ k ( x), ...).
The Spencer operator D : J q+1 (E) → T * ⊗ J q (T ) allows to compare these sections by considering the differences

(∂ i ξ k (x) -ξ k i (x), ∂ i ξ k j (x) -ξ k ij (x), .
..) and so on. When ω is a nondegenerate metric with Christoffel symbols γ and Levi-Civita isomorphism j 1 (ω) ≃ (ω, γ) while T = T (X) is the tangent bundle to X, we consider the second order involutive system R 2 ⊂ J 2 (T ) defined by considering the first order Killing system L(ξ)ω = 0, adding its first prolongation L(ξ)γ = 0 and using ξ 2 instead of j 2 (ξ). Looking for the first order generating compatibility conditions (CC) D 1 of the corresponding second order operator operator D just described, we may then look for the generating CC D 2 of D 1 and so on. We may proceed similarly for the injective operator

T j2 -→ C 0 (T ) = J 2 (T ), finding successively C 0 (T ) D1 -→ C 1 (T )
and C 1 (T ) D2 -→ C 2 (T ) induced by D. When n = 2 and ω is the Euclide metric, we have a Lie group of isometries with the 3 infinitesimal generators {∂ 1 , ∂ 2 , x 1 ∂ 2x 2 ∂ 1 }. If we now consider the Weyl group defined by L(ξ)ω = Aω with A = cst and L(ξ)γ = 0, we have to add the only dilatation x 1 ∂ 1 + x 2 ∂ 2 . Collecting the results and exhibiting the induced kernel upper differential sequence, we get the following commutative fundamental diagram I where the upper down arrows are monomorphisms while the lower down arrows are epimorphisms Φ 0 , Φ 1 , Φ 2 :

0 -→ Θ j2 -→ 4 D1 -→ 8 D2 -→ 4 -→ 0 0 -→ Θ j2 -→ 3 D1 -→ 6 D2 -→ 3 -→ 0 Spencer ↓ ↓ ↓ 0 -→ 2 j2 -→ 12 D1 -→ 16 D2 -→ 6 -→ 0 ↓ Φ 0 ↓ Φ 1 ↓ Φ 2 0 -→ Θ -→ 2 D -→ 9 D1 -→ 10 D2 -→ 3 -→ 0 Janet 0 -→ Θ -→ 2 D -→ 8 D1 -→ 8 D2 -→ 2 -→ 0
It follows that "Spencer and Janet play at see-saw ", the dimension of each Janet bundle being decreased by the same amount as the dimension of the corresponding Spencer bundle is increased.

3) DIFFERENTIAL MODULES

Let A be a unitary ring, that is 1, a, b ∈ A ⇒ a + b, ab ∈ A, 1a = a1 = a and even an integral domain (ab = 0 ⇒ a = 0 or b = 0) with field of fractions K = Q(A). However, we shall not always assume that A is commutative, that is ab may be different from ba in general for a, b ∈ A.

We say that

M = A M is a left module over A if x, y ∈ M ⇒ ax, x + y ∈ M, ∀a ∈ A or a right module M B over B if the operation of B on M is (x, b) → xb, ∀b ∈ B.
If M is a left module over A and a right module over B with (ax)b = a(xb), ∀a ∈ A, ∀b ∈ B, ∀x ∈ M , then we shall say that M = A M B is a bimodule. Of course, A = A A A is a bimodule over itself. We define the torsion submodule t(M ) = {x ∈ M | ∃0 = a ∈ A, ax = 0} ⊆ M and M is a torsion module if t(M ) = M or a torsion-free module if t(M ) = 0. We denote by hom A (M, N ) the set of morphisms f : M → N such that f (ax) = af (x). We finally recall that a sequence of modules and maps is exact if the kernel of any map is equal to the image of the map preceding it.

When A is commutative, hom(M, N ) is again an A-module for the law (bf )(x) = f (bx) as we have (bf )(ax) = f (bax) = f (abx) = af (bx) = a(bf )(x). In the non-commutative case, things are more complicate and, given A M and A N B , then hom A (M, N ) becomes a right module over B for the law (f b)(x) = f (x)b.

DEFINITION:

A module F is said to be free if it is isomorphic to a (finite) power of A called the rank of F over A and denoted by rk A (F ) while the rank rk A (M ) of a module M is the rank of a maximum free submodule F ⊂ M . It follows from this definition that M/F is a torsion module. In the sequel we shall only consider finitely presented modules, namely finitely generated modules defined by exact sequences of the type F 1 d1 -→ F 0 p -→ M -→ 0 where F 0 and F 1 are free modules of finite ranks m 0 and m 1 often denoted by m and p in examples. A module P is called projective if there exists a free module F and another (projective) module Q such that P ⊕ Q ≃ F .

PROPOSITION: For any short exact sequence 0 → M ′ f -→ M g -→ M " → 0, we have the important relation rk A (M ) = rk A (M ′ ) + rk A (M "), even in the non-commutative case. As a byproduct, if M admits a finite length free resolution ...

d2 -→ F 1 d1 -→ F 0 p -→ M → 0, we may define the Euler-Poincaré characteristic χ A (M ) = r (-1) r rk A (F r ) = rk A (M ).
The following classical proposition will be used later on for exhibiting the Ricci tensor and the Weyl tensor from the Riemann tensor: PROPOSITION: We shall say that the following short exact sequence splits if one of the following equivalent three conditions holds:

0 -→ M ′ u ←- f -→ M v ←- g -→ M ′′ -→ 0
• There exists a monomorphism v : M ′′ → M called lift of g and such that g

• v = id M ′′ .
• There exists an epimorphism u : M → M ′ called lift of f and such that u • f = id M ′ .

• There exist isomorphisms ϕ = (u, g) : M → M ′ ⊕ M ′′ and ψ = f + v : M ′ ⊕ M ′′ → M that are inverse to each other and provide an isomorphism

M ≃ M ′ ⊕ M ′′ with f • u + v • g = id M and thus ker(u) = im(v).
These conditions are automatically satisfied if M " is free or projective.

Using the notation M * = hom A (M, A), for any morphism f : M → N , we shall denote by

f * : N * → M * the morphism which is defined by f * (h) = h • f, ∀h ∈ hom A (N, A) and satisfies rk A (f ) = rk A (im(f )) = rk A (f * ), ∀f ∈ hom A (M, N ).
We may take out M in order to obtain the deleted sequence ...

d2

-→ F 1 d1 -→ F 0 -→ 0 and apply hom A (•, A) in order to get the sequence ...

d * 2 ←-F * 1 d * 1 ←-F * 0 ←-0.
PROPOSITION: If we define the extension modules Introducing the morphism ǫ : M → M * * such that ǫ(m)(f ) = f (m), ∀m ∈ M, ∀f ∈ M * and defining the differential module N from ad(D 1 ) exactly like we defined the differential module M from D, we finally notice that any operator is the adjoint of a certain operator because ad(ad(P )) = P, ∀P ∈ D and we get: THEOREM: (reflexivity test) In order to check whether M is reflexive or not, that is to find out a parametrization if t(M ) = 0 which can be again parametrized, the test has 5 steps which are drawn in the following diagram where ad(D) generates the CC of ad(D 1 ) and D ′ 1 generates the CC of D = ad(ad(D)) while ad(D -1 ) generates the CC of ad(D) and D ′ generates the CC of D -1 : EXAMPLE: When n = 3, the div operator can be parametrized by the curl operator which can be itself parametrized by the grad operator. However, using (ξ 1 , ξ 2 , ξ 3 = 0), we may obtain the new minimal parametrization

ext 0 A (M ) = ker(d * 1 ) = hom A (M, A) = M * and ext i (M ) = ext i A (M ) = ker(d * i+1 )/im(d * i ), ∀i ≥ 1,
η ′ ζ ′ 5 D ′ ր D ′ 1 ր 4 φ D-1 -→ ξ D -→ η D1 -→ ζ 1 3 θ ad(D-1) ←- ν ad(D) ←-µ ad(D1) ←- λ 2 D 1 parametrized by D ⇔ D 1 = D ′ 1 ⇔ ext 1 (N ) = 0 ⇔ ǫ injective ⇔ t(M ) = 0 D parametrized by D -1 ⇔ D = D ′ ⇔ ext 2 (N ) = 0 ⇔ ǫ surjective COROLLARY: In the differential module framework, if F 1 D1 -→ F 0 p -→ M → 0 is
-∂ 3 ξ 2 = η 1 , ∂ 3 ξ 1 = η 2 , ∂ 1 ξ 2 -∂ 2 ξ 1 = η 3 ⇒ ∂ 1 η 1 + ∂ 2 η 2 + ∂ 3 η 3 = 0 which cannot be again parametrized.
We shall finally prove below that the Einstein parametrization of the stress equations is neither canonical nor minimal in the following diagrams:

4 Killing -→ 10 Riemann -→ 20 Bianchi -→ 20 -→ 6 → 0 ↓ ↓ 10 Einstein -→ 10 div -→ 4 → 0 0 ← 4 Cauchy ←- 10 Beltrami ←- 20 ←- 20 ↑ 10 Einstein ←- 10
obtained by using the fact that the Einstein operator is self-adjoint (with a slight abuse of language), where by Einstein operator we mean the linearization of the Einstein equations over the Minkowski metric, the 6 terms being exchanged between themselves. Indeed, setting

E ij = R ij -1 2 ω ij tr(R) with tr(R) = ω ij R ij , it
is essential to notice that the Ricci operator is not self-adjoint because we have for example:

λ ij (ω rs d ij Ω rs ) ad -→ (ω rs d ij λ ij )Ω rs
and ad provides a term appearing in -ω ij tr(R) but not in 2R ij because we have:

tr(Ω) = ω rs Ω rs ⇒ tr(R) = ω rs d rs tr(Ω) -d rs Ω rs
The upper div induced by Bianchi has nothing to do with the lower Cauchy stress equations, contrary to what is still believed today while the 10 on the right of the lower diagram has nothing to do with the perturbation of a metric which is the 10 on the left in the upper diagram. It also follows that the Einstein equations in vacuum cannot be parametrized as we have the following diagram of operators recapitulating the five steps of the parametrizability criterion (One can provide a computer algebra exhibition of this result):

Riemann 20 ր 4 Killing -→ 10 Einstein -→ 10 4 Cauchy ←- 10 Einstein ←- 10 
As a byproduct, we are facing only two possibilities, both leading to a contradiction: 1) If we use the operator S 2 T * Einstein -→ S 2 T * in the "geometrical " setting, the S 2 T * on the left has indeed someting to do with the perturbation of the metric but the S 2 T * on the right has nothing to do with the stress.

2) If we use the adjoint operator ∧ n T * ⊗ S 2 T Einstein ←-∧ n T * ⊗ S 2 T in the "physical " setting, then ∧ n T * ⊗ S 2 T on the left has of course something to do with the stress but the ∧ n T * ⊗ S 2 T on the right has nothing to do with the perturbation of a metric.

These purely mathematical results question the origin and existence of gravitational waves.

We shall finally prove below, from what has been said in the beginning of this Summary Note, that the parametrization of the Cauchy operator by ad(Ricci) is neither canonical nor minimal in the following diagrams: 

←-10

COROLLARY: When n ≥ 4, as the extension modules are torsion modules, each component of the Weyl tensor is a torsion element killed by the Dalembert operator whenever the Einstein equations in vacuum are satisfied by the metric. Hence, there exists a second order operator Q such that we have an identity describing the so-called Lichnerowicz wave equations (in France !):

✷ • W eyl = Q • Ricci 4) COSSERAT VERSUS WEYL
Computing the formal adjoint ad(D 1 ) of the first Spencer operator D 1 induced by D for the group of rigid motions when n = 2, we get:

σ 11 (∂ 1 ξ 1 -ξ 1,1 ) + σ 12 (∂ 2 ξ 1 -ξ 1,2 ) + σ 21 (∂ 1 ξ 2 -ξ 2,1 ) + σ 22 (∂ 2 ξ 2 -ξ 2,2 ) + µ 12,r (∂ r ξ 1,2 -ξ 1,2r )
Integrating by parts with ξ 1,1 = 0, ξ 1,2 + ξ 2,1 = 0, ξ 2,2 = 0, we obtain at once and exactly the Cosserat couple-stress equations:

∂ 1 σ 11 + ∂ 2 σ 12 = f 1 , ∂ 1 σ 21 + ∂ 2 σ 22 = f 2 , ∂ r µ 12,r + σ 12 -σ 21 = m 12
allowing to have now a nonsymmetrical stress with a new first order parametrization:

σ 11 = ∂ 2 φ 1 , σ 12 = -∂ 1 φ 1 , σ 21 = -∂ 2 φ 2 , σ 22 = ∂ 1 φ 2 , µ 12,1 = ∂ 2 φ 3 + φ 1 , µ 12,2 = -∂ 1 φ 3 -φ 2 with a potential (φ 1 , φ 2 , φ 3 ) ∈ ∧ 2 T * ⊗ ∧ 2 T ⊗ R * 2 ≃ R * 2 with dim(R 2 ) = 3
. These equations can be extended by adding the only dilatation with infinitesimal generator x i ∂ i in order to provide the virial equations. Similarly, going along the idea pioneered by Weyl in 1918, we obtain:

J i (∂ i ξ r r -ξ r ri ) + F ij (∂ i ξ r rj -∂ j ξ r ri )
An integration by parts brings the operator ∂ r F ir -J i and there is thus no conceptual difference at all between the Cosserat equations and the second set of Maxwell equations.

As a next crucial step, let us consider the Lie group of transformations of X described by the action of a Lie group G with local coordinates (a τ ), identity e ∈ G and Lie algebra G = T e (G), on X with infinitesimal generators θ τ = θ k τ (x)∂ k and introduce the section

ξ q = λ τ (x)j q (θ τ ) with λ ∈ ∧ 0 T * ⊗ G. We have thus (ξ k (x) = λ τ (x)θ k τ (x), ξ k i (x) = λ τ (x)∂ i θ k τ (x), .
..) and get at once D 1 ξ q = Dξ q+1 = (dλ τ )j q (θ τ ) where d : ∧ 0 T * ⊗ G → ∧ 1 T * ⊗ G is the exterior derivative, a result proving that the Spencer sequence is (locally) isomorphic to the tensor product by G of the Poincaré sequence for d, in a coherent way with the second Example of the Introduction. As the extension modules of a module M do not depend on the resolution of M , it follows that, if D r+1 generates the CC of D r in a Janet sequence like in the Introduction, then ad(D r ) generates the CC of ad(D r+1 ) while, if D r+1 generates the CC of D r in the corresponding Spencer sequence, then ad(D r ) generates the CC of ad(D r+1 ), though all these operators are quite different, a result not evident at all that Lanczos and followers could have not even been able to imagine.

It remains to prove that, in this new framework, the Ricci tensor only depends on the symbol ĝ2 ≃ T * ⊂ S 2 T * ⊗ T of the first prolongation R2 ⊂ J 2 (T ) of the conformal Killing system R1 ⊂ J 1 (T ) with symbol ĝ1 ⊂ T * ⊗ T defined by the equations ω rj ξ r i + ω ir ξ r j -2 n ω ij ξ r r = 0 not depending on any conformal factor. In the next general commutative diagram covering both situations while taking into account that the PD equations of both the classical and conformal Killing operator are homogeneous, the Spencer map δ is induced by -D and all the sequences are exact but perhaps the left column:

0 0 0 ↓ ↓ ↓ 0 → g 3 → S 3 T * ⊗ T → S 2 T * ⊗ F 0 → F 1 → 0 ↓ δ ↓ δ ↓ δ 0 → T * ⊗ g 2 → T * ⊗ S 2 T * ⊗ T → T * ⊗ T * ⊗ F 0 → 0 ↓ δ ↓ δ ↓ δ 0 → ∧ 2 T * ⊗ g 1 → ∧ 2 T * ⊗ T * ⊗ T → ∧ 2 T * ⊗ F 0 → 0 ↓ δ ↓ δ ↓ 0 → ∧ 3 T * ⊗ T = ∧ 3 T * ⊗ T → 0 ↓ ↓ 0 0
THEOREM: Introducing the δ-cohomologies H 2 (g 1 ) at ∧ 2 T * ⊗ g 1 and H 2 (ĝ 1 ) at ∧ 2 T * ⊗ ĝ1 while taking into account that g 1 ⊂ ĝ1 , we have the commutative and exact "fundamental diagram II ":

0 ↓ 0 S 2 T * ↓ ↓ 0 -→ Z 2 (g 1 ) -→ H 2 (g 1 ) -→ 0 ↓ ↓ ↓ 0 -→ T * ⊗ ĝ2 δ -→ Z 2 (ĝ 1 ) -→ H 2 (ĝ 1 ) -→ 0 ↓ ↓ ↓ 0 -→ S 2 T * δ -→ T * ⊗ T * δ -→ ∧ 2 T * -→ 0 ↓ ↓ 0 0
showing that we have the splitting sequence 0 → S 2 T * → F 1 → F1 → 0 providing a totally unusual interpretation of the successive Ricci, Riemann and Weyl tensors. It follows that dim( F1 ) = n(n + 1)(n + 2)(n -3)/12 and the W eyl-type operator is of order 3 when n = 3 but of order 2 for n ≥ 4. Similar results could be obtained for the Bianchi-type operator.

5) JANET VERSUS SPENCER

Whenever R q ⊆ J q (E) is an involutive system of order q on E, we may define the Janet bundles F r for r = 0, 1, ..., n by the short exact sequences:

0 → ∧ r T * ⊗ R q + δ(∧ r-1 T * ⊗ S q+1 T * ⊗ E) → ∧ r T * ⊗ J q (E) → F r → 0
We may pick up a section of F r , lift it up to a section of ∧ r T * ⊗ J q (E) that we may lift up to a section of ∧ r T * ⊗ J q+1 (E) and apply D in order to get a section of ∧ r+1 T * ⊗ J q (E) that we may project onto a section of F r+1 in order to construct an operator D r+1 : F r → F r+1 generating the CC of D r in the canonical linear Janet sequence:

0 -→ Θ -→ E D -→ F 0 D1 -→ F 1 D2 -→ ... Dn -→ F n -→ 0
If we have two involutive systems R q ⊂ Rq ⊂ J q (E), the Janet sequence for R q projects onto the Janet sequence for Rq and we may define inductively canonical epimorphisms F r → Fr → 0 for r = 0, 1, ..., n by comparing the previous sequences for R q and Rq . A similar procedure can also be obtained if we define the Spencer bundles C r for r = 0, 1, ..., n by the short exact sequences:

0 → δ(∧ r-1 T * ⊗ g q+1 ) → ∧ r T * ⊗ R q → C r → 0
We may pick up a section of C r , lift it to a section of ∧ r T * ⊗R q , lift it up to a section of ∧ r T * ⊗R q+1 and apply D in order to construct a section of ∧ r+1 ⊗ R q that we may project to C r+1 in order to construct an operator D r+1 : C r → C r+1 generating the CC of D r in the canonical linear Spencer sequence which is another completely different resolution of the set Θ of (formal) solutions of R q :

0 -→ Θ jq -→ C 0 D1 -→ C 1 D2 -→ C 2 D3 -→ ... Dn -→ C n -→ 0
However, if we have two systems as above, the Spencer sequence for R q is now contained into the Spencer sequence for Rq and we may construct inductively canonical monomorphisms 0 → C r → Ĉr for r = 0, 1, ..., n by comparing the previous sequences for R q and Rq . When dealing with applications, we have set E = T and considered systems of finite type Lie equations determined by Lie groups of transformations and ad(D r ) generates the CC of ad(D r+1 ) while ad(D r ) generates the CC of ad(D r+1 ). We have obtained in particular C r = ∧ r T * ⊗ R q ⊂ ∧ r T * ⊗ Rq = Ĉr when comparing the classical and conformal Killing systems, but these bundles have never been used in physics. Therefore, instead of the classical Killing system R 2 ⊂ J 2 (T ) defined by Ω ≡ L(ξ)ω = 0 and Γ ≡ L(ξ)γ = 0 or the conformal Killing system R2 ⊂ J 2 (T ) defined by Ω ≡ L(ξ)ω = A(x)ω and Γ ≡ L(ξ)γ = (δ k i A j (x) + δ k j A i (x)ω ij ω ks A s (x)) ∈ S 2 T * ⊗ T , we may introduce the intermediate differential system R2 ⊂ J 2 (T ) defined by L(ξ)ω = Aω with A = cst and Γ ≡ L(ξ)γ = 0, for the Weyl group obtained by adding the only dilatation with infinitesimal generator x i ∂ i to the Poincaré group. We have R 1 ⊂ R1 = R1 but the strict inclusions R 2 ⊂ R2 ⊂ R2 and we discover exactly the group scheme used through this paper, both with the need to shift by one step to the left the physical interpretation of the various differential sequences used. Indeed, as ĝ2 ≃ T * , the first Spencer operator R2 The main result we have obtained is thus to be able to increase the order and dimension of the underlying jet bundles and groups, proving therefore that any 1-form with value in the second order jets ĝ2 (elations) of the conformal Killing system (conformal group) can be decomposed uniquely into the direct sum (R, F ) where R is a section of the Ricci bundle S 2 T * and the EM field F is a section of ∧ 2 T * . The mathematical structures of electromagnetism and gravitation only depend on second order jets.

  they do not depend on the resolution chosen and are torsion modules for i ≥ 1.We now turn to the operator framework with modules over the ringD = K[d 1 , ..., d n ] = K[d] of differential operators with coefficients in a differential field K with n commuting derivations (∂ 1 , ..., ∂ n ),also called D-modules. DEFINITION: If a differential operator ξ D -→ η is given, a direct problem is to find generating compatibility conditions (CC) as an operator η D1 -→ ζ such that Dξ = η ⇒ D 1 η = 0. Conversely, given η D1 -→ ζ, the inverse problem will be to look for ξ D -→ η such that D 1 generates the CC of D and we shall say that D 1 is parametrized by D if such an operator D is existing.

  a finite free presentation of M = coker(D 1 ) with t(M ) = 0, then we may obtain an exact sequence of free differential modules where D is the parametrizing operator. However, there may exist other parametrizationsF 1 D1 -→ F 0 D ′ -→ E ′ called minimal parametrizations such that coker(D ′) is a torsion module and we have thus rk D (M ) = rk D (E ′ ).

D1-→

  T * ⊗ R2 is induced by the usual Spencer operator R3 D -→ T * ⊗ R2 : (0, 0, ξ r rj , ξ r rij = 0) → (0, ∂ i 0ξ r ri , ∂ i ξ r rj -0)and thus projects by cokernel onto the induced operator T * → T * ⊗ T * . Composing with δ, it projects therefore onto T * d → ∧ 2 T * : A → dA = F as in EM and so on by using the fact that D 1 and d are both involutive, or the composition of epimorphisms:Ĉr → Ĉr / Cr ≃ ∧ r T * ⊗ ( R2 / R2 ) ≃ ∧ r T * ⊗ ĝ2 ≃ ∧ r T * ⊗ T * δ -→ ∧ r+1 T *