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This paper presents novel expectation-maximization (EM) algorithms for estimating the nonnegative matrix factorization model with Itakura-Saito divergence. Indeed, the common EMbased approach exploits the space-alternating generalized EM (SAGE) variant of EM but it usually performs worse than the conventional multiplicative algorithm. We propose to explore more exhaustively those algorithms, in particular the choice of the methodology (standard EM or SAGE variant) and the latent variable set (full or reduced). We then derive four EM-based algorithms, among which three are novel. Speech separation experiments show that one of those novel algorithms using a standard EM methodology and a reduced set of latent variables outperforms its SAGE variants and competes with the conventional multiplicative algorithm.

Introduction

Nonnegative matrix factorization (NMF) is a rank reduction method used for obtaining part-based decompositions of nonnegative data [START_REF] Lee | Learning the parts of objects by non-negative matrix factorization[END_REF]. The NMF problem is expressed as follows: given a matrix V of dimensions F ×T with nonnegative entries, find a factorization V ≈ WH where W and H are nonnegative matrices of dimensions F × K and K × T respectively, and K is generally chosen so that K(F + T ) F T . In audio applications [START_REF] Virtanen | Monaural sound source separation by nonnegative matrix factorization with temporal continuity and sparseness criteria[END_REF], V is usually the magnitude or power spectrogram of an audio signal. One can interpret W as a dictionary of spectral templates and H as a matrix of temporal activations.

Such a factorization is generally obtained by minimizing a cost function that penalizes the error between V and WH. Popular choices are the Euclidean distance [START_REF] Lee | Learning the parts of objects by non-negative matrix factorization[END_REF] or Kullback-Leibler [START_REF] Virtanen | Monaural sound source separation by nonnegative matrix factorization with temporal continuity and sparseness criteria[END_REF] and Itakura-Saito (IS) divergences [START_REF] Févotte | Nonnegative matrix factorization with the Itakura-Saito divergence: With application to music analysis[END_REF]. The IS divergence between two matrices A and B with entries a f t and b f t is:

DIS(A, B) = f,t dIS(a f t , b f t ), (1) 
dIS(a, b) = a b -log a b -1. (2) 
It has been shown relevant for audio applications [START_REF] Févotte | Nonnegative matrix factorization with the Itakura-Saito divergence: With application to music analysis[END_REF] because of its scale-invariance, which is practical to handle the large dynamic range of audio. Besides, it has a probabilistic interpretation: in Gaussian mixtures where the NMF models the variance, maximum likelihood (ML) estimation is equivalent to an NMF with IS divergence (ISNMF) of the power spectrogram [START_REF] Févotte | Nonnegative matrix factorization with the Itakura-Saito divergence: With application to music analysis[END_REF].

The IS divergence is usually optimized by means of multiplicative update rules (MUR) algorithms derived from auxiliary function methods [START_REF] Févotte | Nonnegative matrix factorization with the Itakura-Saito divergence: With application to music analysis[END_REF][START_REF] Bertin | Fast bayesian NMF algorithms enforcing harmonicity and temporal continuity in polyphonic music transcription[END_REF][START_REF] Févotte | Algorithms for nonnegative matrix factorization with the beta-divergence[END_REF][START_REF] Nakano | Convergence-guaranteed multiplicative algorithms for nonnegative matrix factorization with β-divergence[END_REF]. Alternatively, expectationmaximization (EM) algorithms [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF] consist in maximizing a

The work of P. Magron was partly supported by the Academy of Finland, project no. 290190. lower bound of the likelihood. For ISNMF [START_REF] Févotte | Nonnegative matrix factorization with the Itakura-Saito divergence: With application to music analysis[END_REF][START_REF] Bertin | Enforcing harmonicity and smoothness in Bayesian non-negative matrix factorization applied to polyphonic music transcription[END_REF] a variant of EM, called space-alternating generalized EM (SAGE) [START_REF] Fessler | Space-alternating generalized expectation-maximization algorithm[END_REF], results in updating all the NMF parameters in a sequential fashion. It has been preferred to the classical EM algorithm because when the mixture model does not include a noise part, the joint posterior of all sources becomes degenerate [START_REF] Févotte | Efficient Markov chain Monte Carlo inference in composite models with space alternating data augmentation[END_REF]. Even though this approach is outperformed by MUR [START_REF] Bertin | Fast bayesian NMF algorithms enforcing harmonicity and temporal continuity in polyphonic music transcription[END_REF], it remains interesting for estimating more sophisticated Gaussian models where it is not straightforward to derive MUR [START_REF] Magron | Bayesian anisotropic Gaussian model for audio source separation[END_REF][START_REF] Leglaive | Multichannel audio source separation with probabilistic reverberation priors[END_REF].

In this paper, we propose to investigate alternative EMbased algorithms for estimating the ISNMF model. By adopting a strategy similar to that in [START_REF] Roux | Consistent Wiener filtering for audio source separation[END_REF][START_REF] Magron | Consistent anisotropic Wiener filtering for audio source separation[END_REF], we derive both standard EM and SAGE algorithms. The set of latent variables can be either the rank-1 components or the sources. This results in a total of four algorithms, among which three are novel. We experimentally assess their computational efficiency and potential for a speech separation task. In particular, the standard EM algorithm using a reduced set of latent variables provides faster convergence and better separation results than the SAGE algorithm used in the literature [START_REF] Bertin | Enforcing harmonicity and smoothness in Bayesian non-negative matrix factorization applied to polyphonic music transcription[END_REF]. It also compares favorably with the conventional multiplicative algorithm [START_REF] Févotte | Nonnegative matrix factorization with the Itakura-Saito divergence: With application to music analysis[END_REF], which confirms its potential for estimating more sophisticated NMF models [START_REF] Magron | Complex ISNMF: a phase-aware model for monaural audio source separation[END_REF].

The rest of this paper is structured as follows. Section 2 presents the baseline ISNMF model. In Section 3 we derive the EM algorithms. Section 4 experimentally compares their performance and Section 5 draws some concluding remarks.

Baseline ISNMF

Gaussian mixture model

Let X ∈ C F ×T be the short-time Fourier transform (STFT) of a single-channel audio signal. X is the linear instantaneous mixture of J sources Sj ∈ C F ×T , such that X = j Sj. We model the STFT coefficients of all sources as independent circularlysymmetric Gaussian random variables: s j,f t ∼ N (0, v j,f t ), and we model the variances with an NMF: Vj = WjHj, where Wj ∈ R

F ×K j + and Hj ∈ R K j ×T + . Then, the mixture x f t is also the sum of K = j Kj components c k,f t ∼ N (0, w f k h kt ), so x f t ∼ N (0, v x,f t ) with Vx = WH.

Multiplicative Update Rules

To estimate the parameters Θ = {W, H}, a common approach in a probabilistic framework consists in maximizing the loglikelihood of the data, given by:

C(Θ) = log p(X|Θ) c = - f,t log v x,f t + |x f t | 2 v x,f t = -DIS(V, WH), (3) 
where V = |X| 2 and denotes the element-wise power. Therefore, the ML estimation is equivalent to performing an NMF with IS divergence on V, hence the name of ISNMF model. Minimizing (3) is usually performed by iteratively applying the following updates:

W ← W ([WH] -2 V)H T [WH] -1 H T γ , (4) 
and:

H ← H W T ([WH] -2 V) W T [WH] -1 γ , (5) 
where and .

. denote the element-wise matrix multiplication and division, and . T is the matrix transposition. The exponent γ depends on the optimization strategy: usual values obtained with variants of the majorize-minimization technique are γ = 0.5 [START_REF] Bertin | Fast bayesian NMF algorithms enforcing harmonicity and temporal continuity in polyphonic music transcription[END_REF][START_REF] Nakano | Convergence-guaranteed multiplicative algorithms for nonnegative matrix factorization with β-divergence[END_REF] and γ = 1 [START_REF] Févotte | Algorithms for nonnegative matrix factorization with the beta-divergence[END_REF].

EM-based algorithms

We describe here the EM-based algorithms for estimating the parameters. Considering a given set of L latent (hidden) variables {Z l } l , the key idea is to maximize the following lower bound of the log-likelihood, which is the conditional expectation of the complete-data log-likelihood [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF]:

Q(Θ, Θ ) = p(Z|X; Θ ) log p(X, Z; Θ)dZ, (6) 
where Θ contains the most up-to-date parameters. The algorithm consists in alternately computing this lower bound (Estep) and maximizing it (M-step). The set of latent variables can either be the set of sources {Sj} (L = J) or the set of rank-1 components {C k } (L = K), such that:

x f t = L l=1 z l,f t . (7) 
Because of this constraint, the joint posterior variable Z|X is degenerate [START_REF] Févotte | Efficient Markov chain Monte Carlo inference in composite models with space alternating data augmentation[END_REF]. This is why a SAGE variant, which we develop hereafter, is preferred in practice [START_REF] Févotte | Nonnegative matrix factorization with the Itakura-Saito divergence: With application to music analysis[END_REF][START_REF] Bertin | Enforcing harmonicity and smoothness in Bayesian non-negative matrix factorization applied to polyphonic music transcription[END_REF]. However, we will see in Section 3.2 that an insightful choice for Z makes it possible to express the posterior distribution p(Z|X).

SAGE

SAGE [START_REF] Fessler | Space-alternating generalized expectation-maximization algorithm[END_REF] is a variation of the EM algorithm, which consists in partitioning the set of all parameters into disjoint subsets Θ = {Θ l } l and associated hidden-data sets {Z l } l . Therefore, we have

Θ l = {W l , H l } where W l = Wj if Z = S and W l = w k (which is the k-th column of the matrix W) if Z = C (same goes for H l ).
Then, instead of maximizing ( 6), we successively maximize the following functionals, which are the conditional expectations of the log-likelihood of Z l :

Q l (Θ l , Θ ) = p(Z l |X; Θ ) log p(Z l ; Θ l )dZ l . (8) 
This procedure guarantees that the likelihood (3) will be nondecreasing. Since this approach has already been developed in [START_REF] Févotte | Nonnegative matrix factorization with the Itakura-Saito divergence: With application to music analysis[END_REF], we briefly summarize in the Appendix the E-step, which consists in computing [START_REF] Bertin | Enforcing harmonicity and smoothness in Bayesian non-negative matrix factorization applied to polyphonic music transcription[END_REF]. The resulting functional is:

Q l (Θ l , Θ ) c = - f t dIS(p l,f t , [W l H l ] f t ), (9) 
where p l,f t = λ l,f t + |µ l,f t | 2 is the posterior power of z l,f t and λ l,f t and µ l,f t are its posterior mean and variance given by [START_REF] Ozerov | Multichannel nonnegative tensor factorization with structured constraints for user-guided audio source separation[END_REF]. The maximization of Q l (M-step) then depends on Z:

• If Z = C, then Q k is directly maximized by setting its gradient w.r.t w f k or h kt to 0 and solving. This leads to:

w f k = 1 T t p k,f t h kt and h kt = 1 F f p k,f t w f k , (10) 
which results in an algorithm we will refer to as SAGE (Algorithm 2 in [START_REF] Févotte | Nonnegative matrix factorization with the Itakura-Saito divergence: With application to music analysis[END_REF]).

• If Z = S, then:

Qj(Θj, Θ ) c = -DIS(Pj, WjHj), (11) 
which is similar to (3): therefore, the corresponding updates at the M-step are similar to (4) and ( 5) but where V, W and H are replaced by Pj, Wj and Hj. We will refer to the corresponding algorithm as SAGE-MUR.

While the first approach has been originally developed in [START_REF] Févotte | Nonnegative matrix factorization with the Itakura-Saito divergence: With application to music analysis[END_REF], the second is novel. Since the SAGE algorithm is known to be time-consuming (updates are made sequentially), we believe that it is relevant to reduce the set of latent variables, so we loop over J components instead of K > J (as observed in a multichannel framework [START_REF] Ozerov | Multichannel nonnegative tensor factorization with structured constraints for user-guided audio source separation[END_REF][START_REF] Ozerov | Multichannel nonnegative matrix factorization in convolutive mixtures for audio source separation[END_REF]).

Standard EM

Let us now derive a standard EM procedure to directly maximize [START_REF] Nakano | Convergence-guaranteed multiplicative algorithms for nonnegative matrix factorization with β-divergence[END_REF]. Due to the mixing constraint ( 7), we consider a set of

L = L -1 free variables z f t = [z 1,f t , ..., z L ,f t ] T , which is a Gaussian vector z f t ∼ N (0, Σ z,f t ) with Σ z,f t = diag([v 1,f t , ..., v L ,f t ]
). This idea, reminiscent from [START_REF] Roux | Consistent Wiener filtering for audio source separation[END_REF][START_REF] Magron | Consistent anisotropic Wiener filtering for audio source separation[END_REF], allows us to write the posterior distribution in a non-degenerate fashion. The posterior variables are

z f t |x f t ∼ N (µ f t , Ξ f t ) where µ f t = [µ 1,f t , ..., µ L ,f t
] is given by ( 16) and the posterior covariance matrix is:

Ξ f t = Σ z,f t -diag(Σ z,f t )v -1 x,f t diag(Σ z,f t ) T . (12) 
In particular, [Ξ f t ] l,l = λ l,f t . The complete-data loglikelihood L(Θ) = log p(X, Z; Θ) is then:

L(Θ) = f,t log p(x f t |z f t ; Θ) + f,t L l=1 log p(z l,f t ; Θ) c = - f,t log([WLHL] f t ) + |x f t -L l=1 z l,f t | 2 [WLHL] f t - f,t L l=1 log([W l H l ] f t ) + |z l,f t | 2 [W l H l ] f t .
Therefore, (6) rewrites:

Q(Θ, Θ ) c = - f,t L l=1 log([W l H l ] f t ) - f,t 1 [WLHL] f t E Z|X;Θ   |x f t - L l=1 z l,f t | 2   - f,t L l=1 1 [W l H l ] f t E Z|X;Θ (|z l,f t | 2 ).
As in the SAGE procedure (see [START_REF] Vincent | Performance Measurement in Blind Audio Source Separation[END_REF]),

E Z|X;Θ (|z l,f t | 2 ) = p l,f t .
Let us now compute E Z|X;Θ |x f t -L l=1 z l,f t | 2 . We remove the indices f t in what follows and note the conditional expectation E for more clarity. We also introduce the column vector a = [1, ..., 1] H of length L such that L l=1 z l = a H z, where . H is the Hermitian transpose. We have:

E(|x -a H z| 2 ) = E(|x| 2 ) + E(|a H z| 2 ) -2 (xa H E(z)) = |x| 2 + E(z H aa H z) -2 (xa H µ)).
Thanks to the trace identity:

E(z H aa H z) = Tr(aa H Ξ) + µ H aa H µ = i,j Ξij + |a H µ| 2 , ( 13 
) which leads to E(|x -a H z| 2 ) = |x -a H µ| 2 + i,j Ξij.
The mixing constraint [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF] imposes that x -a H µ = µL and vL = vx -L l=1 v l , which leads to:

i,j Ξij = l v l - 1 vx i,j vivj = (vx -vL) - 1 vx (vx -vL) 2 = vL - v 2 L vx = λL,
Therefore, E(|x -a H z| 2 ) = λL + |µL| 2 = pL, and finally:

Q(Θ, Θ ) c = - f,t L l=1 dIS(p l,f t , [W l H l ] f t ). (14) 
Similarly to the SAGE procedure, the M-step is then performed by either direct minimization of the IS divergence, as in (10) (if Z = C) or by applying MUR (if Z = S). We will refer to the following algorithms as EM and EM-MUR respectively. Interestingly, we remark that Q is the same as in a source+noise model (cf. for instance [START_REF] Ozerov | Multichannel nonnegative tensor factorization with structured constraints for user-guided audio source separation[END_REF]) with a null noise variance. As recalled in the introduction, it is common to add a noise part to the mixture model in order to express the posterior distribution of the sources in a non-degenerate fashion. The derivation conducted here shows that the same result can be obtained by considering a set of L -1 free variables, which eliminates the need to add a noise term in the mixture model.

The different algorithms introduced here are alike, but up to several important differences. The updates in SAGE algorithms have to be made sequentially, while it can be done in parallel with the standard EM approach. Therefore, EM algorithms are expected to be faster than their SAGE counterparts. Besides, using a reduced set of latent variables (as in SAGE-MUR and EM-MUR) reduces the risk of local minima compared to using rank-1 components (as in SAGE and EM).

Experimental results

In this section, we evaluate the algorithms presented in this paper for a supervised speech separation task. Simulations are run on a 3.40 GHz eight core CPU and 32 Go RAM computer. An implementation of the algorithms is available online 1 .

Setup

As the acoustic data we use a subset of the GRID corpus described in [START_REF] Virtanen | Active-set Newton algorithm for overcomplete non-negative representations of audio[END_REF]. In a nutshell, we arbitrarily choose J = 2 speakers (one male and one female) from the database. There are 100 sentences from each speaker, and each sentence consists of a simple sequence of six words. We generate 10 signals by picking a random sentence from each speaker. The sentences are scaled to equal root-mean-square levels (thus the input signal-to-noise ratio is 0 dB) and summed to create the mixture signal. The non-mixture sentences are then concatenated to build a long signal on which speaker-specific dictionaries of each test speaker are learned. The signals are sampled at 25 kHz and the STFT is computed with a 60 ms long Hann window and 75 % overlap.

For all algorithms using MUR, we choose γ = 1 in the updates ( 4) and ( 5), since it yielded better results than γ = 0.5 in our experiments (this was also observed in [START_REF] Nakano | Convergence-guaranteed multiplicative algorithms for nonnegative matrix factorization with β-divergence[END_REF]). SAGE-MUR and EM-MUR use only 1 iteration of MUR at the M-step: indeed, we experimentally observed that, given a fixed total number of iterations, it leads to slightly better results than more.

Dictionary learning

We first learn the dictionaries on each speaker-specific learning signals. For a fair comparison, the different algorithms use the same nonnegative random valued initial matrices. Since each NMF is performed on isolated signals for each speaker, then J = 1 for each NMF. Therefore, the ML-MUR, EM-MUR and SAGE-MUR algorithms are equivalent and refer to as MUR. The algorithms use 1000 iterations and we present in Fig. 1 the output IS divergence value and computation time for different dictionary sizes (Kj = 10, 50 and 100).

We first observe that for dictionaries of size Kj = 10, the three algorithms exhibit similar results in terms of computational time and IS divergence. However, when the dictionary size increases, MUR outperforms the other approaches. In particular, it yields lower IS divergence values, which may be explained by a better representation of the data by the model with bigger dictionaries. Contrarily, EM and SAGE perform worse with bigger dictionaries: indeed, more components increases the risk of getting trapped in some local minimum.

In terms of computational time, MUR is quite stable over dictionary size: since this technique updates the dictionaries onto matrix form, increasing their size does not significantly increases the computational time. This is not the case for SAGE where the updates are sequential, and consequently for which the computational time is strongly impacted by the number of components. The EM algorithm is designed to be more computationally efficient than its SAGE counterpart, since updates can be done all at once instead of sequentially, but in our implementation, the updates are made sequentially. Therefore, there is some room for improvement for the EM algorithm.

Overall, EM and SAGE exhibit quite poor performance in terms of computational time and output divergence. Acting on rank-1 components in a sequential fashion increases the computational burden and the risk of local minima. Therefore, we recommend to learn dictionaries with a MUR approach, that is, using ML-MUR, SAGE-MUR or EM-MUR. Finally, let us note that even if it may appear, due to the scale of the plot, that SAGE and EM lead to the same value of the IS divergence, their output IS values are slightly different.

Separation

Since the dictionaries learned with EM and SAGE lead to a poor IS divergence value, we use the MUR dictionary at the separation stage for all algorithms for a fair comparison. We concatenate the two speaker-specific MUR dictionaries and compute the activation matrices on the mixtures, thanks to 100 more iterations of the algorithms.

The IS divergence over iterations is plot in Fig. 2. ML-MUR appears to converge faster than the EM-based algorithms. EM and SAGE seem to converge fast, but it may be due to the presence of a local minimum, as suggested by the high resulting value of the IS divergence. This phenomenon becomes more prominent as the dictionary size increases. We also observe that ML-MUR, EM-MUR and SAGE-MUR lead to similar values of the IS divergence after a sufficient number of iterations. However, this value is not exactly the same, which means that those algorithms could yield different estimates, which may results in more differences in terms of separation quality.

Therefore, let us now assess the algorithms in terms of audio source separation quality. Once the NMF models have been estimated, we retrieve the complex-valued STFTs of the sources by means of Wiener filtering ( 16) and we synthesize timedomain signals through inverse STFT. Source separation quality is measured with the signal-to-distortion, signal-to-interference, and signal-to-artifact ratios (SDR, SIR, and SAR) [START_REF] Vincent | Performance Measurement in Blind Audio Source Separation[END_REF] expressed in dB, where only a rescaling (not a refiltering) of the reference is allowed [START_REF] Isik | Single-channel multi-speaker separation using deep clustering[END_REF]. The results are presented in Table 1.

We observe that the algorithms using MUR yield overall better results than their rank-1 components-based counterparts. Besides, while the computational time of EM and SAGE become prohibitive for dictionary sizes over 50, SAGE-MUR and EM-MUR exhibit a reasonable time, even though they are more costly than ML-MUR, which is the fastest procedure. Note that once again, since updates in EM-MUR could theoretically be done in parallel (but done sequentially in our implementation), there is some room for improvement for EM-MUR.

Overall, ML-MUR slightly outperforms EM-MUR in terms of interference reduction, but the latter leads to a greater SAR, which results in a greater SDR. Therefore, it appears as an interesting alternative to ML-MUR.

Conclusion

In this paper, we proposed to investigate on various EM-based algorithms as alternatives to ML-MUR for estimating the IS-NMF model. In particular, adopting a standard EM approach (rather than the SAGE variant) and using a reduced set of latent variables leads to EM-MUR, an algorithm that exhibits better computational efficiency and separation results than the SAGE variant. It also compares favorably with the commonlyused ML-MUR technique. This is particularly interesting since in more sophisticated models where the likelihood of the data is not tractable, one cannot apply ML-MUR, and EM-MUR would then fully reveal its potential. For instance, it can be useful for estimating anisotropic Gaussian models with NMF variance [START_REF] Magron | Complex ISNMF: a phase-aware model for monaural audio source separation[END_REF], or in a multichannel ISNMF framework, where it is common to exploit EM algorithms [START_REF] Ozerov | Multichannel nonnegative tensor factorization with structured constraints for user-guided audio source separation[END_REF][START_REF] Sawada | Efficient algorithms for multichannel extensions of Itakura-Saito nonnegative matrix factorization[END_REF].

Appendix

Here, we compute the SAGE functional [START_REF] Bertin | Enforcing harmonicity and smoothness in Bayesian non-negative matrix factorization applied to polyphonic music transcription[END_REF] introduced in Section 3.1. Since the STFT coefficients are independent, we have:

Q l (Θ l , Θ ) = f t
p(z l,f t |x f t ; Θ ) log p(z l,f t ; Θ l )dz l,f t . [START_REF] Magron | Complex ISNMF: a phase-aware model for monaural audio source separation[END_REF] The posterior variables are z l,f t |x f t ∼ N (µ l,f t , λ l,f t ) where the posterior means and variances are given by Wiener filtering:

µ l,f t = v l,f t v x,f t x f t and λ l,f t = v l,f t - v 2 l,f t v x,f t . (16) 
Besides, the hidden-data log-likelihood is:

log p(z l,f t ; Θ l ) c = -log([W l H l ] f t ) - |z l,f t | 2 [W l H l ] f t . (17) 
Therefore, (15) rewrites:

Q l (Θ l , Θ ) c = - f t log([W l H l ] f t ) + E Z|X;Θ (|z l,f t | 2 ) [W l H l ] f t .
(18) Thanks to the König-Huygens identity:

p l,f t = E Z|X;Θ (|z l,f t | 2 ) = λ l,f t + |µ l,f t | 2 , (19) 
so we finally have Q l (Θ l , Θ ) c =f t dIS(p l,f t , [W l H l ] f t ).
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 1 Figure 1: Output IS divergence (left) and total computational time (right) at the learning stage.
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 2 Figure 2: IS divergence over iterations at the separation stage.
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