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EXPECTATION-MAXIMIZATION ALGORITHMS FOR ITAKURA-SAITO
NONNEGATIVE MATRIX FACTORIZATION

Paul Magron, Tuomas Virtanen

Laboratory of Signal Processing, Tampere University of Technology, Finland

ABSTRACT

This paper presents novel expectation-maximization (EM) algo-
rithms for estimating the nonnegative matrix factorization model
with Itakura-Saito divergence. The commonly-used EM-based
approach exploits the space-alternating generalized EM (SAGE)
variant of EM and provides poor separation quality at a high com-
putational cost. We propose to explore more exhaustively those
algorithms, in particular the choice of the variant (classical EM or
SAGE) and the latent variable set (full or reduced). We then derive
four EM-based algorithms, among which 3 are novel. Experimental
results show that the standard EM algorithm proposed in this paper
with a reduced set of latent variables yields better separation quality
and a lower computational burden than its SAGE variants.

Index Terms— Expectation-Maximization, nonnegative matrix
factorization, Itakura-Saito divergence, audio source separation

1. INTRODUCTION

Nonnegative matrix factorization (NMF) is a rank reduction method
used for obtaining part-based decompositions of nonnegative data [1].
The NMF problem is expressed as follows: given a matrix V of di-
mensions F × T with nonnegative entries, find a factorization
V ≈ WH where W and H are nonnegative matrices of dimensions
F × K and K × T respectively. To reduce the dimensionality of
the data, the rank K is generally chosen so that K(F + T )� FT .
In audio applications such as source separation [2] or music tran-
scription [3], V is usually the magnitude or power spectrogram of
an audio signal. One can interpret W as a dictionary of spectral
templates and H as a matrix of temporal activations.

Such a factorization is generally obtained by minimizing a
cost function that penalizes the error between V and WH. Popu-
lar choices are the Euclidean distance or Kullback-Leibler [1] and
Itakura-Saito (IS) divergences [4]. The IS divergence between two
matrices A and B with entries aft and bft is defined as:

DIS(A,B) =
∑
f,t

dIS(aft, bft), (1)

dIS(a, b) =
a

b
− log

a

b
− 1. (2)

It has been shown relevant for audio applications [4] because of
its scale-invariance, which is practical to handle the large dynamic
range of audio. Besides, it has a probabilistic interpretation: in Gaus-
sian mixtures where the NMF models the variance of the sources,
maximum likelihood (ML) estimation is equivalent to an NMF with
IS divergence (ISNMF) of the power spectrogram [4].
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The IS divergence is usually optimized by means of a heuris-
tic [1] which leads to multiplicative update rules (MUR) [4, 5],
or with auxiliary function methods [6]. Alternatively, expectation-
maximization (EM) algorithms [7] consist in maximizing a lower
bound of the likelihood. For ISNMF [4, 8] a variant of EM, called
space-alternating generalized EM (SAGE) [9], results in updating
all the NMF parameters in a sequential fashion. It has been pre-
ferred to the classical EM algorithm because when the mixture
model does not include a noise part, the joint posterior of all sources
becomes degenerate [10]. This approach is more time-consuming
than MUR [4]. However, it remains interesting since the theoreti-
cal framework provides a local convergence guarantee and makes it
possible to include priors on the parameters [8]. Finally, it is relevant
in more sophisticated Gaussian models where the likelihood is not
tractable [11, 12].

In this paper, we propose to investigate alternative EM-based
algorithms for estimating the ISNMF model, since the above-
described SAGE approach is not computationally efficient and
provides poor separation results [5]. We then consider both the
regular EM approach and its SAGE variant. Indeed, by adopting a
strategy similar to that in [13, 14], we can write the joint posterior
distribution in a non-degenerate fashion. The set of latent variables
can be either the rank-1 components or the sources, resulting in
a total of four algorithms, among which three are novel. We ex-
perimentally assess their computational efficiency and potential for
an audio source separation task. In particular, we observe that the
SAGE algorithm [4] used in the literature performs the worst, and
the proposed EM algorithm using a reduced set of latent variables
provides faster convergence and better separation results.

This paper is structured as follows. Section 2 presents the IS-
NMF model and the MUR estimation technique. In Section 3 we
derive the EM-based algorithms. Section 4 experimentally compares
their computational aspects and potential for an audio source sepa-
ration task. Finally, Section 5 draws some concluding remarks.

2. BASELINE ISNMF

2.1. Gaussian mixture model

Let X ∈ CF×T be the short-term Fourier transform (STFT) of a
single-channel audio signal. X is the linear instantaneous mixture
of J sources Sj ∈ CF×T , such that X =

∑
j Sj . We model the

time-frequency coefficients of all sources as independent Gaussian
random variables: sj,ft ∼ N (0, vj,ft), and we assume that the vari-
ances follow an NMF model: Vj = WjHj , where Wj ∈ RF×Kj

+

and Hj ∈ RKj×T

+ . Due to this NMF model, one can also write
the mixture xft as the sum of K =

∑
j Kj rank-1 components

ck,ft ∼ N (0, wfkhkt). Then, xft ∼ N (0, vx,ft) with Vx = WH.



2.2. Multiplicative Update Rules

To estimate the parameters Θ = {W,H}, a common approach in
a probabilistic framework consists in maximizing the log-likelihood
of the data, given by:

L(Θ) = log p(X|Θ)
c
= −

∑
f,t

log vx,ft +
|xft|2

vx,ft
= −DIS(V,WH)

(3)
where V = |X|�2 and � denotes the element-wise power. There-
fore, the ML estimation is equivalent to performing an NMF with
IS divergence on V, hence the name of ISNMF model. The usual
heuristic [4] leads to the following updates:

W←W� ([WH]�−2 � V)HT

[WH]�−1HT
, (4)

and:

H← H� WT ([WH]�−2 � V)

WT [WH]�−1
, (5)

where � (resp. the fraction bar) denotes the element-wise matrix
multiplication (resp. division) and T is the matrix transposition. We
will refer to the corresponding algorithm as ML-MUR.

3. EM-BASED ALGORITHMS

We describe here the EM-based algorithms for estimating the param-
eters. Considering a given set of L latent (hidden) variables {Zl}l,
the key idea is to maximize the following lower bound of the log-
likelihood, which is the conditional expectation of the complete-data
log-likelihood [7]:

Q(Θ,Θ′) =

∫
p(Z|X; Θ′) log p(X,Z; Θ)dZ, (6)

where Θ′ contains the most up-to-date parameters. The algorithm
consists in alternatively computing this lower bound (E-step) and
maximizing it (M-step). The set of latent variables can either be the
set of sources {Sj} (L = J) or the set of rank-1 components {Ck}
(L = K), such that:

xft =

L∑
l=1

zl,ft. (7)

Because of this mixing constraint, the joint posterior variable Z|X
is degenerate [10]. This is why a SAGE variant, which we develop
hereafter, is preferred in practice [4, 8]. However, we will see in
Section 3.2 that it is still possible to express the posterior distribution
p(Z|X) by considering an appropriate choice for the latent variables.

3.1. SAGE

SAGE [9] is a variation of the EM algorithm, which consists in par-
titioning the set of all parameters into disjoint subsets Θ = {Θl}l
and associated hidden-data sets {Zl}l. Therefore, we have Θl =
{Wl,Hl} where Wl = Wj if Z are the sources and Wl = wk

(which is the k-th column of the matrix W) if Z are the rank-1 com-
ponents (same goes for Hl). Then, instead of maximizing (6), we
successively maximize the following functionals, which are the con-
ditional expectations of the log-likelihood of Zl:

Ql(Θl,Θ
′) =

∫
p(Zl|X; Θ′) log p(Zl; Θl)dZl. (8)

This procedure guarantees that the likelihood (3) will be non-
decreasing. Since this approach has already been developed in [4],
we briefly summarize in Appendix A the E-step, which consists in
computing (8). The resulting functional is:

Ql(Θl,Θ
′)

c
= −

∑
ft

dIS(pl,ft, [WlHl]ft), (9)

where pl,ft = λl,ft + |µl,ft|2 is the posterior power of zl,ft given
by Wiener filtering (see (16) and (17)), and λl,ft and µl,ft are its
posterior mean and variance, respectively. The maximization of Ql

(M-step) then depends on Z:

• If Z = C, then Qk is directly maximized by setting its gradi-
ent w.r.t wfk or hkt to 0 and solving. This leads to:

wfk =
1

T

∑
t

pk,ft
hkt

and hkt =
1

F

∑
f

pk,ft
wfk

. (10)

which results in an algorithm we will refer to as SAGE (Al-
gorithm 2 in [4]).

• If Z = S, then:

Qj(Θj ,Θ
′)

c
= −

∑
ft

dIS(pj,ft, [WjHj ]ft), (11)

which allows solving variables Wj and Hj at the M-step by
MUR1. The corresponding updates are similar to (5) and (4)
but where V, W and H are replaced by Pj , Wj and Hj . We
will refer to the corresponding algorithm as SAGE-MUR.

While the first approach has been originally developed in [4], the
second is novel. Since the SAGE algorithm is known to be time-
consuming (updates are made sequentially), we believe that it is rel-
evant to reduce the set of latent variables, so we loop over J com-
ponents instead of K > J . A similar approach was adopted in a
multichannel scenario: it was observed in [16] that using Z = S
instead of Z = C (as in [17]) leads to a faster convergence.

3.2. Standard EM

Let us now derive a standard EM procedure to directly maximize (6).
Due to the mixing constraint (7), we consider a set of L′ = L − 1
free variables zft = [z1,ft, ..., zL′,ft]

T , which is a Gaussian vec-
tor zft ∼ N (0,Σz,ft) with Σz,ft = diag([v1,ft, ..., vL′,ft]). This
idea, reminiscent from [13, 14], allows us to write the posterior dis-
tribution in a proper fashion, and thus deriving the EM algorithm.

The posterior variables are zft|xft ∼ N (µft,Ξft) where
µft = [µ1,ft, ..., µL′,ft] is given by (16) and the posterior covari-
ance matrix is:

Ξft = Σz,ft − diag(Σz,ft)v
−1
x,ftdiag(Σz,ft)

T . (12)

In particular, [Ξft]l,l = λl,ft. We have:

− log p(X,Z; Θ) = −
∑
f,t

log p(xft|zft; Θ)−
∑
f,t

L′∑
l=1

log p(zl,ft; Θ)

c
=
∑
f,t

log([WLHL]ft) +
|xft −

∑L′

l=1 zl,ft|
2

[WLHL]ft

+
∑
f,t

L′∑
l=1

log([WlHl]ft) +
|zl,ft|2

[WlHl]ft

1Note that instead of using the MUR, one can exploit the majorize-
minimization methodology to obtain novel update rules [15]. We tested it
experimentally but the MUR approach yields overall better results.



Therefore, (6) rewrites:

Q(Θ,Θ′)
c
= −

∑
f,t

L∑
l=1

log([WlHl]ft)

−
∑
f,t

1

[WLHL]ft
EZ|X;Θ′

|xft − L′∑
l=1

zl,ft|2


−
∑
f,t

L′∑
l=1

1

[WlHl]ft
EZ|X;Θ′(|zl,ft|2).

As in the SAGE procedure (see (20)), EZ|X;Θ′(|zl,ft|2) = pl,ft.

Let us now compute EZ|X;Θ′

(
|xft −

∑L′

l=1 zl,ft|
2
)

. We remove the
indices ft in what follows and note the conditional expectation E for
more clarity. We also introduce the column vector a = [1, ..., 1]H of
length L′ such that

∑L′

l=1 zl = aHz. We have:

E(|x− aHz|2) = E(|x|2) + E(|aHz|2)− 2<(x̄aHE(z))

= |x|2 + E(zHaaHz)− 2<(x̄aHµ)).

Thanks to the trace identity:

E(zHaaHz) = Tr(aaHΞ)+µHaaHµ =
∑
i,j

Ξij + |aHµ|2, (13)

which leads to E(|x−aHz|2) = |x−aHµ|2+
∑

i,j Ξij . The mixing

constraint (7) imposes that x−aHµ = µL and vL = vx−
∑L′

l=1 vl,
which leads to:∑

i,j

Ξij =
∑
l

vl −
1

vx

∑
i,j

vivj

= (vx − vL)− 1

vx
(vx − vL)2

= vL −
v2
L

vx
= λL,

Therefore, E(|x− aHz|2) = λL + |µL|2 = pL, and finally:

Q(Θ,Θ′)
c
= −

∑
f,t

L∑
l=1

dIS(pl,ft, [WlHl]ft). (14)

Similarly to the SAGE procedure, the M-step is then performed by
either direct maximization of the IS divergence, as in (10) (if Z = C)
or by applying MUR (if Z = S). We will refer to the following
algorithms as EM and EM-MUR respectively.

This derivation highlights two interesting results. Firstly, Q is
the same as in a source+noise model where we would have taken a
null variance for the noise, cf. for instance [16]. Though it would
have been quite intuitive to do so directly, the derivation we con-
ducted here is somehow more rigorous. Secondly, the functionals
Ql and Q in EM and SAGE are alike, leading to similar iterative
schemes, but up to one difference: in SAGE, one has to update
the parameters sequentially, while in EM it can be done in parallel.
Therefore, an important aspect to analyze is the trade-off between the
computational cost (per iteration) and the convergence speed (num-
ber of iterations) for each approach.

4. EXPERIMENTAL RESULTS

In this section, we evaluate the computational characteristics of the
algorithms presented in this paper, as well as their potential in terms
of separation quality for a supervised speech separation task.
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Fig. 1. IS divergence over iterations (left) and time (right) at the
learning stage (top) and separation stage (bottom).

4.1. Setup

As the acoustic data we use a subset of the GRID corpus described
in [18]. In a nutshell, we arbitrarily choose J = 2 speakers (one
male and one female) from the database. There are 100 sentences
from each speaker, and each sentence consists of a simple sequence
of six words. We generate 10 signals by picking a random sentence
from each speaker and mixing them together. The non-mixture sen-
tences are then concatenated to build a long signal on which speaker-
specific dictionaries Wj of each test speaker are learned using 100
iterations of the algorithms presented in this paper. Then, we con-
catenate the two dictionaries and only compute the activation matri-
ces on the mixtures, thanks to 100 more iterations of the algorithms.

For a fair comparison, the different algorithms use the same non-
negative random valued initial matrices.

The signals are sampled at 25 kHz and the STFT is computed
with a 60 ms long Hann window and 75 % overlap. Simulations are
run on a 3.40 GHz eight core CPU and 32 Go RAM computer.

4.2. Computational aspects

We present the evolution of the IS divergence over iterations and
time in Fig. 1. The top plot corresponds to the learning stage, when
the dictionaries (of size Kj = 100) are computed (the IS divergence
is averaged over the two speakers). The bottom plot corresponds to
the separation stage, when the NMFs are performed on the mixtures
(the IS divergence is averaged over the 10 mixtures).

We observe that EM and SAGE exhibit a poor speed of conver-
gence2, as well as a high computational time: the EM and SAGE
approaches with MUR are faster than the full rank-1 factorization
versions, and they reach a lower IS divergence value. However, the
convergence properties of those algorithms seem better at the sep-
aration stage than at the learning stage: this may be explained by
the fact that when performing separation, the dictionary are fixed so
only the activation matrices must be updated.

Besides, we remark that ML-MUR, SAGE-MUR and EM-MUR
yield comparable results in terms of computational characteristics:
the EM algorithm is theoretically designed to be more computation-

2Actually, these algorithms do not converge before 1000 iterations at the
learning stage, which becomes prohibitive for practical applications.



Kj = 10 Kj = 50 Kj = 100
SDR SIR SAR SDR SIR SAR SDR SIR SAR

ML-MUR 3.2 9.1 4.7 5.8 13.7 6.8 6.6 16.2 7.5
SAGE 2.5 7.6 −2.4 −3.3 1.9 2.6 −1.6 2.1 4.3
EM 3.9 9.9 6.1 −1.6 0.7 2.6 −0.7 1.6 3.4
SAGE-MUR −0.6 8.1 3.1 3.5 12.1 5.2 4.4 14.7 5.6
EM-MUR 2.8 8.5 4.3 6.2 14.0 7.1 6.8 16.0 7.7

Table 1. Average source separation performance (SDR, SIR and SAR in dB) for various dictionary sizes. The three last lines correspond to
novel algorithms introduced in this paper.

ally efficient than its SAGE counterpart, but in our implementation,
the updates are made sequentially. Therefore, there is some room for
improvement for the EM-MUR algorithm.

Overall, in terms of computational efficiency, while the SAGE
algorithm as used in the literature [4, 8] is clearly the worst approach,
other techniques that use a reduced set of latent variables allow to
efficiently exploit the potential of those algorithms.

Finally, let us note that even if it may appear, due to the scale
of the plot, that SAGE and EM on the one hand, and SAGE-MUR,
EM-MUR and ML-MUR on the other hand lead to the same value of
the IS divergence, this is not exactly the case: the various algorithms
lead to different values of the cost function, which means that the
learned dictionaries (and the further separated mixtures) are not the
same. This explains the difference in terms of separation quality
between similar algorithms in the next experiment.

4.3. Source separation quality

Let us now assess the algorithms in terms of audio source separation
quality. Once the NMFs are performed on the mixtures at the separa-
tion stage, we estimate the complex-valued STFTs of the sources by
means of Wiener filtering (16) and we synthesized time-domain sig-
nals through inverse STFT. Source separation quality is measured
with the signal-to-distortion, signal-to-interference, and signal-to-
artifact ratios (SDR, SIR, and SAR) [19] expressed in dB, where
only a rescaling (not a refiltering) of the reference is allowed. The
results are presented in Table 1.

We observe that the EM-based algorithms using rank-1 compo-
nents (EM and SAGE) yield fairly good results when the dictionary
use few components (Kj = 10), but their performance decrease
when the rank of the factorization increases. One explanation is that
the value 0 for the entries of W and H is not possible, given the form
of the updates (cf. (10)): with a low-rank dictionary, this scenario is
less likely to happen than with a bigger dictionary using more com-
ponents. Note that this observation has been made in [4]. In addi-
tion, such sequential updates improve the risk of getting trapped into
a local minimum, and this risk increases with the dictionaries size.

The other algorithms using MUR yield overall better results than
the rank-1 components-based EM algorithms. Besides, their perfor-
mance increase with the dictionary size. In particular, we observe
that for Kj = 50, EM-MUR outperforms all the other approaches,
including ML-MUR. For larger dictionaries (Kj = 100), this ap-
proach still outperforms ML-MUR in terms of SDR and SAR, but
performs slightly worse in terms of interference rejection.

Overall, EM-MUR outperforms the commonly-used SAGE ap-
proach since it yields the best results among EM-based algorithms,
provided sufficiently large dictionaries. It also appears as an inter-
esting alternative to ML-MUR since it performs similarly or better.

5. CONCLUSION

In this paper, we proposed to investigate on various EM-based algo-
rithms as alternatives to ML-MUR for estimating the ISNMF model.
While the SAGE approach commonly used in the literature actually
leads to poor results in terms of computational efficiency and sep-
aration quality, we derived novel algorithms with more interesting
performance. In particular, the EM algorithm using a reduced set
of latent variables combined with the MUR methodology exhibits
better computational efficiency and good separation results.

This study then provides a novel insight into additive Gaussian
models parameter estimation. Indeed, in more sophisticated mod-
els where the likelihood of the data is not tractable, we can suggest
to exploit the EM-MUR methodology instead of a SAGE approach.
For instance, this approach can be useful for estimating anisotropic
Gaussian models [11] with NMF variance.

A. SAGE DERIVATION

We compute here the functional (8) introduced in Section 3.1.
Thanks to the independence of the time-frequency bins, we have:

Ql(Θl,Θ
′) =

∑
ft

∫
p(zl,ft|xft; Θ′) log p(zl,ft; Θl)dzl,ft. (15)

The posterior variable is zl,ft|xft ∼ N (µl,ft, λl,ft) where the pos-
terior moments are given by Wiener filtering:

µl,ft =
vl,ft
vx,ft

xft, (16)

and

λl,ft = vl,ft −
v2
l,ft

vx,ft
. (17)

Besides, the hidden-data log-likelihood is:

log p(zl,ft; Θl)
c
= − log([WlHl]ft)−

|zl,ft|2

[WlHl]ft
. (18)

Therefore, (15) rewrites:

Ql(Θl,Θ
′)

c
= −

∑
ft

log([WlHl]ft) +
1

[WlHl]ft
EZ|X;Θ′(|zl,ft|2),

(19)
and thanks to König-Huygens identity, we have:

pl,ft = EZ|X;Θ′(|zl,ft|2) = λl,ft + |µl,ft|2. (20)

Finally:

Ql(Θl,Θ
′)

c
= −

∑
ft

log([WlHl]ft) +
pl,ft

[WlHl]ft

c
= −

∑
ft

dIS(pl,ft, [WlHl]ft).



6. REFERENCES

[1] D. D. Lee and H. S. Seung, “Learning the parts of objects by
non-negative matrix factorization,” Nature, vol. 401, no. 6755,
pp. 788–791, 1999.

[2] T. Virtanen, “Monaural sound source separation by nonnega-
tive matrix factorization with temporal continuity and sparse-
ness criteria,” IEEE Transactions on Audio, Speech, and Lan-
guage Processing, vol. 15, no. 3, pp. 1066–1074, March 2007.

[3] P. Smaragdis and J. C. Brown, “Non-negative matrix factor-
ization for polyphonic music transcription,” in Proc. of IEEE
Workshop on Applications of Signal Processing to Audio and
Acoustics (WASPAA), October 2003.

[4] C. Févotte, N. Bertin, and J-L. Durrieu, “Nonnegative matrix
factorization with the Itakura-Saito divergence: With applica-
tion to music analysis,” Neural computation, vol. 21, no. 3, pp.
793–830, March 2009.

[5] N. Bertin, R. Badeau, and E. Vincent, “Fast bayesian NMF
algorithms enforcing harmonicity and temporal continuity in
polyphonic music transcription,” in Proc. of IEEE Workshop
on Applications of Signal Processing to Audio and Acoustics
(WASPAA), October 2009.

[6] C. Févotte and J. Idier, “Algorithms for nonnegative matrix
factorization with the beta-divergence,” Neural Computation,
vol. 23, no. 9, pp. 2421–2456, September 2011.

[7] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum
likelihood from incomplete data via the EM algorithm,” Jour-
nal of the royal statistical society. Series B (methodological),
vol. 39, no. 1, pp. 1–38, 1977.

[8] N. Bertin, R. Badeau, and E. Vincent, “Enforcing harmonicity
and smoothness in Bayesian non-negative matrix factorization
applied to polyphonic music transcription,” IEEE Transactions
on Audio, Speech and Language Processing, vol. 18, no. 3, pp.
538–549, March 2010.

[9] J. A. Fessler and A. 0. Hero, “Space-alternating generalized
expectation-maximization algorithm,” IEEE Transactions on
Signal Processing, vol. 42, no. 10, pp. 2664–2677, October
1994.
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