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Abstract

The increasing amount of genomic data currently available is expanding the horizons of
population genetics inference. A wide range of methods have been published allowing to detect
and date major changes in population size during the history of species. At the same time,
there has been an increasing recognition that population structure can generate genetic data
similar to those generated under models of population size change. Recently, Mazet et al. [2016]
introduced the idea that, for any model of population structure, it is always possible to find
a panmictic model with a particular function of population size change having an identical
distribution of T2 (the time of the first coalescence for a sample of size two). This implies that
there is an identifiability problem between a panmictic and a structured model when we base
our analysis only on T2. A natural question that deserves to be explored is whether and when
this identifiability problem disappears for larger sample sizes. In this paper, based on an ana-
lytical study of the rate matrix (or Q-matrix) of the ancestral lineage process, we obtain new
theoretical results about the joint distribution of the coalescence times (T3, T2) for a sample of
three haploid genes in a n-island model with constant size. In particular, we show that this
distribution is always different from the analogous one obtained in a panmictic population, for
any scenario of population size-change. Even if, for any k ≥ 2, it is always possible to find
a size-change scenario for a panmictic population such that the marginal distribution of T2
is exactly the same as in a n-island model with constant population size, we show that the
joint distribution of the coalescence times (T3, T2) for a sample of three genes contains enough
information to distinguish between a panmictic population and a n-island model of constant
size.

Keywords: IICR (inverse instantaneous coalescence rate); population structure; population
size change; demographic history; rate matrix; structured coalescent.
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1 Introduction

Coalescent theory was developed in the 1980s by theoretical population geneticists interested
in the statistical properties of gene trees [Kingman, 1982, Hudson, 1983, Tajima, 1983]. By
focusing on the properties of samples within populations, coalescent theory allowed a significant
reduction in the computational cost of simulations [Hudson et al., 1990, Hudson, 2002]. Also, by
stressing the importance of backward inference, it allowed new insights in our understanding of
the shapes of gene genealogies obtained from real species [Slatkin, 1991, Rogers and Harpending,
1992]. This change in focus (a backward sample view instead of a forward population view)
allowed the development of new methods to infer the demographic history of populations and
species [Beaumont, 1999, Hudson, 2002, Nielsen and Wakeley, 2001] and the detection of ancient
population size changes in many species [Storz and Beaumont, 2002, Goossens et al., 2006,
Quéméré et al., 2012]. However, there has been an increasing recognition that population
structure can generate false signatures of population size change.

Indeed, coalescent theory predicts that gene trees obtained from bottlenecked populations
may be similar in shape to those obtained from structured populations [Wakeley, 1999, Storz
and Beaumont, 2002, Mazet et al., 2015]. Significant work has been done to find a solution
to this inference problem, most of which is based on simulations rather than analytical work
[Beaumont, 2004, Chikhi et al., 2010, Peter et al., 2010, Heller et al., 2013]. One reason for
this is that the coalescent theory of structured population is difficult. Indeed, while it is
straightforward to simulate coalescent times for nearly any model of population structure and
any sampling scheme [Hudson, 2002], few theoretical results exist regarding the distributions
of these times for sample sizes above two. Thus, while there has been significant progress in
our understanding of coalescent theory for a wide variety of models, several difficult problems
in demographic inference could still be addressed using analytical approaches. For instance,
Mazet et al. [2015] used the distribution of the coalescence time T2 for a sample of two haploid
genomes (or one diploid individual) to separate two models for which these distributions could
be derived. The first model was a structured model, the n-island model of Wright [1931],
whereas the second model was a simple panmictic model with only one stepwise population
size change. In that particular case they showed that the distributions were different and could
thus be separated with a reasonably limited number of independent values of T2.

This provided a promising result, since it suggested that genomic data from a single diploid
individual could be enough to separate one model of population structure from a model of
population size change. Such a method would contribute to solve problems pointed in several
simulation studies based on larger sample sizes [Chikhi et al., 2010, Peter et al., 2010, Heller
et al., 2013]. However, in a more recent study, Mazet et al. [2016] have shown that, given the
distribution of the coalescence time T2 obtained under any model of population structure, there
always exists a function λ(·) of population size-change which perfectly mimics this distribution.
This function was derived for a sample of size two for the n-island model and called IICR, which
stands for inverse instantaneous coalescence rate. In other words, the T2 distribution alone does
not allow distinguishing between a panmictic population whose size can vary arbitrarily and a
structured population, however complex that structure may be, as they will have exactly the
same IICR. Mazet et al. [2016] noted that this limitation might be overcome by increasing the
sample size to more than two haploid genomes and including information from other coalescence
times. They also noted that the sampling scheme could potentially also be used to separate
two demographic models, because the IICR is a function of the sampling scheme, an issue that
has been explored by Chikhi et al. [2018].

Altogether, obtaining the distribution of different Tk, for several sample sizes k and several
sampling schemes, could in principle allow us determining whether these distributions differ
significantly for models of population size changes and different models of population structure
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Chikhi et al. [2018]. This would be crucial for demographic inference, in an era where genomic
data are becoming increasingly available.

In this article we focus on the joint distribution of the coalescence times (T
(3)
3 , T

(3)
2 ) for a

sample of three haploid genes and show that it can be used to distinguish between panmixia
with population size changes and a n-island model with constant size. Throughout this article,
the superscript (3) identifies the fact that we consider a sample of 3 genes ; in particular, it
allows distinguishing the second coalescence time T

(3)
2 for a sample of three genes from the

coalescence time T
(2)
2 for a sample of only 2 genes, which we simply denote T2.

In Section 2 we derive new theoretical results about the joint distribution of (T
(3)
3 , T

(3)
2 ) in

a n-island model with constant size, for n ≥ 3. In particular, we explicitly diagonalise the
rate matrix (also called Q-matrix) of the ancestral lineage process associated to this model
and obtain closed analytic expressions for the transition probabilities. We also study in detail
the distribution of T

(3)
3 and the population size change model mimicking this distribution,

as previously done by Mazet et al. [2016] for a sample of size 2. In Section 3 we use the

results obtained in Section 2 to compare the joint distributions of (T
(3)
3 , T

(3)
2 ) for a panmictic

population and a n-island model with n ≥ 3, and demonstrate that these two distributions are
always different, for any population size change and any sampling configuration.

Appendix A contains proofs of the results presented in Sections 2 and 3. In Appendix B
we treat the special case of a 2-island model and give analogs for the main results presented in
Sections 2 and 3.

2 Joint distribution of coalescence times for three genes

2.1 Panmictic model with population size changes

Consider a panmictic population whose population size history is represented by the function
λ(.), i.e. whereby the population size at time t in the past is given by N(t) = N · λ(t), with
N being the present population size. We are interested in the coalescence times for a sample
of three (haploid) genes. After rescaling time by units of N generations and taking N → ∞,

we let T
(3),λ
3 and T

(3),λ
2 denote the first and second coalescence times for the sample, under this

model.
Using known results on the coalescent in populations of variable size (see for example Grif-

fiths and Tavaré [1994]), the distribution of the first coalescence time, T
(3),λ
3 , is given by

P(T
(3),λ
3 > t) = exp{−3Λ(t)}, (1)

where Λ(t) =
∫ t
0

1
λ(s)

ds.

Conditional on T
(3),λ
3 , the distribution of the second coalescence time T

(3),λ
2 is given by

P(T
(3),λ
2 > u|T (3),λ

3 = t) = exp{−(Λ(t+ u)− Λ(t))}.

The marginal distribution of T
(3),λ
2 is thus obtained by integrating over all possible values of t:

P(T
(3),λ
2 > u) =

∫ ∞
0

P(T
(3),λ
2 > u|T (3),λ

3 = t)f
T

(3),λ
3

(t)dt

=

∫ ∞
0

3

λ(t)
exp{−3Λ(t)} exp{−(Λ(t+ u)− Λ(t))}dt.
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2.2 The symmetrical n-island model

Let us now consider the symmetrical n-island model, with n ≥ 3 islands (also named subpop-
ulations or demes), where N is the haploid size of each subpopulation, supposed constant over
time. In the same way as in Wilkinson-Herbots [1998], we rescale time by units of N genera-
tions and take N → ∞, in such a way that in this new continuous time scale, two genes in a
single subpopulation have coalescence rate 1 (going backwards in time) and we call M/2 the
scaled backward migration rate (i.e. the rate at which each gene leaves its subpopulation when
we go backwards in time). In other words, if we call m the proportion of immigrant genes in
each subpopulation (forward in time), we have M = 2Nm. For more details on the structured
coalescent process see Herbots [1994], Wilkinson-Herbots [1998] and Notohara [1990].

As in the previous section, we are interested in the coalescence times for a sample of three
genes. We denote T

(3),n,M
3 and T

(3),n,M
2 the first and second coalescence times for the sample,

respectively. Every pair of genes in the same subpopulation may coalesce at rate 1 and every
gene migrates at rate M/2.

Due to population structure, we now need to distinguish three different configurations for
the sample (for the case where n ≥ 3) : (1) the three genes were sampled from the same
deme, (2) two genes were sampled from the same deme and the third gene was sampled from a
different deme, or (3) the three genes were sampled from three different demes. For i = 1, 2, 3,
we will denote Pi the conditional probability starting from sampling configuration i.

The special case of n = 2 islands needs a special treatment, since in this case the situation
(3) cannot exist. We will treat this case in Appendix B.

2.2.1 The ancestral lineage process

Consider three (haploid) genes sampled in a population described by a symmetrical n-island
model with n ≥ 3 islands and migration parameter M > 0. In order to study the distribution of
the first coalescence time T

(3),n,M
3 of these three genes, we introduce a Markovian jump process

(called ancestral lineage process) describing the configuration in which the ancestral lineages
of the three genes are at any time in the past, with the time going backwards, until their first
coalescence event. The possible configurations, denoted by i = 1, . . . , 5, are the following :

1. the three lineages are in the same island,

2. two lineages are in the same island and the third one is in a different island,

3. the three lineages are all in different islands,

4. there are only two ancestral lineages left and they are in the same island,

5. there are only two ancestral lineages left and they are in different islands.

The transition rate matrix Q of this Markovian jump process (also called Q-matrix, see
Norris [1998] for definition) can be easily constructed (see Rodriguez [2016] and Rodriguez
et al. [201X] for more details):

Q =


−3M

2
− 3 3M

2
0 3 0

M
2(n−1) −M(2n−3)

2(n−1) − 1 M(n−2)
n−1 0 1

0 3M
n−1 − 3M

n−1 0 0

0 0 0 0 0
0 0 0 0 0

 , (2)

These transition rates are easily obtained using the fact that any two lineages among the three
coalesce at rate 1 if they are in the same deme, and any of the three lineages migrates at rate
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M
2

; when a lineage migrates, it migrates to one of the other n−1 islands with equal probability.
Given that we stop the process at the first coalescence event, the states 4 and 5 are absorbing.

Note that Herbots [1994] introduced the structured coalescent and gave an expression for
the rate matrix Q in a general model of population structure. She considered an ancestral
lineage process describing the number of ancestral lineages in each of the n-islands, backwards
in time. In this article we only consider the case of a symmetrical n-island model, and thanks
to the symmetries, we only need to consider the five configurations (or states) presented above
and the reduced rate matrix Q given in Equation 2.

Let Pt := etQ, for t > 0, be the transition kernel of the above Markovian jump process (see
again Norris [1998] for details). By definition, Pt(i, j) represents the probability of the process
being in state j at time t, conditional on starting in state i at time 0.

The cumulative distribution function (cdf ) of the first coalescence time T
(3),n,M
3 can easily

be expressed in terms of the matrix Pt, as follows :

Pi(T (3),n,M
3 ≤ t) = Pt(i, 4) + Pt(i, 5). (3)

Moreover, using the fact that d
dt
Pt = PtQ, we have the relations

d

dt
Pt(i, 4) = 3Pt(i, 1),

d

dt
Pt(i, 5) = Pt(i, 2),

from which we deduce the following expression for the density function of T
(3),n,M
3 :

f
T

(3),n,M
3 ,i

(t) =
d

dt
Pi(T (3),n,M

3 ≤ t) = 3Pt(i, 1) + Pt(i, 2). (4)

In order to obtain a closed form expression for Pt, and consequently for the distribution of
T

(3),n,M
3 (see equation (3)), we study below the diagonalization of the rate matrix Q.

2.2.2 A closed form expression for Pt

The characteristic polynomial of Q is given by χQ(µ) := det(Q− µI5) = −µ2p(µ), with

p(µ) = µ3 +
1

2

8n− 8 + 5Mn

n− 1
µ2 +

3

2

Mn− 4M + 2n2 − 4n+ 3Mn2 + 2 +M2n2

(n− 1)2
µ

+
9

2

M (2n+Mn− 2)

(n− 1)2
.

Thus, the matrix Q has the double eigenvalue 0. Concerning the other three eigenvalues, we
can obtain the first lemma below:

Lemma 1. The polynomial p(µ) has three distinct strictly negative real roots, µ3 < µ2 < µ1 < 0,
such that

µ3 < −2− nM

n− 1
< µ2 < −

3

n
< µ1 < 0.

The proof of this lemma is given in Appendix A.

Using the Cardan-Viète method to express the roots of a third degree polynomial, such as
exposed e.g. in Nickalls [1993], classical computations lead to the following explicit expressions
for µ1, µ2 and µ3:
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Proposition 2. Let us define the real numbers γ,K, x, r and α by

γ =
M

n− 1
,

K = −5γn+ 8

6
,

x = (γn− 2)(10γ2n2 + 41γn+ 54γ + 40),

r =
√

7γ2n2 + 26γn− 72γ + 28,

α =
1

3
arccos(x/r3).

Then the three negative real roots µ3 < µ2 < µ1 < 0 of p(µ) are given by

µ1 =
r

3
cos(α) +K, µ2 =

r

3
cos(α +

4π

3
) +K, µ3 =

r

3
cos(α +

2π

3
) +K.

Using the diagonalization of the rate matrix Q, we finally obtain the following expression
for the transition kernel Pt :

Proposition 3. The transition kernel Pt is given for any t > 0 by

Pt =
3∑
i=1

eµitA(µi) +B, (5)

where we denote

A(µ) =
1

δ(M,n, µ)



3M2u

v
3(n− 1)Mu 3(n− 1)(n− 2)M2 9M2u

µv

3(n− 1)Mu

µ

Mu (n− 1)uv (n− 1)(n− 2)Mv
3Mu

µ

(n− 1)uv

µ

3M2 3(n− 1)Mv
3(n− 1)(n− 2)M2v

u

9M2

µ

3(n− 1)Mv

µ

0 0 0 0 0

0 0 0 0 0


,

B =


0 0 0 b1 1− b1
0 0 0 b2 1− b2
0 0 0 b2 1− b2
0 0 0 1 0
0 0 0 0 1

 ,
with

δ(M,n, µ) = 2(n− 1)2p′(µ),

u = u(M,n, µ) = (n− 1)µ+ 3M, v = v(M,µ) = 2µ+ 3(M + 2),

b1 = b1(M,n) =
M + 2(n− 1)

nM + 2(n− 1)
, b2 = b2(M,n) =

M

nM + 2(n− 1)
.

The proof of the above proposition is deferred to Appendix A.
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2.2.3 Joint distribution of (T
(3),n,M
3 , T

(3),n,M
2 )

The joint distribution function of the two coalescence times for three genes sampled in config-
uration i = 1, 2, 3 can be obtained as follows:

Pi(T (3),n,M
2 ≤ u, T

(3),n,M
3 ≤ t) = Pi(T (3),n,M

2 ≤ u, T
(3),n,M
3 ≤ t, Cs)

+ Pi(T (3),n,M
2 ≤ u, T

(3),n,M
3 ≤ t, Cd),

where Cs (respectively Cd) denotes the event that, after the first coalescence, the two remaining
lineages are in the same deme (respectively in two different demes). Using the Markovian
property of the ancestral lineage process and the fact that the states 4 and 5 are absorbing, we
have

Pi(T (3),n,M
2 ≤ u, T

(3),n,M
3 ≤ t, Cs) = F2,s(u)Pt(i, 4),

Pi(T (3),n,M
2 ≤ u, T

(3),n,M
3 ≤ t, Cd) = F2,d(u)Pt(i, 5),

where F2,s (resp. F2,d) denotes (using the notations in Mazet et al. [2015]) the distribution
function of the coalescence time T2,s (resp. T2,d) for a sample of two genes taken in the same
deme (resp. in two different demes).

We thus deduce

Pi(T (3),n,M
2 ≤ u, T

(3),n,M
3 ≤ t) = F2,s(u)Pt(i, 4) + F2,d(u)Pt(i, 5). (6)

We can specify the above formula by plugging the expressions for F2,s and F2,d obtained in
previous studies (see Herbots [1994] and Mazet et al. [2015]):

F2,s(t) = P(T2,s ≤ t) =
a

α

(
1− e−αt

)
+

1− a
β

(
1− e−βt

)
, (7)

F2,d(t) = P(T2,d ≤ t) =
c

α

(
1− e−αt

)
− c

β

(
1− e−βt

)
, (8)

where

a =
γ − α
β − α

, c =
γ

β − α
(9)

and −α and −β are the roots of the polynomial q(X) = X2+(1+nγ)X+γ, whose discriminant
equals ∆ = (1 + nγ)2 − 4γ, and therefore

α =
1

2

(
1 + nγ +

√
∆
)
, β =

1

2

(
1 + nγ −

√
∆
)
, (10)

with γ = M
n−1 = αβ. Note that −α < −β < 0 are the negative eigenvalues of the analogous

rate matrix of the ancestral lineage process for a sample of size 2.
From Equation (6) we derive the conditional distribution of T

(3),n,M
2 given the value of

T
(3),n,M
3 , as follows

Pi(T (3),n,M
2 ≤ u|T (3),n,M

3 = t) =
F2,s(u) d

dt
Pt(i, 4) + F2,d(u) d

dt
Pt(i, 5)

f
T

(3),n,M
3 ,i

(t)

=
3F2,s(u)Pt(i, 1) + F2,d(u)Pt(i, 2)

3Pt(i, 1) + Pt(i, 2)
. (11)

Moreover, by Equation (6), the marginal distribution function of T
(3),n,M
2 can be expressed as:

Pi(T (3),n,M
2 ≤ u) = F2,s(u) lim

t→∞
Pt(i, 4) + F2,d(u) lim

t→∞
Pt(i, 5).

Using the results in Proposition 3, we finally obtain explicitly the above limits and hence the
distribution function of T

(3),n,M
2 :
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Proposition 4. For every u > 0 we have:

P1(T
(3),n,M
2 ≤ u) =

M + 2n− 2

Mn+ 2n− 2
F2,s(u) +

(
1− M + 2n− 2

Mn+ 2n− 2

)
F2,d(u), (12)

and for i = 2 and i = 3,

Pi(T (3),n,M
2 ≤ u) =

M

Mn+ 2n− 2
F2,s(u) +

(
1− M

Mn+ 2n− 2

)
F2,d(u), (13)

with F2,s and F2,d given by Equations (7) and (8).

The expected value of T
(3),n,M
2 can be deduced from the above proposition. Indeed, we have

E1(T
(3),n,M
2 ) =

M + 2n− 2

Mn+ 2n− 2
E(T2,s) +

(
1− M + 2n− 2

Mn+ 2n− 2

)
E(T2,d).

Using the fact that E(T2,s) = n and E(T2,d) = n+
n− 1

M
(see [Herbots, 1994]), we easily deduce

that

E1(T
(3),n,M
2 ) = n+

(n− 1)2

Mn+ 2n− 2
.

For i = 2 or i = 3, we get

Ei(T (3),n,M
2 ) =

M

Mn+ 2n− 2
E(T2,s) +

(
1− M

Mn+ 2n− 2

)
E(T2,d),

and thus

Ei(T (3),n,M
2 ) = n+

(n− 1)2(M + 2)

M(Mn+ 2n− 2)
, i = 2, 3.

Note that the same formulae were obtained in Herbots [1994] using Laplace transform methods.

2.2.4 Distribution of T
(3),n,M
3 and corresponding population size-change model

Equation (4) and Proposition 3 provide analytic expressions for the probability density function

of T
(3),n,M
3 for each of the three sampling configurations. In guise of example, in Figure 1 we

show the plot of the density of T
(3),n,M
3 for three genes sampled from the same deme (i.e. in

sampling configuration i = 1), for n = 10 and M = 1 (in blue), and M = 0.1 (in red).
Considering a sample of two genes, Mazet et al. [2016] introduced a function λ(·) called the

inverse instantaneous coalescence rate (IICR), which they defined as

λ(t) =
P(T2 > t)

fT2(t)
, t ≥ 0. (14)

They showed that the distribution of their coalescence time T2 can always be expressed as a
function of λ(·), as follows:

P(T2 > t) = exp{−Λ(t)}, Λ(t) =

∫ t

0

1

λ(s)
ds.

This expression holds for any model of population structure, but it is also exactly what we
expect for a panmictic model whose population size along time is described by N(t) = N(0)λ(t).
This implies that for a structured model of any complexity, including thus the symmetrical
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Figure 1: Plot of the probability density function of T
(3),n,M
3 for three genes sampled from the

same deme (i.e. in sampling configuration i = 1) for a n-island model with n = 10 and M = 1
(blue), and M = 0.1 (red).

n-island model considered here, there always exists a panmictic model with population size
changes that perfectly fits the T2 distribution of this model.

A similar result can be obtained for the first coalescence time (denoted simply Tk) for a
sample of size k, for any k ≥ 3. However, the population size history mimicking the distribution
of Tk is not exactly equal to the IICR, but to

(
k
2

)
times the IICR. This comes from the fact that

the first coalescence in a sample of size k arrives
(
k
2

)
times faster than in a sample of size 2,

because all pairs of lineages can coalesce. In particular, the population size function mimicking
the distribution of the first coalescence time T3, for a sample of three genes, is 3 times larger
than the IICR corresponding to T3, which can easily be seen by derivating and re-arranging
equation (1) in order to obtain the corresponding IICR.

We study below this population size-change function for the symmetrical n-island model,
and compare it asymptotically when t→∞ to that obtained by Mazet et al. [2016] for a sample
of size 2. We will use the notation λ(·) for this population size-change function, rather than for
the IICR. Another way of addressing this issue would be to define the IICRk =

(
k
2

)
× IICR.

This notation issue did not arise in [Mazet et al., 2016], since in the particular case of k = 2
the two quantities are equal, namely IICR2 = IICR.

Based on results from the previous section, the population size-change function mimicking
the distribution of T

(3),n,M
3 , for a sample of three genes in configuration i = 1, 2, 3, is given by

λi(t) = 3
Pi(T (3),n,M

3 > t)

f
T

(3),n,M
3 ,i

(t)
= 3

1− Pt(i, 4)− Pt(i, 5)

3Pt(i, 1) + Pt(i, 2)
. (15)

In Figure 2 we plot this function for the different sampling schemes (i = 1, 2, 3), for a model
with n = 10 islands and migration parameter M = 1 (left panel) and M = 0.1 (right panel).
We can see that the three population size functions converge to a same asymptotic value when
t→∞, which is confirmed by the following Proposition 5.

Proposition 5. When t→∞, λi(t), i = 1, 2, 3, have the following limit

lim
t→∞

λi(t) = − 3

µ1

, (16)

where µ1 is the largest of the three distinct negative eigenvalues of the rate matrix Q.
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Figure 2: Plot of λi(·) i = 1, 2, 3 for n = 10 and M = 1 (left), and M = 0.1 (right). The dashed
red line corresponds to the asymptotic value −3/µ1.

The proof is given in Appendix A.

This result is strikingly similar to that of Mazet et al. [2016] for a sample of size 2. Indeed,
the population size-change function mimicking the distribution of T2, for two genes sampled
either from the same or from different demes, converges to 1/β, where −β is the largest of the
two negative eigenvalues of the corresponding rate matrix (see Mazet et al. [2016]); an explicit
formula for β is given in Equation (10)). As pointed out by Mazet et al. [2016], 1/β can be
related to the notion of effective population size in a structured population. In particular, N/β
is always strictly larger than the total population size nN , and for large M it is actually equal
to the effective population size proposed by Nei and Takahata [1993]. For a sample of size 3, the
inequality −3/n < µ1 in Lemma 1 implies that the asymptotic value of N ×λi(·) is also strictly
larger than nN . However, as demonstrated below (Lemma 6 and Remark 7), this asymptotic
value is also strictly larger than N/β. This highlights the ambiguity inherent to the notion of
effective population size, as even this equilibrium value actually depends on the sample size
used to compute it. See also Chikhi et al. [2018] for a discussion on several crucial differences
between the IICR and the notion of Ne.

Lemma 6. We have
−3α < µ3 < µ2 < µ1 < −3β < 0, (17)

where µ3 < µ2 < µ1 < 0 are the ordered roots of p(µ) and −α < −β < 0 are defined in Equation
(10).

The proof is given in Appendix A.

Remark 7. Together with Proposition 5, the result in Lemma 6 implies that, for i = 1, 2, 3, we
have

lim
t→∞

λi(t) >
1

β
.

Another similarity with the results of Mazet et al. [2016] is that λi(·) is increasing when all
genes are sampled from the same island (i = 1), and decreasing when all genes are samples from
different islands (i = 3) (see Figure 2). We do not provide a formal proof of this statement, only
the following intuition: when all genes are sampled from the same island, the corresponding
IICR3 is initially lower than the asymptote, because the coalescence rate is greater in this state
than in all other states of the ancestral lineage process. In contrast, when all genes are sampled
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from different islands, coalescence is initially impossible because a migration has to occur first,
so the IICR3 is infinite. The last sampling configuration i = 2 (two genes sampled from the
same island and the third one from a different island) does not exist for a sample of size 2,
and is thus specific to the case k = 3. As expected intuitively, the curve of the corresponding
IICR3, λ2(·), lies between the two other curves, and when the migration rate M is low the
curve becomes increasingly closer to that of λ1(·).

3 Using the joint distribution of coalescence times (T
(3)
3 , T

(3)
2 )

to distinguish structure from panmixia

We will now compare the two models described in Subsections 2.1 and 2.2 : a panmictic model
with population size-change function λ(·), and a symmetrical n-island model with parameters

n ≥ 3 and M > 0. As previously, we denote T
(3),λ
3 and T

(3),λ
2 the two coalescence times in the

panmictic model, and T
(3),n,M
3 and T

(3),n,M
2 the two coalescence times in the n-island model.

We want to show that the joint distribution of (T
(3),λ
3 , T

(3),λ
2 ) is always different from the

joint distribution of (T
(3),n,M
3 , T

(3),n,M
2 ), for all values of n, M , λ(·) and all initial sampling

configurations (i = 1, 2, 3) for the n-island model.
In order to do so, we will fix n, M and a sampling configuration i, and consider the function

λi(·) defined in Equation (15), for which the distributions of the first coalescence times T
(3),n,M
3

and T
(3),λi
3 are the same. We will show that even in this case, the distribution of T

(3),λi
2 is

different from that of T
(3),n,M
2 . This demonstration will be based on the study of the conditional

distributions of T
(3)
2 given T

(3)
3 in the two models.

For several values of n and M , we will also quantify the difference between the two models
by comparing the marginal distributions of the second coalescence times T

(3),n,M
2 and T

(3),λi
2 , in

the case when the distributions of the first coalescence times T
(3),n,M
3 and T

(3),λi
3 are the same.

3.1 Comparison of the conditional distributions of T
(3)
2 given T

(3)
3

We start by comparing, for a given t > 0 and a given sampling configuration i = 1, 2, 3, the
conditional distribution functions P(T

(3),λi
2 ≤ ·|T (3),λi

3 = t) and Pi(T (3),n,M
2 ≤ ·|T (3),n,M

3 = t).
Using the results from Subsection 2.1, we deduce that

P(T
(3),λi
2 ≤ u|T (3),λi

3 = t) = 1− exp{−(Λi(t+ u)− Λi(t))}

= 1−
(

1− Pt+u(i, 4)− Pt+u(i, 5)

1− Pt(i, 4)− Pt(i, 5)

)1/3

. (18)

On the other hand, an expression for Pi(T (3),n,M
2 ≤ ·|T (3),n,M

3 = t) was given in Equation (11).
In order to compare these two conditional distributions, let us introduce the functions

gi(u, t), i = 1, 2, 3, defined for u, t > 0 by

gi(u, t) := Pi(T (3),n,M
2 ≤ u|T (3),n,M

3 = t)− P(T
(3),λi
2 ≤ u|T (3),λi

3 = t).

In Figures 3 and 4 we plot respectively the functions g1(u, t) and g2(u, t) as functions of u and t,
in the case of a symmetrical n-island model with n = 10 and M = 1 (left panels), and M = 0.1
(right panels).

In these particular cases, we clearly see that there exists at least one pair (u, t) for which
gi(u, t) is different from zero, i.e. for which the two conditional distributions are different. In
order to demonstrate that this is the case for any choice of n, M and i, we further study in
detail the behaviour of the functions gi(u, t) in the neighborhood of (u, t) = (0, 0) (Proposition
8) and their asymptotic behaviour when u→∞ (Proposition 9) or t→∞ (Proposition 10).
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Proposition 8. For (u, t) in the neighborhood of (0, 0) we have

(i)

P1(T
(3),n,M
2 ≤ u|T (3),n,M

3 = t) = u− M + 1

2
u2 − M

2
ut+ o(u2 + t2),

P1(T
(3),λ1
2 ≤ u|T (3),λ1

3 = t) = u− M + 1

2
u2 −Mut+ o(u2 + t2).

As a consequence, we have g1(u, t) =
M

2
ut+ o(u2 + t2) as (u, t)→ (0, 0).

(ii)

P2(T
(3),n,M
2 ≤ u|T (3),n,M

3 = t) =
M

2(n− 1)
u2 +

3M

2(n− 1)
ut+ o(u2 + t2),

P2(T
(3),λ2
2 ≤ u|T (3),λ2

3 = t) =
1

3
u− 3M(n− 3) + n− 1

18(n− 1)
u2

−(n− 3)M

3(n− 1)
ut+ o(u2 + t2).

Thus g2(u, t) = −u
3

+
3Mn+ n− 1

18(n− 1)
u2 +

M(2n+ 3)

6(n− 1)
ut+ o(u2 + t2) as (u, t)→ (0, 0).

(iii)

P3(T
(3),n,M
2 ≤ u|T (3),n,M

3 = t) =
M

2(n− 1)
u2 +

3M

4(n− 1)
ut+ o(u2 + t2),

P3(T
(3),λ3
2 ≤ u|T (3),λ3

3 = t) =
M

2(n− 1)
u2 +

M

n− 1
ut+ o(u2 + t2).

Thus g3(u, t) = − M

4(n− 1)
ut+ o(u2 + t2) as (u, t)→ (0, 0).

Proposition 9. For fixed t > 0, when u→ +∞,

gi(u, t) = −K1,i(n,M, t)e−βu + o(e−βu), i = 1, 2, 3, (19)

where K1,i(n,M, t) > 0 is given by

K1,i(n,M, t) =
3Pt(i, 1)

3Pt(i, 1) + Pt(i, 2)

1− a
β
− Pt(i, 2)

3Pt(i, 1) + Pt(i, 2)

c

β
, (20)

with the constants β, a, c defined in Equations (9) and (10).

Proposition 10. For fixed u > 0, we have

lim
t→+∞

gi(u, t) = −K3(n,M, u), i = 1, 2, 3, (21)

where K3(n,M, u) > 0 is given by

K3(n,M, u) = c1e
−βu + c2e

−αu − e
µ1
3
u, (22)

with

φ(µ1) =
3M

2(n− 1)µ1 + 3Mn+ 6(n− 1)
, c1 =

φ(µ1)− α
β − α

, c2 =
β − φ(µ1)

β − α
. (23)
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The proofs of these three propositions are given in Appendix A.

Propositions 8, 9 and 10 imply that for every n ≥ 3 and M > 0, we can always find at
least one pair (u, t) for which the two conditional distributions in Equations (11) and (18) are
different. Indeed, such pairs can easily be exhibited for small values of both u and t, or for large
values of u or t. As a consequence, the joint distribution of (T

(3),n,M
3 , T

(3),n,M
2 ) for a sample of

three genes is always different from the distribution of (T
(3),λ
3 , T

(3),λ
2 ) in a panmictic population,

for any possible size-change function λ(·) and any initial sampling configuration.
The results of this section also provide interesting insights into the comparison of coalescence

times between panmictic and symmetrical n-island models. When the three genes are sampled
from two or three different islands (i = 2, 3), gi(u, t) is negative at least in the neighboorhood
of (0, 0) and for sufficiently large values of u or t. This is in line with Figure 4, which suggests
that gi(u, t) is always negative; if true, this implies that, for a panmictic and a symmetrical

n-island model that have the same distribution of T
(3)
3 , the cdf of T

(3)
2 is always smaller in the

n-island model, which actually means that T
(3)
2 is stochastically larger in the n-island model

than in the panmictic model.
The situation is more complex when the three genes are sampled from the same deme. For

fixed t > 0 and sufficiently large values of u, g1(u, t) is also negative, meaning that, given that

T
(3)
3 has the same value in the panmictic population and in the symmetrical n-island model, T

(3)
2

tends to be asymptotically larger in the n-island model than in the panmictic case. However,
for small values of both u and t, g1(u, t) is positive, so for a sufficiently small common value

T
(3)
3 = t and for small values of the second coalescence time T

(3)
2 , this last coalescence time tends

to be smaller in the n-island model than in the panmictic case. Actually, this latter situation
is by far the most relevant in practice, because the asymptotics when u → ∞ is reached very
slowly (see Figure 3) and the probability density of T

(3)
3 is mostly concentrated on small values

of t (see Figure 1).
Note also that, in the neighbourhood of (0, 0), the leading term of gi(u, t) is very different

depending on i: it is of order ut and depends linearly on M for i = 1 or i = 3, while it is of
order u and independent of M for i = 2.

3.2 Comparison of the marginal distributions of T
(3)
2

The results of the previous section prove that the joint distributions of (T
(3),λi
3 , T

(3),λi
2 ) and

(T
(3),n,M
3 , T

(3),n,M
2 ) always differ, even if the size-change function λi(·) is such that T

(3),λi
3 and

T
(3),n,M
3 have the same distribution.

In order to quantify the distance between the coalescence time distributions in the panmictic
case versus the symmetrical n-island model, it is easier in practice (even if less informative) to

compare only the marginal distributions of T
(3),λi
2 and T

(3),n,M
2 , in the case when the size-change

function λi(·) is such that the distributions of T
(3),λi
3 and T

(3),n,M
3 are the same.

Using the results from the previous section, we have

P(T
(3),λi
2 ≤ u) = 1−

∫ ∞
0

P(T
(3),λi
2 > u|T (3),λi

3 = t)f
T

(3),λi
3

(t)dt

= 1−
∫ ∞
0

(
1− Pt+u(i, 4)− Pt+u(i, 5)

1− Pt(i, 4)− Pt(i, 5)

)1/3

[3Pt(i, 1) + Pt(i, 2)]dt,

which we will compare with the expression for Pi(T (3),n,M
2 ≤ u) provided by Equations (12) and

(13).
Figure 5 shows these two marginal distribution functions for a symmetrical n-island model

with n = 10 and M = 1 (left), and M = 0.1 (right), and three genes sampled in the same deme
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(i.e. in sample configuration i = 1). As discussed in the previous section, for this particular

sampling configuration, the cdf of T
(3)
2 appears to be larger (hence T

(3)
2 stochastically smaller)

in the n-island model than in the panmictic case.
We compare the marginal probability distributions of T

(3),n,M
2 and T

(3),λi
2 using the 1-

Wasserstein distance (see e.g. Vallander [1973]), which we denote

Di(n,M) : =

∫ ∞
0

∣∣∣Pi(T (3),n,M
2 ≤ u)− P(T

(3),λi
2 ≤ u)

∣∣∣ du
=

∫ ∞
0

∣∣∣∣∫ ∞
0

gi(u, t)[3Pt(i, 1) + Pt(i, 2)]dt

∣∣∣∣ du.
In Figure 6 we show several plots of D1(n,M) as a function of M , for different values of n,
in the case of three genes sampled in the same deme (i = 1). We see that, as expected, the
difference between the two distributions increases with n, the number of demes, and decreases
when M is large or very small. When M increases the n-island model tends towards a large
panmictic population of size nN . When M is very small, each deme is nearly isolated from the
other demes, and thus increasingly behaves as a simple panmictic population of size N .
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4 Discussion and perspectives

In this study we obtain new theoretical results about the joint distribution of the coalescence
times (T

(3)
3 , T

(3)
2 ) for a sample of three genes in a symmetrical n-island model with constant size,

for all possible sampling configurations. When comparing this distribution with the analogous
one in a panmictic population with population size changes, we show that for any size-change
function λ(·), the two distributions are different. Indeed, it is always possible to construct

a size-change function λ(·) which perfectly mimics the distribution of T
(3)
3 in a symmetrical

n-island model; but we show that even in this case, the conditional distributions of T
(3)
2 given

T
(3)
3 in this panmictic model and in the n-island model are different. Consequently, our results

imply that the joint distribution of coalescence times for a sample of three genes contains enough
information to distinguish between a panmictic population and a symmetrical n-island model
of constant size. As illustrated by Figures 5 and 6, the difference between the two models can
be substantial, even in the case where these models lead to the same distribution of T

(3)
3 .

Although this result is extremely important from a theoretical perspective, we note that,
currently, it cannot be directly implemented into a model choice procedure based on real ge-
nomic data. Indeed, to our knowledge, no statistical method has yet been proposed to estimate
neither the joint distribution of (T

(3)
3 , T

(3)
2 ) or the marginal distribution of T

(3)
2 from genomic

data. However, some important progresses have been made recently into this direction. For
instance, the distribution of the first coalescence time Tk in a sample of size k can be estimated
quite accurately by the MSMC approach [Schiffels and Durbin, 2014], and other approaches
might be implemented in the near future to estimate also more ancient coalescent times (see for
instance the recent work of Weissman and Hallatschek [2017]). Besides, the fact that consid-
ering jointly several coalescence times allows discriminating structured and panmictic models,
might be exploited by statistical procedures based on the Site Frequency Spectrum (SFS). In-
deed, this quantity is directly observable from genomic data, as it records the proportion of
genomic positions with 1, 2, . . . n − 1 copies of the mutant allele in a sample of n genes, and
the limit of this quantity for large numbers of loci can be expressed as a linear function of the
successive expected coalescence times E(Tn),E(Tn−1), . . . ,E(T2) [Griffiths and Tavaré, 1998].

Moreover, it should be possible in theory to apply the ideas presented in this article to
compare the joint distribution of (T

(3)
3 , T

(3)
2 ) between a panmictic population and a structured

population for more general models of population structure. In this article we focused on the
symmetrical n-island model, but our results can be straightforwardly generalized to any model
of population structure, provided that we can compute the corresponding transition kernel Pt.
The theoretical results of Herbots (see Herbots [1994], Wilkinson-Herbots [1998]) allow one
to write the rate matrix Q for any given model of population structure under the structured
coalescent. One important issue is that complex models are characterized by very large rate
matrices Q, on the order of n2× n2 for k = 2. For a model with n demes, it may be difficult to
study the transition kernel Pt, when the rate matrix Q has on the order of 10,000 elements. This
is currently explored by Rodriguez et al. [201X] who show that the IICRk can be obtained for
highly complex models. Altogether, the formal proofs presented here and the work of Rodriguez
et al. [201X] suggest that demographic inference under complex models of population structure
may become easier in the next few years.
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Appendix A. Proofs for Sections 2 and 3

Proof of Lemma 1

We first observe that

−2− nM

n− 1
< − 3

n
< 0.

Then the calculus gives

p(0) =
9M(Mn+ 2n− 2)

2(n− 1)2
> 0,

p

(
− 3

n

)
= −9(Mn2 + 2(n− 1)(n− 3))

2n3
< 0,

p

(
−2− nM

n− 1

)
=

(Mn+ 2n− 2)(M(n− 3) + 2n− 2)

2(n− 1)2
> 0

lim
µ→−∞

p(µ) = −∞.

The intermediate value theorem applied to p(µ) thus provides a proof of the result.

Proof of Proposition 3

In order to simplify computations, we make the following change of parameters:

M = 2N, n =
a+N

a
.

The new parameters a et N verify a > 0 and N > 0 and the matrix Q becomes

Q =



−3− 3N 3N 0 3 0

a −1 + a− 2N −2 a+ 2N 0 1

0 6 a −6 a 0 0

0 0 0 0 0

0 0 0 0 0


.

The matrix Q has the double eigenvalue 0 and it is easy to check that the corresponding
eigenspace is generated by the following non colinear vectors:

V1 = [N,N − 1, N − 1, 2N,N − a− 1]T , V2 = [1, 1, 1, 1, 1]T .

We then consider the change of basis matrix

P1 =



1 0 0 N 1

0 1 0 N − 1 1

0 0 1 N − 1 1

0 0 0 2N 1

0 0 0 N − a− 1 1


,

whose inverse is

P−11 =



1 0 0 − a+1
N+a+1

− N
N+a+1

0 1 0 − a
N+a+1

− N+1
N+a+1

0 0 1 − a
N+a+1

− N+1
N+a+1

0 0 0 1
N+a+1

− 1
N+a+1

0 0 0 −N−a−1
N+a+1

2N
N+a+1


.
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We have thus obtained a partial diagonalization (by blocks) of the matrix Q:

Q2 = P−11 QP1 =



−3− 3N 3N 0 0 0

a −1 + a− 2N −2 a+ 2N 0 0

0 6 a −6 a 0 0

0 0 0 0 0

0 0 0 0 0


, (24)

and we put

R :=


−3− 3N 3N 0

a −1 + a− 2N −2 a+ 2N

0 6 a −6 a

 .
The characteristic polynomial of R is the polynomial p(µ), which has the following expres-

sions using the new parameters:

p(µ) = µ3 + (5N + 5a+ 4)µ2 + 3(2N2 + 4aN + 3N + 2a2 + 7a+ 1)µ+ 18a(N + a+ 1),

which has three strictly negative real roots. These roots are all distinct by Lemma 1.

If µ is an eigenvalue of R, we then determine a corresponding eigenvector W (µ) by solving
the equation RW (µ) = µW (µ).

The computations show that we can choose

W (µ) =

 µ2 + (2N + 5a+ 1)µ+ 6a(a+ 1)
a(µ+ 6a)

6a2

 .
We then consider the 3×3 passage matrix P2, whose column vectors are theW (µi), i = 1, 2, 3,

where the µi are the three eigenvalues of R:

P2 = [W (µ1), W (µ2), W (µ3)] .

Some easy computations on the rows show that the determinant of P2 is a Van der Monde
determinant, and hence: det(P2) = (µ1 − µ2)(µ1 − µ3)(µ2 − µ3) 6= 0.

The computations of the inverse P−12 gives

P−12 = [Z(µ1), Z(µ2), Z(µ3)]
T ,

where

Z(µ) =
1

p′(µ)


1

µ+ 3N + 3

a

−µ
2 + (3N + a+ 4)µ+ 3(N + a+ 1)

aµ

 ,
with

p′(µ) = 3µ2 + 2(5N + 5a+ 4)µ+ 3(2N2 + 4aN + 3N + 2a2 + 7a+ 1).
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We further obtain

etR = P2

 eµ1t 0 0
0 eµ2t 0
0 0 eµ3t

 P−12 ,

=
3∑
j=1

eµj W (µj)Z(µj)
T .

We then introduce the matrices A(µ) and B defined by

A(µ) := P1 W̄ (µ)Z̄(µ)T P−11 ,

where W̄j(µ) (resp. Z̄(µ)) is a vector of length 5 obtained by adding two null coordinates to
W (µ) (resp. Z(µ)), and

B = P1


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1

 P−11 .

Emphasizing the rank one property of matrix A(µ), let us define the vectors

E1 =



3M

v
1

3M

u
0
0


, E2 =



Mu
(n− 1)uv

(n− 1)(n− 2)Mv
3Mu

µ
(n− 1)uv

µ


,

where µ is an eigenvalue of R, and u, v are functions of µ defined by

u = (n− 1)µ+ 3M, v = 2µ+ 3(M + 2).

Note that, since

p

(
− 3M

n− 1

)
= −9

2
· (n− 2)[2(n− 1) + (n− 3)M ]M2

(n− 1)3
< 0,

p

(
−3(M + 2)

2

)
=

9

8
· [2(n− 1) + (n− 3)M ]M2

(n− 1)2
> 0,

− 3M

n− 1
and −3(M + 2)

2
cannot be eigenvalues and thus u 6= 0 et v 6= 0.

With δ(M,n, µ) = 2(n− 1)2p′(µ), we have

A(µ) =
1

δ(M,n, µ)
E1E

T
2 , (25)

which gives the expression of A(µ) in Proposition 3.
The stated result easily follows.
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Proof of Proposition 5

Using Equation (15) and Proposition 3, we deduce that

lim
t→∞

λi(t) = −3
A(µ1)(i, 4) + A(µ1)(i, 5)

3A(µ1)(i, 1) + A(µ1)(i, 2)
, i = 1, 2, 3.

Note that the matrix E1E
T
2 introduced in the proof of Proposition 3 can also be factorized

in a different manner. If we define the 3×3 matrix C, the 5×3 matrix D1 and the 3×5 matrix
D2 by

C :=


u

v
u 1

u uv v

1 v
v

u

 , D1 :=


3M 0 0
0 1 0
0 0 3M
0 0 0
0 0 0

 ,

D2 :=


M 0 0

3M

µ
0

0 n− 1 0 0
n− 1

µ
0 0 (n− 1)(n− 2) 0 0

 ,
we may check that, for any value of µ, we have E1E

T
2 = D1CD2.

The vectors V1 and V2, defined by

V1 :=


3
0
0
−µ
0

 , V2 :=


0
1
0
0
−µ

 ,
verify D2Vj = 0 for j = 1, 2, and hence, using Equation (25), A(µ)Vj = 0, for j = 1, 2.

Therefore, for i = 1, 2, 3,

3A(µ)(i, 1)− µA(µ)(i, 4) = 0, A(µ)(i, 2)− µA(µ)(i, 5) = 0,

and the result follows.

Proof of Lemma 6

Note that −3α and −3β, with α, β defined in Equation (10), are the roots of the polynomial
q1(X) = q(X/3), where

q(X) = X2 +

(
1 +

nM

n− 1

)
X +

M

n− 1
,

and on the open subset D = {(n,M) : n > 2, M > 0} of R2 the polynomials p(X) and q1(X)
have a common root if and only their resultant R(n,M) = Res(p(X), q1(X), X) with respect
to X is null (see e.g. [Lang, 2002, chapter IV-8]).

Because R(n,M) = − M3

9(n−1)2 < 0 on D, and because the roots −3α and µ3 are continuous

functions of (n,M) on D, the inequality −3α < µ3 for one value of (n,M) ∈ D implies the
inequality everywhere on D. The same is true for the inequality µ1 < −3β.

This achieves the proof of the lemma.
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Proof of Proposition 8

We will only give the proof of (i), which corresponds to the case of three genes sampled from
the same deme. The proofs ot the analougous results (ii) and (iii), corresponding to the two
other sample schemes, are similar.

When t→ 0, using the well-known relation Pt = I5+tQ+o(t), where I5 denotes the identity
matrix, we have the following Taylor expansions :

Pt(1, 1) = 1 +

(
−3M

2
− 3

)
t+ o(t),

Pt(1, 2) =
3M

2
t+ o(t).

In particular, we have

1

3Pt(1, 1) + Pt(1, 2)
=

1

1− (M + 3)t+ o(t)
= 1 + (M + 3)t+ o(t).

Using Equations (7), (8), (9), (10) and (11), and a Taylor expansion of order 2 of the
exponential in the neighborhood of 0, we easily obtain

F2,s(u) = u− M + 1

2
u2 + o(u2),

F2,d(u) =
M

2(n− 1)
u2 + o(u2).

When substituting the above expressions into Equation (11), straightforward calculations
give

P1(T
(3),n,M
2 ≤ u|T (3),n,M

3 = t) = u− M

2
ut− M + 1

2
u2 + o(u2 + t2).

Further, using Equation (18), let us denote

h(u, t) := P(T
(3),λ1
2 ≤ u|T (3),λ1

3 = t) = 1−
(

1− Pt+u(1, 4)− Pt+u(1, 5)

1− Pt(1, 4)− Pt(1, 5)

)1/3

.

We will write a Taylor expansion of order 2 of h(u, t) in the neighborhood of (0, 0). We have
h(0, 0) = 0 and direct computations give

∂h

∂u
(u, t) =

1

3
× (1− Pt(1, 4)− Pt(1, 5))−1/3 × (1− Pt+u(1, 4)− Pt+u(1, 5))−2/3

× (Pt+uQ(1, 4) + Pt+uQ(1, 5)) ,

∂h

∂t
(u, t) =

(1− Pt+u(1, 4)− Pt+u(1, 5))−2/3

3 (1− Pt(1, 4)− Pt(1, 5))4/3

× {(Pt+uQ(1, 4) + Pt+uQ(1, 5)) (1− Pt(1, 4)− Pt(1, 5))

− (PtQ(1, 4) + PtQ(1, 5)) (1− Pt+u(1, 4)− Pt+u(1, 5))}.

Using the fact that P0 = I5, and Q(1, 4) = 3, Q(1, 5) = 0, we obtain

∂h

∂u
(0, 0) = 1,

∂h

∂t
(0, 0) = 0.

We further compute the second partial derivatives of h in (0, 0). With Q2 being the square
matrix of the rate matrix Q, and using the fact that Q2(1, 4) = −9

(
M
2

+ 1
)

and Q2(1, 5) = 3M
2
,
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we easily derive

∂2h

∂u∂t
(0, 0) =

1

3

{
(Q(1, 4) +Q(1, 5))2 +Q2(1, 4) +Q2(1, 5)

}
= −M,

∂2h

∂u2
(0, 0) =

1

3

{
2

3
(Q(1, 4) +Q(1, 5))2 +Q2(1, 4) +Q2(1, 5)

}
= −(M + 1),

∂2h

∂t2
(0, 0) = 0,

The Taylor expansion of order 2 of h(u, t) near (0, 0) finally gives

P(T
(3),λ1
2 ≤ u|T (3),λ1

3 = t) = u−Mut− M + 1

2
u2 + o(u2 + t2),

which finishes the proof.

Proof of Proposition 9

Because 0 < β < α, using Equations (7) and (8), we get

F2,s(u) = 1− a

α
e−αu − 1− a

β
e−βu = 1− 1− a

β
e−βu + o(e−βu)

and
F2,d(u) = 1− c

α
e−αu +

c

β
e−βu = 1 +

c

β
e−βu + o(e−βu).

Therefore, using Equation (11), we obtain

Pi(T (3),n,M
2 ≤ u|T (3),n,M

3 = t) = 1−K1,i(n,M, t)e−βu + o(e−βu),

where K1,i(n,M, t), given by (20), is strictly positive because 0 < a < 1 and c < 0.
Using Proposition 3 we get

3∑
j=1

Pt+u(i, j) = (A(µ1)(i, 1) + A(µ1)(i, 2) + A(µ1)(i, 3)) eµ1(t+u) + o(eµ1(t+u)).

Therefore, using Equation (18) and relation 1− Pt(i, 4)− Pt(i, 5) =
∑3

j=1 Pt(i, j), we obtain

P(T
(3),λi
2 ≤ u|T (3),λi

3 = t) = 1−K2,i(n,M, t) e
µ1
3
u + o(e

µ1
3
u),

where

K2,i(n,M, t) :=

(
A(µ1)(i, 1) + A(µ1)(i, 2) + A(µ1)(i, 3)

Pt(i, 1) + Pt(i, 2) + Pt(i, 3)

) 1
3

e
µ1
3
t.

Because µ1
3
< −β from Lemma 6, we have e

µ1
3
u = o(e−βu), which achieves the proof of

(19).

Proof of Proposition 10

We will first prove a useful lemma.

Lemma 11. Let us define φ(µ) by

φ(µ) :=
3A(µ)(1, 1)

3A(µ)(1, 1) + A(µ)(1, 2)
,

where the matrix A(µ) is given in Proposition 3.
Then,
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(i) 0 < φ(µi) < −µi
3
< α, i = 1, 2, 3.

(ii) Defining h(n) by

h(n) =
(n− 1)(25− 9n+ 5

√
9n2 − 18n+ 25)

12n2
,

we have the following results:

(a) If M > h(n), then φ(µ1) < β < φ(µ2) < φ(µ3) < α.

(b) If M = h(n), then φ(µ1) < β = φ(µ2) < φ(µ3) < α.

(c) If M < h(n), then φ(µ1) < φ(µ2) < β < φ(µ3) < α.

Proof. From Proposition 3 and using p(µi) = 0, we get

φ(µi) =
1

3

(n− 1)µ2
i + (nM + n− 1)µi + 6M

Mn+ 2(n− 1)

=
3(n− 1)

nM + 2(n− 1)
q
(µi

3

)
− M(µin+ 3)

nM + 2(n− 1)
− µi

3
.

From Lemma 1, it follows that µn+ 3 > 0. Because −α < µi
3
< −β from Lemma 6, we get

q
(
µi
3

)
< 0, that proves φ(µi) < −µi

3
.

Now, using again that p(µi) = 0, we obtain the following expression for φ(µi)

φ(µi) =
3M

2(n− 1)µi + 3nM + 6(n− 1)
. (26)

Introducing the new variable ν =
3M

2(n− 1)µ+ 3nM + 6(n− 1)
, and thus

µ = −3

2

(nM + 2n− 2))ν −M
(n− 1)ν

, we get that φ(µi), for i = 1, 2, 3 are the three real roots of the

polynomial

r(ν) = 4(n− 1)(nM + 2n− 2)ν3 − [n2M2 + 2(n− 1)(3n+ 4)M + 8(n− 1)2]ν2

+2M(2nM + 5n− 5)ν − 3M2.

The coefficient signs of r(X) show that r(X) has no negative roots, implying that φ(µi) >
0, i = 1, 2, 3, which achieves the proof of (i).

The set of (n,M) such that r(X) and q(−X) have a common root is obtained by computing
their resultant with respect to X, denoted by R(n,M) :

R(n,M) = Res(r(X), q(−X), X) = M3
[
6n2M2 + (n− 1)(9n− 25)M − 6(n− 1)2

]
.

In the domainD = {(n,M), n > 2, M > 0} the curve 6n2M2+(n−1)(9n−25)M−6(n−1)2 = 0
is identical to the graph of the function M = h(n), n > 2.

The set D \ {(n, h(n)) : n > 2} has two connex open components in which the relative
position of β, α and φ(µi), i = 1, 2, 3 are the same.
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In the component D1 := {(n,M) : n > 2, M > h(n)}, one may choose n = 3, M = 4
3

for
which

β =
3

2
−
√

57

6
≈ 0.241694,

α =
3

2
+

√
57

6
≈ 2.758305,

φ(µ1) =
3−
√

5

4
≈ 0.190983,

φ(µ2) =
1

3
,

φ(µ3) =
3 +
√

5

4
≈ 1.3090167,

that proves (ii− a).
In the component D2 := {(n,M) : n > 2, M < h(n)}, one may choose n = 3, M = 1

2
for

which

β =
7−
√

33

8
≈ 0.156929,

α =
7 +
√

33

8
≈ 1.593070,

φ(µ1) ≈ 0.104089,

φ(µ2) ≈ 0.146359,

φ(µ3) ≈ 1.118868,

that proves (ii− c).

The curve arc {(n, h(n)) : n > 2} may be parametrized by

n =
3u2 + 8u− 3

3(u2 − 1)
, M =

8u

(u+ 3)2
, u ∈]1, 3[,

and we obtain

β =
u− 1

u+ 3
,

α =
3(u+ 1)

u+ 3
,

φ(µ1) =
39u+ 51− 3

√
−71u2 + 442u+ 529

40(u+ 3)
,

φ(µ2) =
u− 1

u+ 3
,

φ(µ3) =
39u+ 51 + 3

√
−71u2 + 442u+ 529

40(u+ 3)
,

and (ii− b) is proved.

Lemma 11 is now used to prove Proposition 10. First note that we have

φ(µ) =
3A(µ)(i, 1)

3A(µ)(i, 1) + A(µ)(i, 2)
,
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for every i = 1, 2, 3.
When t→ +∞, Pt(i, j) = A(µ1)(i, j)e

µ1t + o(eµ1t), j = 1, 2 and thus

Pi(T (3),n,M
2 ≤ u|T (3),n,M

3 = t)

=
3A(µ1)(i, 1)

3A(µ1)(i, 1) + A(µ1)(i, 2)
F2,s(u) +

A(µ1)(i, 2)

3A(µ1)(i, 1) + A(µ1)(i, 2)
F2,d(u) + o(1)

= φ(µ1)F2,s(u) + (1− φ(µ1))F2,d(u) + o(1).

Using the definitions of F2,s(u) and F2,d(u) in Equations (7) and (8), we get

Pi(T (3),n,M
2 ≤ u|T (3),n,M

3 = t) = 1− c1e−βu − c2e−αu + o(1),

where c1 and c2 are given by (23).
On another hand, we have Pt(i, j) = A(µ1)(i, j)e

µ1t + o(eµ1t), j = 1, 2, 3, we obtain

3∑
j=1

Pt+u(i, j) = ((A(µ1)(i, 1) + A(µ1)(i, 2) + A(µ1)(i, 3)) eµ1(t+u) + o(eµ1t),

3∑
j=1

Pt(i, j) = ((A(µ1)(i, 1) + A(µ1)(i, 2) + A(µ1)(i, 3)) eµ1t + o(eµ1t).

Using the fact that 1− Pt(i, 4)− Pt(i, 5) =
∑3

j=1 Pt(i, j), this implies

P(T
(3),λi
2 ≤ u|T (3),λi

3 = t) = 1− e
µ1
3
u + o(1),

and thus (21) holds.

It remains to show that K3(n,M, u) > 0.
Using c1 + c2 = 1, we may write

K3(n,M, u) =
β − φ(µ1)

β − α

(
e−αu − e

µ1
3
u
)

+
φ(µ1)− α
β − α

(
e
µ1
3
u − e−βu

)
.

From Lemma 6, −α < µ1
3
< −β and thus e−αu < e

µ1
3
u < e−βu. On the other hand, from Lemma

11 we have φ(µ1) < β < α. Therefore K3(n,M, u) > 0.

26



Appendix B. The case of n = 2 islands

If we now consider the ancestral lineage process for a sample of three genes in the case of a
symmetrical n-island model with n = 2 two islands, we only have the following four possible
configurations:

1. the three lineages are in the same island,

2. two lineages are in the same island and the third one is in the other island,

3. there are only two ancestral lineages left and they are in the same island,

4. there are only two ancestral lineages left and they are in different islands.

The corresponding transition rate matrix is:

Q =


−3M

2
− 3 3M

2
3 0

M
2

−M
2
− 1 0 1

0 0 0 0
0 0 0 0

 ,

The characteristic polynomial of Q is χQ(µ) = −µ2p(µ), with

p(µ) = µ2 + 2(M + 2)µ+ 3(M + 1).

The matrix Q has the double eigenvalue 0 and the corresponding eigenspace of dimension 2 can

be generated by the vectors

[
M

2
,
M

2
− 1,M,−1

]T
and [1, 1, 1, 1]T . The two other eigenvalues

are µ1 = −M − 2 +
√
M2 +M + 1 and µ2 = −M − 2−

√
M2 +M + 1.

An eigenvector for µ1 (resp. µ2) is [3M, 2µ1+3M+6, 0, 0]T (resp. [3M, 2µ2+3M+6, 0, 0]T ),
and we may consider the following change of basis matrix P given by

P =


3M 3M M

2
1

2µ1 + 3M + 6 2µ2 + 3M + 6 M
2
− 1 1

0 0 M 1
0 0 −1 1

 .

From

P−1 =



2µ1 +M + 2

12M(µ1 +M + 2)

1

4(µ1 +M + 2)

2µ1 +M + 2

4Mµ1(µ1 +M + 2)

1

4µ1(µ1 +M + 2)
2µ2 +M + 2

12M(µ2 +M + 2)

1

4(µ2 +M + 2)

2µ2 +M + 2

4Mµ2(µ2 +M + 2)

1

4µ2(µ2 +M + 2)

0 0
1

M + 1
− 1

M + 1

0 0
1

M + 1

M

M + 1


,

and the equality

etQ = P


eµ1t 0 0 0
0 eµ2 0 0
0 0 1 0
0 0 0 1

 P−1,

a proof of the following proposition is obtained.
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Proposition 12. The transition kernel Pt = etQ is given by

Pt = eµ1tA(µ1) + eµ2tA(µ2) +B,

where

A(µ) =
1

δ(M,µ)



2µ+M + 2 3M
3(2µ+M + 2)

µ

3M

µ

M 2µ+ 3M + 6
3M

µ

2µ+ 3M + 6

µ

0 0 0 0

0 0 0 0


,

B =


0 0 b 1− b
0 0 1− b b
0 0 1 0
0 0 0 1

 ,
with δ(M,µ) = 4(µ+M + 2) and b =

M + 2

2(M + 1)
.

The IICRs λi(·)/3, for the initial sample configurations i = 1 and i = 2, correspond to the
size-change functions

λi(t) =
3(1− Pt(i, 3)− Pt(i, 4))

3Pt(i, 1) + Pt(i, 2)
,

and the following proposition is verified.

Proposition 13. When t→∞, λi(·), i = 1, 2, have the following limit

lim
t→∞

λi(t) = − 3

µ1

.

In Figure 7 we plot the two functions λi(·), i = 1, 2 for n = 2 demes and M = 1 (left),
respectively M = 0.1 (right); the dashed red line indicates the common asymptotic value − 3

µ1
.

Proof. Using Proposition 12 we get

lim
t→∞

λi(t) = −3(A(µ1)(i, 3) + A(µ1)(i, 4))

3A(µ1)(i, 1) + A(µ1)(i, 2)
.

Then the relations 3A(µ1)(i, 1) = µ1A(µ1)(i, 3) and A(µ1)(i, 2) = µ1A(µ1)(i, 4) allow to prove
the result.

The conditional cumulative distribution functions P(T
(3),λi
2 ≤ ·|T (3),λi

3 = t) and Pi(T (3),2,M
2 ≤

·|T (3),2,M
3 = t) are given, for every t > 0, by formulas analogous to (11) and (18):

Pi(T (3),2,M
2 ≤ u|T (3),2,M

3 = t) =
F2,s(u) d

dt
Pt(i, 3) + F2,d(u) d

dt
Pt(i, 4)

f
T

(3),2,M
3 ,i

(t)

=
3F2,s(u)Pt(i, 1) + F2,d(u)Pt(i, 2)

3Pt(i, 1) + Pt(i, 2)
, (27)
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Figure 7: Plot of the functions λi(·), i = 1, 2 for n = 2 and M = 1 (left), respectively M = 0.1
(right). The dashed red line corresponds to the asymptotic value −3/µ1.

P(T
(3),λi
2 ≤ u|T (3),λi

3 = t) = 1− exp{−(Λi(t+ u)− Λi(t))}

= 1−
(

1− Pt+u(i, 3)− Pt+u(i, 4)

1− Pt(i, 3)− Pt(i, 4)

)1/3

. (28)

In order to compare, for u, t > 0, the conditional cumulative distribution functions given in
Equations (27) and (28), let us introduce the functions

gi(u, t) := Pi(T (3),2,M
2 ≤ u|T (3),2,M

3 = t)− P(T
(3),λi
2 ≤ u|T (3),λi

3 = t), i = 1, 2.

Proposition 14. The functions gi(u, t), i = 1, 2 have the following asymptotic behaviour :

1. For (u, t) in the neighborhood of (0, 0), we have

g1(u, t) =
M

2
ut+ o(u2 + t2),

g2(u, t) = −u
3

+
6M + 1

18
u2 +

7M

6
ut+ o(u2 + t2).

2. For fixed t > 0, when u→ +∞,

gi(u, t) = −K1,i(M, t)e−βu + o(e−βu), i = 1, 2,

where K1,i(M, t) > 0 is given by

K1,i(M, t) =
3Pt(i, 1)

3Pt(i, 1) + Pt(i, 2)

1− a
β
− Pt(i, 2)

3Pt(i, 1) + Pt(i, 2)

c

β
,

where constants β, a, c are defined in equations (9) and (10) with n = 2, i.e.

β = M +
1

2
(1− (4M2 + 1)1/2), a =

1

2
(1 + (4M2 + 1)−1/2), c = −M(4M2 + 1)−1/2.

3. For fixed u ≥ 0, we have

lim
t→+∞

gi(u, t) = −K3(M,u), i = 1, 2,

29



where K3(M,u) > 0 is given by

K3(M,u) = c1e
−βu + c2e

−αu − e
µ1
3
u,

with

α = M +
1

2
(1 + (4M2 + 1)1/2), β = M +

1

2
(1− (4M2 + 1)1/2),

φ(µ1) =
3M

2(µ1 + 3M + 3)
, c1 =

φ(µ1)− α
β − α

, c2 =
β − φ(µ1)

β − α
.

The proof is similar to the one given in the case n > 2.

Most of the calculations of appendices A and B were made and/or verified using the com-
puter algebra system Maple: programs and tracks of their execution are available from the
authors.
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