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Abstract

Normal estimation in point clouds is a crucial first step for numerous algorithms, from surface reconstruction and scene un-
derstanding to rendering. A recurrent issue when estimating normals is to make appropriate decisions close to sharp features,
not to smooth edges, or when the sampling density is not uniform, to prevent bias. Rather than resorting to manually-designed
geometric priors, we propose to learn how to make these decisions, using ground-truth data made from synthetic scenes. For
this, we project a discretized Hough space representing normal directions onto a structure amenable to deep learning. The
resulting normal estimation method outperforms most of the time the state of the art regarding robustness to outliers, to noise
and to point density variation, in the presence of sharp edges, while remaining fast, scaling up to millions of points.

1. Introduction

Numerous algorithms have been developed to process point clouds,
such as geometric primitive extraction [SWKO07], surface recon-
struction [BDLGM14, CLP10], 3D navigation [FGMP14], and
point-based rendering [RLO0, ZPVBG01, ABCO*03], just to name
a few. For many of them, the performance significantly depends on
the quality of normals estimated at each point.

Normal estimation is a well-studied topic. The problem is to in-
fer the local orientation of the unknown surface underlying a point
cloud. A good estimator should not be sensitive to outliers, to noise
and to variations of point density, which are common due to the
way point clouds are captured, e.g., as merged laser scans, fusion
of depth images, or structure-from-motion. Non-uniform sampling,
with possible anisotropic bias, occurs ordinarily due to varying in-
cidences on scanned surfaces. Moreover, as many captured scenes
include man-made objects, they generally feature sharp edges and
corners, that have to be preserved and not smoothed. Last, estima-
tion should be fast, typically to scale to millions of points.

We propose here a novel method for normal estimation in unor-
ganized point clouds, that is robust to noise, to outliers and to den-
sity variation, in the presence of sharp edges. It is based on a robust
randomized Hough transform [BM12], but rather than designing
explicit criteria to select a normal from the accumulator, we learn a
function for doing it using a convolutional neural network (CNN).
To our knowledge, this is the first application of deep learning tech-
niques to this kind of task, for unstructured 3D data. It outperforms
most of the time the state-of-the-art of normal estimation.

2. Related work

Hoppe et al. [HDD*92] compute the tangent plane at a given point
by regression on neighboring points. Spheres [GG07] and quadrics
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[CPO5] have also been used to better adapt to the neighborhood
and to the shape of the underlying surface. Optimal neighborhood
sizes can be computed, w.r.t. curvature, sampling density and noise,
to minimize the estimation error [MNGO04]. However, while be-
ing robust to noise, these methods remain sensitive to outliers.
Improvements have been proposed to address robustness to out-
liers and non-uniformity, using adaptive weights [HLZ*09]. Yet, all
regression-based methods tend to smooth the normals at sharp fea-
tures. Moreover, a higher robustness to outliers is usually obtained
using a larger neighborhood, which makes sharp features even
smoother. Minimizing the ¢; [ASGCO10] or ¢y norm [SSW15]
is robust to sharp features but quite slow. Moving least squares
[ABCO*03, PKKGO03] and local kernel regression [OGGO09] es-
timate normals as the gradient of an implicit surface, preserving
sharp features, but requiring reliable normal priors as input.

Dey and Goswami [DG04] propose an original approach based
on the Voronoi cells of the point cloud. The normal is chosen as the
cell direction with the largest extension. It is robust to sharp fea-
tures, but sensitive to noise. To address it, Alliez et al. [ACSTD07]
treat cell distortion due to noise using a PCA-Voronoi approach to
create elongated cell sets grouping adjacent Voronoi cells.

Li et al. [LSK*10] use sample consensus (SAC), efficiently treat-
ing noisy data and sharp features. The main drawbacks are a lack
of adaptation to point density variations and a high computational
time. Another line of work is based on the determination of con-
sistent point clusters in a neighborhood to better estimate normals
near edges and corners. Zhang et al. [ZCL" 13] extract such clusters
using low-rank subspace clustering with prior knowledge. Their
method yields accurate normals, but is very slow. Using the same
idea, Liu et al. [LZC*15] overcome this issue by using a differ-
ent representation for subspaces, and clustering only a subset of
the points before propagating the results to adjacent points. The
method is much faster while being as accurate as [ZCL*13].
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Hough transform is a popular tool for shape extraction [Hou62].
It is based on a change of space where the desired shape is repre-
sented by a point. Shape hypotheses populate the bins of an ac-
cumulator mapped onto this space, and the most densely popu-
lated bins identify the shapes to extract [DH72, IK88]. Originally
designed for simple 2D primitive extraction in images [TM78,
Dav88, SW02], it has since then been used for various purposes
from 3D primitive extraction [BELN11], recognition and classifi-
cation [KPW*10,PWP*11], to general model selection [Bal81]. To
improve speed and scalability, Kiryati et al. [KEB91] propose a
probabilistic version of the Hough transform where only a subset of
the input points vote in the accumulator. A high computational effi-
ciency is reached with the Randomized Hough Transform [X093],
where the points do not vote for all the possible shapes. Shape hy-
potheses are made by drawing the minimal number of points to pa-
rameterize the shape, and each such drawn hypothesis corresponds
to one vote in the accumulator. It results in a sharper accumulator
distribution and a faster model selection. However, it may be dif-
ficult to tune the number of hypotheses to draw before a model is
estimated from the votes. The Robust Randomized Hough Trans-
form (RRHT) addresses it [BM12].

Convolutional neural networks, starting with LeNet5 [LBD*89],
are architectured as a sequence of convolutional and pooling lay-
ers, followed by fully-connected layers. They were mostly used in
image classification, outperforming other methods by a large mar-
gin [KSH12]. Increasing layer number [SLI*14] and size [ZF14],
and using dropout to treat overfitting [HSK*12], they have been
successfully applied, e.g., to object detection [GDDM14], seg-
mentation [LSD15b] and localization [SEZ*14]. Work on nor-
mal estimation with CNNs focus on using as input RGB images
[LSD*15a, WFG15], or possibly RGB-D [BRG16], but not sparse
data such as unstructured 3D point clouds. CNN-based techniques
have been applied to 3D data though, but with a voxel-based per-
spective [WSK™*15], which is not accurate enough for normal es-
timation. Techniques to efficiently apply CNN-based methods to
sparse data have been proposed too [Gral5], but they mostly focus
on efficiency issues, to exploit sparsity; applications are 3D ob-
ject recognition, again with voxel-based granularity, and analysis
of space-time objects. An older, neuron-inspired approach [JIS03]
is more relevant to normal estimation in 3D point clouds but it actu-
ally addresses the more difficult task of meshing. It uses a stochas-
tic regularization based on neighbors, but the so-called “learning
process” actually is just a local iterative optimization.

3. Motivation and overview of our approach

Learning normal estimation. Normal estimation can be formu-
lated as a discrete classification problem in Hough space. Let fi, be
a normal estimated at point p of point cloud P, and nj, the ground
truth normal. The problem is to find a set of normals {fi,} ,cp s.t.:

. . *
{fp}pep = argmin ) 6(np,my) M

{n,}pep peP
where 0(.,.) is a distance function, such as the ¢, distance. The tra-
ditional Hough-based approach consists in first associating a nor-
mal ny, to each bin b of an accumulator and then, for each point p

and associated filled accumulator a,, selecting a bin b, and thus a
normal n,,. The problem becomes a discrete version of (1):

{bp}pep = argmin Y o(ny,,mp) @)
{bp}per pEP

In practice, nj, is unknown and l’;p is estimated at each point with a
classifier over the accumulator ap.

[BM12] uses a very simple classifier: the most probable bin
w.r.t. the empirical probability distribution of normals in Hough
space. As pointed out in the paper itself, this selection process is
subject to space discretization. To overcome this effect, the authors
estimate a normal several times at p, randomly rotating the accu-
mulator to change discretization boundaries. The final normal is a
function of these few estimated normals, e.g., the average normal
of the most voted cluster of normals. While this trick reduces dis-
cretization effects, it significantly increases the computation time
and introduces additional parameters. In this paper, we directly ad-
dress Eq. (1) as a continuous problem. We want to construct a func-
tion \ such that, given a filled accumulator ap, we produce:

Y(ap) = fp (3)

This regression problem is more difficult than classification in that
the regressor response covers a continuous space, not just a set of
discrete values. We actually want to learn function , using a CNN.

CNNs for estimating normals in point clouds. Deep learning is
good at making decisions in complex settings, especially when a
large number of unknown factors have a nonlinear influence. In
particular, CNNSs are very efficient on tasks such as object classifi-
cation and detection, including when objects are severely occluded.
CNNs can also address regression problems such as object pose
estimation [PCFG12]. These same properties seem appropriate as
well for the task of learning how to estimate normals, including
in the presence of noise and when several normal candidates are
possible near sharp features of the underlying surface.

The question, however, is how to interpret the local neighbor-
hood of a 3D point as an image-like input that can be fed to a CNN.
If the point cloud is structured, as given by a depth sensor, the depth
map is a natural choice as CNN input. But if the point cloud is un-
structured, it is not clear what to do. In this case, we propose to
associate an image-like representation to the local neighborhood of
a 3D point via a Hough transform. In this image (cf. Section 4), a
pixel corresponds to a normal direction, and its intensity measures
the number of votes for that direction; besides, pixel adjacency re-
lates to closeness of directions. It is a planar map of the empiri-
cal probability of the different possible directions. Then, just as a
CNN for ordinary images can exploit the local correlation of pixels
to denoise the underlying information, a CNN for these Hough-
based direction maps (cf. Section 5) might also be able to handle
noise, identifying a flat peak around one direction. Similarly, just as
a CNN for images can learn a robust recognizer, a CNN for direc-
tion maps might be able to make uncompromising decisions near
sharp features, when different normals are candidate, opting for one
specific direction rather than trading off for an average, smoothed
normal. Moreover, outliers can be ignored in a simple way by lim-
iting the size of the neighborhood, thus reducing or preventing the
influence of points lying far from a more densely sampled surface.

(© 2016 The Author(s)
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Figure 1: Our CNN-based normal estimation framework. projected on the sphere.
RRHT. Applying a Hough transform to estimate the normal at a
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given 3D point p, [BM12] propose a three-step algorithm:

1. Hypothesis generation. Hypotheses are generated by randomly
selecting three points in the neighborhood of p, which defines a
plane and thus a possible normal direction.

2. Vote in Hough space. Each hypothesis votes in a 2D spherical
accumulator, parameterized by spherical coordinates 0 and ¢.

3. Election of a normal. Finally, the estimated normal is the aver-
age of directions in the most voted bin of the accumulator.

A contribution of [BM12] regarding running time is a robust sta-
tistical criterion to safely stop picking new hypotheses, after

L [, (oM
r = [ (2)] @

are drawn, where M is the number of bins of the accumulator, o €
10,1 is the confidence level, and € €]0, 1[ is the maximum distance
between the empirical distribution and the theoretical distribution.
The resulting method is robust to noise, outliers and sharp features
but, as mentioned above, it is sensitive to bin discretization.

Our CNN-based method, pictured on Figure 1, keeps the same hy-
pothesis generation scheme as [BM12], as described above (step 1),
including the robust stopping criterion of Eq. (4). However, we
change the accumulator and voting (step 2) to create an image
structure amenable to deep learning. Besides, the estimation of a
normal from a filled accumulator (step 3) is now the application of
a learned function that directly yields two coordinates representing
the estimated direction. It significantly reduces the discretization
effect and improves normal selection while remaining fast.

Our contributions are as follows:

e We show how to reliably map a Hough accumulator for normal
estimation into an image that can be used as input of a CNN.

o We demonstrate that a CNN can learn how to estimate a normal
from such an image-accumulator.

e We define an efficient way to take point density variation into
account (which could actually be used in [BM12] as well).

o We show how the sensitivity to the size of the neighborhood can
be addressed in our framework.

e We provide experiments showing that our method outperforms
most of the time the state-of-the-art of normal estimation.

4. An accumulator for CNN input
Accumulator design. The form of a Hough accumulator is well

known to have a strong impact on the efficiency and quality of
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Figure 3: Rotations to ensure stability of the accumulator pattern.

shape extraction. The more adapted to the shape (with little bias
when voting), the better. To this end, [BM12] exploit a spherical
accumulator, proposed earlier for plane extraction [BELN11].

In our case, we want the accumulator to be mapped to the input
of a CNN. We chose a simple square image-accumulator: a 2D reg-
ular grid of size M = m x m. Given a normal n = (ny,ny,n;), the
coordinates of the vote x,y in the accumulator are given by:

(o) = (e ) ®)
Note that, when back-projected on the sphere, the sizes of the bins
are not similar, as illustrated on Figure 2. This accumulator design
thus leads to distortions that could affect vote count and bin se-
lection. However, correcting the contribution of each bin is just a
constant factor, that the network can easily learn. (We checked that
reweighting votes explicitly does not lead to significant changes.)
With this simple scheme, the image-accumulator can be filled very
efficiently, not even requiring trigonometric computations.

In our experiments, the size of this image-accumulator is set M =
33 x 33 = 1089 bins. However, given it is filled as if projected from
an accumulator sphere, only a circular area is used, i.e., roughly
1089 x 1/4 bins. This is 5 times more than [BM12], where M =
171. As aresult, the bin discretization effect is greatly reduced with
our approach. Besides, no accumulator rotation or shift is required.

Accumulator normalization. To reduce pattern variations and fa-
cilitate learning, we normalize the image-accumulator, as pictured
on Figure 3. The 3D coordinate system is first rotated according
to a Principal Component Analysis (PCA) of N, the points in the
neighborhood of p: the rotation aligns the z-axis on the smallest
eigenvector. To further improve stability, we perform an in-plane
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Figure 4: Examples of accumulators. Gray levels reflect the number
of votes (negative images for readability: darker for more votes).
The red point marks the true normal, the green point, the most voted
bin. From left to right: (a) point on a rough but featureless surface,
(b) point close to an edge, (c) point close to a 3-plane corner.

rotation after 3D points are projected onto the accumulator plane:
using a second, 2D PCA, we align the largest eigenvector along the
x-axis. A similar effect could be achieved by directly performing a
single 3D rotation aligning the second largest 3D eigenvalue along
the x-axis. However, it is not equivalent because of the projection
from a point on the sphere to a plane, and it is less stable than doing
it after projection on the accumulator plane. Examples of projected
and rotated accumulators are shown in Figure 4.

These uses of PCA do not always guarantee consistent accumu-
lator normalization. Still, when the PCA-induced rotations are not
stable, their instability is irrelevant or potentially manageable by
the network. Indeed, when on a smooth but possibly noisy surface,
the mass of votes focuses around one main 3D direction. This re-
sults in a centered blob after 3D PCA and 2D projection (cf. Fig-
ure 4a). Its orientation after 2D PCA and rotation can be unstable,
but it is little relevant because what really matters is the presence of
a peak towards the center of the image, which a network can eas-
ily learn in all orientations. When the point is close to an edge, the
votes focus on one arc of the sphere of directions. The main axis of
the 3D PCA aligns with the arc center and the main axis of the 2D
PCA aligns with the arc spanning (cf. Figure 4b). Last, when the
point is close to a corner, there are as many focalization directions
as main featureless surfaces supporting the corner (cf. Figure 4c).
In this case, the main axis of the 3D PCA aligns more or less with
the general direction of the corner, but the 2D PCA can be unsta-
ble. If there is a prominent surface, the eigenvalues of the 2D PCA
might be different enough to rotate its normal near the x-axis. If
there is no such prominent surface, the rotation has little meaning.
It is the most difficult situation the CNN has to learn. However, the
non-locality and nonlinearity of the network have the potential to
cope with the variety of situations, learning enough elements of in-
formation to generalize well, just as a CNN for detection can cope
with occluded objects. We also leverage on the ability to generate a
large amount of training data for various configurations.

5. A CNN for normal estimation

CNN architecture. Our task does not require a fancy network ar-
chitecture. We chose a small-sized network for a low processing
time. It is based on LeNet [LBD*89], a simple network yet proven
to be adaptable to various estimation problems in image processing.
It is illustrated on Figure 5. It is composed of four convolutional
layers, two max poolings and four fully connected layers. Most of
the parameters are in the fully-connected (FC) layers.
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Figure 6: Illustration of training data (min and max angles).

The convolutional nature of this network contributes to the ca-
pacity of handling noise by potentially smoothing out accidental
peaks. Nonlinearity, provided by max poolings and ReLUs, gives
rise to the ability to choose between different peaks based on their
local shape. And the global choice among possible normals origi-
nates from a non purely local analysis of the direction map given
both by the max poolings and the fully-connected layers. We do not
pretend it is the best architecture for this task, yet that it is meaning-
ful. (We also experimented with an architecture made from fully-
connected layers; it does not perform as well, cf. Section 8.) We
train this network using mean square error (¢, penalization):

{f,} =argmin ) (n, —n})’ (6)
{n,} pEP

Training data. To train this network, we generate synthetic
ground-truth examples. We create uniformly sampled point clouds
over corners with different angles. Angles are uniformly drawn be-
tween 80° and 160°. Examples of such point clouds are shown
on Figure 6. We generate point sets with 5000 points and randomly
pick 1000 points in each set, for which we compute the correspond-
ing accumulator. The training data contain 100,000 such filled ac-
cumulators. These learning samples (corners with varying angles)
represent the most common situations of sharp features in real data.
They are used to learn proper decisions near both edges and cor-
ners. We then rely on the ability of the network to generalize and
treat partial data, as is the case for occlusion in object detection.
It allows the network to treat more complex situations than just 3-
side corners. Regression for noisy data, which is the general case,
is learned from points far enough from the edges and the corner.

To be more realistic and provide robustness, we also add noise to
the training data. In our experiments, we use a Gaussian noise for
learning the network. However, it is not intrinsic to the method,
as in [LSK*10]; other noise models could have been used too.
We also use a Gaussian noise for testing on synthetic data, as
[LSK*10,BM12,LZC*15]. However, little bias is to be expected
because the noise level varies for each training sample, with a stan-
dard deviation randomly drawn in [0%,200%] of the mean distance
between the points in the cloud, while the noise level is fixed for
evaluation. For tests on real data, the noise is as present in the data.

(© 2016 The Author(s)
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Figure 7: Detail of a DFC 2015 aerial lidar tile with normal esti-
mation. Roofs are more densely sampled than facade walls. The
cross-section illustrates the handling (or not) of density variation.

(c) Robust discretized o

(a) Not fobust (b) Robust

Figure 8: Different sampling density on each face, and method vari-
ants with different levels of robustness to this density variation.

Training process. For each point p in the training set, we consider
a fixed neighborhood size (K = 100 neighbors in our experiments)
in which we sample triplets of points, filling p’s accumulator ac-
cordingly (cf. Section 4). It creates a gray-level image, in which we
scale the pixel values so that the pixel of the most voted bin is white
(highest intensity). As the corresponding ground-truth normal at p
is known, it provides input-output examples to train the network.
When learning, we randomly choose 75% of these data for actual
training. The rest is used to check that learning does not overfit.

6. Dealing with density variation

Density variation, with possible anisotropic bias, is a common phe-
nomenon in real-world point clouds. For example, a lidar acquires
data from a single viewpoint, typically with regular angular steps
for azimuth and elevation, sampling more densely surfaces with
low incidence. Figure 7 illustrates this situation with a detail of an
aerial acquisition of the Data Fusion Contest (DFC) 2015 [DFC15].
Another, synthetic example is shown on Figure 8. Points in the less
dense regions and next to edges with denser regions are wrongly
given the normal of the other side of the edges (cf. Fig. 7a and 8a).

Robustness to density variation can be efficiently obtained at
plane hypothesis generation time, in the Hough transform. For this,
we associate a different weight to each point depending on the lo-
cal density. We then pick triplets from points having a probability
proportional to these weights. A point in a sparse area will be given
a higher weight; it will thus be picked more often than a point in a
denser region. The weight corresponds to a kind of local (surfacic)
scale. We use as local scale the square distance of the considered
point to its kgém nearest neighbor. This square distance represents
the influence area of the point on the underlying surface. (In our
experiment, we use kgens = 5.) This local scale normalization com-
pensates for the low density, as can be seen on Figure 8b.

(© 2016 The Author(s)
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Variant of CNN 3s Not Robust
. .. Robust . .
w.r.t. density variation | robust discretized
Running time (s) 51.5 57.3 52.2

Table 1: Running time on a DFC 2015 tile detail (185k points).

However, picking random neighboring points according to this
local scale is quite slow. It requires computing an array of the cu-
mulative sums of local scales, sorting it, and given a random num-
ber, searching the corresponding point in the array. To overcome
this issue, we discretize the search space: we compute the min and
max local scales and divide this range into ks equal intervals. (In
our experiments, ks = 5 performs well.) We then compute the score
of each interval (the sum of all local scales of points in the seg-
ment), and randomly pick a segment according to this score. Last,
we pick a point in this interval with a uniform probability. Robust
discretized normal estimation with this optimization is illustrated
on Figures 7b and 8c. The quality is almost as good as with the
non-discretized version (RMS error 5.5° vs 5.6° in Figures 8b-8c),
while being significantly faster, as can be seen on Table 1.

This way to deal with non-uniform densities is much more ef-
ficient than what was proposed in [BM12] where, to sample a 3D
point, a ball is first uniformly sampled in which the point is then
sampled. While it provides good robustness to density variation, it
considerably slows down normal estimation. Note that our way of
handling density variation could also be used to speed up [BM12].

7. Multiscale approach

Many normal estimation methods rely on a scale parameter. It usu-
ally corresponds to the size of the neighborhood to consider. It can
be interpreted as the scale at which the scene should be observed,
or the distance under which regularization is allowed. However
it is often difficult to tune this parameter, in particular for points
clouds with high density variation where different neighborhood
sizes would be necessary for a robust and accurate estimation. A
solution is to use non-parametric methods such as proposed by Dey
and Goswami [DG04], but accuracy drops when noise is high.

To improve robustness near sharp edges, we propose a simple
variant of our method using a multiscale approach. The fact is the
input of the CNN can be easily modified to create a multicanal
tensor input, like RGB channels for processing color images. Here
our channels are the accumulators computed for different neighbor-
hood sizes, which the PCA-based normalization can roughly align
for consistency. In our experiments, we explore two multiscale ap-
proaches, with 3 and 5 scales. Given a neighborhood size of K
neighbors, the neighborhood sizes are K/2, K and 2K for the 3-
scale scheme and K /4, K/2, K, 2K and 4K for the 5-scale scheme.

Note that with a monoscale Hough accumulator, as with the one
in [BM12], a sample of 3D points votes for one direction regard-
less of its location, whether it is close or far from the point con-
sidered for normal estimation. But using simultaneously different
scales provides a form of distance sensitivity: a 3D point sample
may contribute to a direction at a given scale, but not at another
scale because the corresponding neighborhood size is smaller. As
illustrated in the experiment section, this distance sensitivity seems
to be enough (w.r.t. a location sensitivity) to reach a high accuracy.
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Figure 9: Comparison of various methods on simple geometric models with varying Gaussian noise (standard deviation expressed a % of
the mean distance between points) and no density variation. NN 3FC: network with 3 fully-connected layers on the same Hough image-

accumulator as ours; CNN ns: our method with n scales.

8. Evaluation

Our method has 4 main parameters, which are set as follows:

e the accumulator size M = 33 x 33,

e the number of hypothesis to pick 7' = 1000,

e the neighborhood size K = |N),| = 100 (for training & testing),
e the neighborhood size for estimating a local scale kgeps = 5.

T = 1000 corresponds to an allowed deviation from the theoretical
accumulator distribution of € = 0.073 for a0 = 0.95. K is the only
practical parameter. For comparison purposes, we set K = 100 for
all methods, except [DG04] which does not take any neighborhood
size as parameter. For a fair comparison, tests with [BM12] use ex-
actly the same parameters as ours (i.e., 7', K). For multiscale CNN,
we use: for 3 scales (CNN 3s), K=50, 100, 200, and for 5 scales
(CNN 5s), K=32, 64, 128, 256, 512.

We consider two different scores for quantitative evaluation: the
root mean square (RMS) deviation and the number of points for
which the deviation is less than a given angle. The RMS is a stan-
dard error measure. It provides a good idea of the overall perfor-
mance of an algorithm. It is defined by:

)

However, this measure does not favor sharp behaviors. Indeed,
smoothing the normals of points close to an edge results in a
smaller RMS than choosing the normal of the wrong side of the
edge. A less compromising error measure, better suited w.r.t. “vi-
sual” applications such as rendering, is to count the proportion of
good points (PGP), i.e., whose error is under a given threshold; as
in [LZC*15], we study 5° and 10° maximum deviation.

Experiments on synthetic data. Figure 9 shows the impact of an
increasing Gaussian noise on RMS and PGP for various simple
geometric models. We tested our method and its variants against
five methods from the literature: [DGO04], [LSK*10], [BM12],
[HDD*92] and [CP05]. All these methods are available on the In-
ternet, or the code were granted to us by the authors. We also added
as baseline a simpler neural network made of 3 fully connected
layers with interleaved ReLUs (NN 3FC). For very low levels of
noise, the best method is [DGO04], but it rapidly degrades as noise
increases. The regression methods [HDD*92, CP05] perform bet-
ter at high noise, when the surface details are lost in the noise and
very difficult to retrieve. Between those two extreme cases, our
multiscale approaches perform best. Larger neighborhoods provide
better robustness for high noise, while small scales give maintain
good results for low noise. The comparison to the NN 3FC baseline
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Figure 10: Comparison of our method (CNN) and a similar CNN estimation based on depth map input (DM) with multiscale (ns).

shows that our good results cannot be attributed to the Hough rep-
resentation only. Whereas a simple neural network regressor tends
to produce smoother predictions (closer to the planar regression),
our CNN approach is more discriminative.

To evaluate the gains of the Hough transform for normal estima-
tion using a CNN, we implemented another baseline method. Once
the point neighborhood has been oriented via 3D PCA, we com-
pute a depth map. The depth direction is the axis of the smallest
eigenvalue. This depth map has the same dimension as the accu-
mulator in our method. We build a corresponding learning set as
for our method, and train the same network architecture. Figure 10
shows the comparison between our Hough-based method and this
depth-map-based baseline. Our method performs significantly bet-
ter regarding PGP, while having a slightly higher RMS. The depth
map is not as regular as the Hough accumulator for learning.

We could not compare to [ZCL*13] and [LZC*15] as their code
is not available. Still, we experimented on a 100k-point octahedron
(see Figure 11), which is one of the synthetic model these authors
used for validation. With 50% noise, they obtain slightly better re-
sults than ours (please refer to [LZC*15]), but at high computa-
tional cost; their parallel version is still more than twice slower
than our implementation. Moreover, our method degrades better
for high noise, not requiring to tune parameters. Compared to other
baseline methods, we estimate sharp features better than using re-
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gression [HDD*92] and we are more robust to noise than sample
consensus [LSK*10] and ordinary Hough transform [BM12].

[HDD*92]

[LSK*10]

[BM12]

CNN 1s

Figure 11: Visual results of four estimation algorithms on an octa-
hedron (100k points) with 50% noise (top line), 150% noise (mid-
dle) and 200% noise (bottom). Color scale, given on the right, maps
a deviation angle to a color (red is a deviation greater than 10°).
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Figure 12: Proportion of normals with error less than a given angle, on 250k-point dragon with noise 0% (left), 100% (middle), 200% (right).
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CNN 1s normals
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Figure 13: Robustness to outliers on 250k-point dragon with 100% noise and 1M-point outliers added in bounding box.

Experiments on real data. We first consider the scan data of a
dragon sculpture, for which an accurate mesh is available (3.6M
vertices, 7.2M triangles). The dragon features sharp attributes such
as fangs, horns and scales. We randomly draw 250k points on mesh
faces; these faces determine reference normals. We use this sub-
sampled point cloud to compare with [BM12] and to study the sen-
sitivity to the neighborhood size K, for different levels of noise.
Unsurprisingly, when no noise is added (besides the random pick-
ing of points on the mesh), a small neighborhood provides a better
sensitivity to sharp features. In this case, we only perform slightly
better than [BM12]. But when noise increases, information level
drops in small neighborhoods and larger ones provide a better ro-
bustness. In this more complicated setting, we perform significantly
better than [BM12]. To evaluate robustness to outliers, we draw 1M
random points in the dragon bounding box. With 100% noise, RMS
error is 21.1°, vs 20.5° with no outliers (see Figure 13).

We then consider a laser scan of an office room. The point cloud
naturally features edges, corners, as well as density variations with
anisotropic bias. An exact ground truth is not known, but can be
approximated from the implicit mesh structure of the depth map:
we consider as reference at each point the mean normal of the sur-
rounding faces. Although theses normals can be noisy in very dense
areas, they are enough for algorithm comparison. Given this pseudo
ground truth, Figure 14 shows the proportion of estimated normals
with angular error below a given threshold. Due to the small num-
ber of points near edges, compared to points on wide planar areas,
the difference between the methods is small on average. However,
normals can be locally wrong, as can be seen on Figure 15, which
illustrates a detail of the scene with density variations.

Finally, we show qualitative result on outdoor scenes. Figures 7
displays a detail of the DFC 2015 aerial lidar tile in Figure 16, with
robustness to density variations. Figure 17 illustrates shading with
normals estimated on a sparse structure-from-motion point cloud.
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Figure 14: Office room, proportion of normals with error less than
a given angle. CNN 1s da: our robust density-adaptive variant.
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Figure 15: Office room detail. From left to right: planar regression,
our plain method, and our robust density-adaptive method.

Figure 16: DFC 2015 lidar tile with normals (decimated 2.3M).
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Figure 17: Our CNN-based normal estimation on a structure-from-motion point cloud of the Chateau de Sceaux (France), 400k points.

Model Cube Armadillo DFC detail Omotondo DFCtile

Size 20k 173k 185k 997k 2.3M
[HDD*92] | 0.3 2.1 1.9 12 25

[DG04] 3.2 55 41 441 1243
[CPO5] 5.8 50 54 304 711
[BM12] 1.9 13 11 44 147
[LSK*10] 8.8 64 75 392 902
CNN 1s 4.5 33 34 183 423
CNN 3s 5.9 48 52 273 639
CNN 5s 7.9 69 73 382 897

Table 2: Computation times (in seconds) for different models and
different methods. CNN variants are without density-adaptivity.

Computation times are given in Table 2. We tested a cube with
50% noise and real point clouds: Armadillo, Omotondo, DFC detail
of Figure 7, whole DFC tile of Figure 16. Our running times are
competitive w.r.t. compared methods, except [HDD*92] which is
much faster. As we share the first step of [BM12] (cf. Section 3)
and as accumulator filling is fast, the difference resides mainly in
the CNN computations. Using more scales increases computation
time, due to the more expensive search for neighborhoods larger
than K = 100 (up to K = 512), despite the use of a kd-tree.

Limitations. Contrary to other approaches where it is inexpensive
to change the value of a parameter, we have to retrain the network
if we need to adapt specifically to the input data. It mainly concerns
the neighborhood size K, which controls the sensitivity to details.
However, the multiscale approach reduces the influence of this pa-
rameter by analyzing different scales simultaneously.

9. Conclusion

We have proposed a novel method for normal estimation in unorga-
nized point clouds using a convolutional neural network. Although
we reused the idea of the Hough transform of [BM12] as well as its
robust and efficient sampling strategy, we introduced a whole range
of new features. We use a different accumulator, which is planar
rather than spherical and which is less discretized. Moreover, we
define a totally different, CNN-based decision procedure to select
a normal from the accumulator. Besides, to deal with density vari-
ation, we introduce a fast approach to pick points according to a
distribution based on a local density estimation. Finally, to improve
robustness and reduce parameter tuning, we present a multiscale

(© 2016 The Author(s)
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approach which automatically adapts to different sizes of neighbor-
hoods, requiring basically no change in the CNN framework. As a
result, we are more robust and more accurate most of the time on
both synthetic and real data, although just a few times slower. We
actually most often also outperform other state-of-the-art methods,
even [ZCL*13,LZC*15] for high noise which anyway are slower.

Perspectives include the study of geometric transformations in
Hough space to facilitate the learning and improve accuracy. The
CNN architecture and training data can certainly also be improved,
as the space of possibilities is quite large. Actually, future advances
in research on CNNs should also benefit to this framework.

This method participates to a new trend in geometry processing
where geometric decisions are learnt from ground-truth data, pos-
sibly biased towards a specific kind of scenes, rather than the result
of explicit, manually-designed geometric computations.

Implementation details. The Hough transform is coded with
Eigen (eigen.tuxfamily.org). Neighbor search in a point cloud
uses nanoflann kd-tree (https://github.com/jlblancoc/
nanoflann). Our CNN framework relies on Torch-nn (https:
//github.com/torch/nn). For experiments, we used a laptop
with Intel i7 quad core and GPU NVidia GTX970m.

Acknowledgements. We would like to thank all the authors of
the different papers for providing their code or executable. Ar-
madillo and Omotondo come from the Aim@ Shape repository.
Asian Dragon comes from the Stanford 3D scanning repository.
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