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Mihai Anitescu · Alessandro Tasora

An iterative approach for cone
complementarity problems for
nonsmooth dynamics

December 4, 2008

Abstract Aiming at a fast and robust simulation of large multibody systems
with contacts and friction, this work presents a novel method for solving
large cone complementarity problems by means of a fixed-point iteration.
The method is an extension of the Gauss-Seidel and Gauss-Jacobi method
with overrelaxation for symmetric convex linear complementarity problems.
The method is proved to be convergent under fairly standard assumptions
and is shown by our tests to scale well up to 500,000 contact points and more
than two millions of unknowns.

Keywords Iterative methods · cone complementarity problems · LCP ·
complementarity · contacts · multibody

1 Introduction

Mechanisms involving contacts and impacts between parts can be modeled
in terms of multibody systems with unilateral constraints. The simulation
of rigid contacts entails the solution of nonsmooth equations of motion: the
dynamics is nonsmooth because of the discontinuous nature of noninterpen-
etration, collision, and adhesion constraints [31].
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Università degli Studi di Parma,
Dipartimento di Ingegneria Industriale, 43100 Parma, Italy
E-mail: tasora@ied.unipr.it

1



2

Devices composed of rigid bodies interacting through frictional contacts
are extensively used in many engineering solutions, either featuring a small
number of unilateral contacts such as cam-followers and Geneva wheels or
including thousands of contacts between a large number of parts, such as in
the cases of palleting machines, vibratory feeders, size-segregation devices,
CVT chains, and pebble reactors. Robust and efficient simulation software is
mandatory, since the proper operation of these devices relies on the forma-
tion and loss of frictional contacts that cannot be easily studied by analytical
methods. Given the presence of discontinuities, however, a straightforward
application of numerical methods for ordinary differential equations is im-
practicable.

One of the most popular approaches to nonsmooth dynamics is the integrate-
detect-restart method, which adopts traditional DAE or ODE integration
on piecewise integrals (Caratheodory integrals) [14,15]. Nonetheless, this
scheme, though reliable for systems with one degree of freedom, may fail
when handling multiple unilateral constraints, because there is no way to
guarantee an upper bound on the number of subproblems to solve in finite
time intervals [41].

Another popular approach is represented by regularization strategies,
which model contacts by means of many compliant spring-dashpot linkages.
This approach requires little effort on the programming side and allows the
adoption of normal ODE or DAE integrators [12,34,35,25]. Because of the
high stiffness affecting the explicit integration, however, this method may
require prohibitively small time steps to achieve alpha stability; moreover,
the need to tune additional parameters on case-by-case basis is not welcome
by end users.

These issues motivate the investigation of innovative numerical methods
that can deal with multiple frictional contacts, even in case of thousands,
if not millions, of moving parts. To that end, much attention was drawn by
time-stepping approaches that produce weak solutions of the differential vari-
ational inequality (DVI) that describes the continuous time motion of rigid
bodies with collision, contact, and friction. The DVI as a problem formulation
was recently introduced in full generality and classified by differential index
[29,28], though earlier numerical approaches based on DVI formulations do
exist [21,20,19]. Recent work on time-stepping schemes has included both
acceleration-force linear complementarity problem (LCP) approaches [8,30,
41] and velocity-impulse LCP-based time-stepping methods [38,37,5,7].

The introduction of inequalities in time-stepping schemes for DVI, cou-
pled with a polyhedral approximation of the friction cone, leads to linear
complementarity problems (LCP) [38], which are systems of complementary
inequalities to be satisfied simultaneously [11]. These complex LCP problems
must be solved at each time step in order to advance the integrator [19,38].

If the simulation entails a large number of contacts and rigid bodies as is
the case of part feeders, packaging machines, and conveyor belts, the com-
putational burden of classical LCP solvers can be significant. Indeed, a well-
known class of approaches to LCP problems is based on simplex methods,
also known as direct or pivoting methods, originating from the algorithms of
Lemke and Dantzig [10]. However, these methods may exhibit an exponential
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worst-case complexity [9]. Our experience shows that, in spite of deep opti-
mizations [40], simplex methods still cannot practically handle multibody
systems with more than one hundred colliding bodies.

In the three-dimensional case, the Coulomb friction at contact points
without the use of a polyhedral approximation leads to a more complex
nonlinear complementarity problem (NCP). The use of a polyhedral approx-
imation make possible the use of typical LCP solvers [38,41,5]. Artificial
anisotropy, however, affects friction because friction cones become faceted
friction pyramids. In addition, such finite approximation of cones results in
a far larger problem (insofar as the number of constraints) and has a nega-
tive impact on the performance of LCP solvers, which is already critical in
general.

To circumvent the difficulties posed by increasing complexity of classical
LCP solvers and the increased size and inaccuracy introduced by polyhe-
dral approximation, we have developed a novel solution method, based on a
fixed-point iteration with projection on a convex set, that can directly solve
large cone complementarity problems with low computational overhead. The
method is based on a time-stepping formulation that solves at every step a
cone constrained optimization problem [1]. The time-stepping scheme was
proven to converge in a measure differential inclusion sense, to the solution
of the original continuous-time DVI. At every step, we solve the cone com-
plementarity problem (CCP) that results from the optimality conditions of
the cone constrained optimization problem. Note that the same formulation
has been recently used as the basis of a quasistatic frictional contact model
with local compliance [26] that also results in a CCP.

In systems with bilateral constraints only, our method reduces to a sta-
tionary Gauss-Seidel or Gauss-Jacobi method with successive over-relaxation
[24]. For the original NCP formulation, Gauss-Seidel methods have been suc-
cessfully used for thousands of rigid bodies in contact [22,17]. For these
methods, however, no convergence theory exists, except for small friction
coefficients, whereas our methods converges under certain conditions that do
not include a small friction assumption. If the CCP is solved without overre-
laxation, then our method shares certain features with the block coordinate
descent method with convex constraints on the variables in a block [42].

Among the most promising applications of this method are dynamical
analysis of large scenarios comprising thousands of colliding bodies, as in
the case of the simulation of pebble bed nuclear reactors, granular flows,
masonry stability analysis, robotics, and CAD/CAM/CAE simulations of
complex devices (Fig.1), which to date are strongly limited by computational
complexity issues, even on supercomputers.

2 Optimization-based Time-Stepping Scheme

In the following, we present our contact model, and we compare it to previous
approaches. The object of study is a system of rigid bodies, described by state
variables and contact and frictional constraints.
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Fig. 1 Examples of multibody systems with many unilateral contacts.

2.1 System representation

At a time t, the position of the system is described by generalized coordinates
q(t) ∈ R

m (which may include rotational coordinates that cannot be defined
over a subspace homeomorphic to R

n, for some n), and generalized velocities
v(t) ∈ R

m. In classical mechanics, v(t) is continuous, and we can write
dq/dt = Γ (q)v, where Γ (q) is a matrix that connects the generalized velocities
to the derivatives of the generalized coordinates.

In three dimensions, the position of a rigid body is described by the
position x, y, z of the center of mass and a 3 × 3 orthogonal matrix A ∈
SO(3, R) that represents the rotation of a frame attached to the body with
respect to a fixed-world frame. The A matrix could be function of three
parameters ∈ R

3 (Cardano angles, Euler angles, etc.), but this may cause
numerical problems such as singularities in transformations. To overcome
such problems, we adopt four-dimensional unitary quaternions η ∈ S3 ⊂ H,
though their space is not homeomorphic to R

3.
Here we assume that A can be represented smoothly by three parameters,

φ, θ, ζ: this parameterization is valid only locally, while for the global cumu-
lative rotations we use quaternions. This reparameterization does not affect
the dynamics [14]. Therefore a system with n bodies in three dimensions is
represented by m = 6n coordinates.

2.2 Nonpenetration constraints

Two rigid bodies should not penetrate, and, if they are in contact, there
should be friction acting at the interface. To enforce the nonpenetration
constraint, we assume that there exists a function Φ(q), which we call the
gap function, that satisfies

Φ(q) =

⎧⎨⎩> 0 if the bodies are separated,
= 0 if the bodies touch each other,
< 0 if the bodies are interpenetrating.

(1)
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For such a function, the nonpenetration constraint becomes Φ(q) ≥ 0.
An example of such a mapping is the signed distance function [18], which

is differentiable when the bodies are smooth and convex, at least up to some
value of the interpenetration [2]. For most cases, even simple ones involving
the relative position of two spheres, a differentiable signed distance function
cannot be defined for all values of q. The fact that Φ(q) can be differentiably
defined only on a neighborhood of the set Φ(q) ≥ 0 can be accommodated at
the cost of making the analysis substantially more involved [3]. To simplify
our discussion, we make the following assumption.

Differentiability of geometrical constraint data assumption:. Any
contact is described by a gap function Φ(q) that is everywhere twice contin-
uously differentiable.

2.3 Frictional constraints

In this work we describe the frictional constraints by conic constraints, which
are an extension of complementarity models discussed in [5,38].

2.3.1 The Coulomb friction model

The model we represent and approximate is the Coulomb friction model. If
a position q is feasible and the contact is active, that is, Φ(q) = 0, then at
the contact we have a normal force and a tangential force.

Let n be the normal at the contact, pointing toward the exterior of the
body, and let t1 and t2 be the tangents at the contact. Here n, t1, t2 are
mutually orthogonal vectors of length one in three dimensions. The vectors
n, t1, and t2 are a function of the position q. In the following we use v, v
to refer to velocities, and the subscripts u, v to refer to quantities related to
the the two linearly independent tangential directions at a given contact.

The reaction force is impressed on the system by means of multipliers
γ̂n ≥ 0, γ̂u, and γ̂v. The normal component of the force is FN = γ̂nn, and
the tangential component of the force is FT = γ̂ut1 + γ̂vt2.

The Coulomb model consists of the following constraints:

γ̂n ≥ 0, Φ(q) ≥ 0, Φ(q)γ̂n = 0,

μγ̂n ≥ √
γ̂2

u + γ̂2
v , ||vT ||

(
μγ̂n −√

γ̂2
u + γ̂2

v

)
= 0,

〈FT , vT 〉 = − ||FT || ||vT ||
(2)

where vT is the relative tangential velocity at contact. The effect of the
friction over the dynamical system is defined by the friction coefficient μ ∈
R

+, that typically has a value between 0 and 1 for most materials. 1

1 Though the original Coulomb model distinguishes between static μs and kinetic
μk friction coefficients, where usually the kinetic coefficient is slightly lower than its
static counterpart, in this work we consider both to have the same value μ because
the difference is not relevant for the discussion and suffices to say that a proper
algorithm might adjust the friction coefficient adaptively during the simulation,
depending on the slipping speed, to match complex nonlinearities in μ as a function
of speed.

5



6

The first part of the constraint can be restated as

F = FN + FT = γ̂nn + γ̂ut1 + γ̂vt2 ∈ K,

where K is a cone in three dimensions, whose slope is arctan(μ).
The constraint 〈FT , vT 〉 = − ||FT || ||vT || requires that the tangential

force be opposite to the tangential velocity. This results in the reaction force
being dissipative. In fact, an equivalent convenient way of expressing this
constraint is by using the maximum dissipation principle [38,36,37]

(γ̂u, γ̂v) = argmin√
bγ2

u+bγ2
v≤μbγn

(γ̂ut1 + γ̂vt2)T vT .

These constraints are represented by mapping the vectors n, t1, t2 from
contact coordinates to generalized coordinates [2].

For example, if we have a two-body system, then the generalized coordi-
nates in the three-dimensional space are embedded in a twelve-dimensional
space by using the coordinates x1, y1, z1, φ1, θ1, ζ1, x2, y2, z2, φ2, θ2, ζ2.

For a three-dimensional vector v, the mapping to generalized coordinates
is

v �→

⎛⎜⎝ v
r1 × v
−v

−r2 × v

⎞⎟⎠ ,

where r1 and r2 are the relative positions of the contact point with respect to
the centers of mass of the two bodies [2]. Using this mapping, we denote the
generalized vector version of n, t1, t2 by Dn, Du, Dv. One unfortunate side
effect of generalized coordinates mapping is that, in the new coordinates, Dn,
Du, Dv cease to be mutually orthogonal.

If v is the generalized velocity, the tangential velocity satisfies the follow-
ing

tT
1 vT = vT Du, tT

2 vT = vT Dv.

In generalized coordinates, the Coulomb model thus becomes

FN = γ̂nDn, FT = γ̂uDu + γ̂vDv,

γ̂n ≥ 0, Φ(q) ≥ 0, γ̂nΦ(q) = 0,

μγ̂n ≥
√

γ̂2
u + γ̂2

v ,

argmin√
bγ2

u+bγ2
v≤μbγn

(γ̂uDu + γ̂vDv)T
v = (γ̂u, γ̂v) .

2.4 The overall dynamical model

The other dynamical data needed for the model are the mass matrix M(q),
the external force fe(t, q, v), and the term fc(q, v) which contains the ef-
fect of centrifugal and Coriolis forces. The mapping fc(q, v) is continuously
differentiable and satisfies [6]

vT fc(q, v) = 0 ∀q, v.
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This equation implies that Coriolis and centrifugal forces do not provide any
net work to the rigid multibody system. To simplify notation, we also make
the following assumption.
Constant mass matrix assumption: The mass matrix M(q) ∈ R

m×m

is positive definite and constant. This assumption is satisfied in two dimen-
sions and three dimensions if we use the Newton-Euler formulation in body
coordinates [23].

With this definition, we can define the total force

ft(t, q, v) = fe(t, q, v) + fc(q, v). (3)

Assume now that we have p potential contact constraints, which are en-
forced by the nonpenetration constraints Φi(q) ≥ 0, i = 1, 2, . . . , p.

In the following, we denote by the superscript i the data associated to
the potential contact i. The continuous model is the following differential
variational inequality [29]:

M
dv

dt
=

∑
i=1,2,...,p

(
γ̂i

nDi
n + γ̂i

uDi
u + γ̂i

vDi
v

)
+ ft(t, q, v)

dq

dt
= Γ (q) v

γ̂i
n ≥ 0 ⊥ Φi(q) ≥ 0, i = 1, 2, . . . , p(

γ̂i
u, γ̂i

v

)
= argmin

μi
bγi

n≥
√

(bγi
u)2+(bγi

v)2

(
γ̂uDi

u + γ̂vDi
v

)T
v, i = 1, 2, . . . , p.

(4)
Here Γ (q) is used to transform the generalized velocities into derivatives

of the generalized positions. For instance, when dealing with rotations, Γ (q)
can be a linear mapping from three-dimensional angular speeds into four-
dimensional time derivatives of unit quaternions.

The Coulomb model used in this work is the predominant model used in
the engineering literature to describe dry friction. Unfortunately, the model
may be inconsistent: there exist configurations for which the model does not
have a solution [8,37]. This situation has led to the need to explore weaker
formulations where the forces are measures and Newton’s law is satisfied in
a measure differential inclusion sense [37]. It has been shown that solutions
in that sense do exist and can be found by time stepping schemes [36].

We will consider all collisions that appear during the simulation of the
inelastic type. Therefore, they are naturally treated by the time-stepping
scheme through a change of active set without the need to modify the alge-
braic expression of the scheme.

2.5 Time stepping scheme

We now define a stepping scheme for the continuous time formulation. We
start at the time t(l), position q(l), and velocity v(l) with time step h. The
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scheme is expressed by the following equation problem with equilibrium con-
straints:

M(v(l+1) − vl) =
∑

j∈A(q(l) ,ε)

(
γi

nDi
n + γi

uDi
u + γi

vDi
v

)
+hft(t(l), q(l), v(l)) (5)

0 ≤ 1
h

Φi(q(l)) + ∇ΦiT

v(l+1) (6)

⊥ γi
n ≥ 0, i ∈ A(q(l), ε)(

γi
u, γi

v

)
= argmin

μiγi
n≥

√
(γi

u)2+(γi
v)2

[
vT (γuDi

u + γvDi
v)
]

(7)

i ∈ A(q(l), ε)

q(l+1) = q(l) + hΓ (q(l))v(l+1), (8)

where
A(q, ε) =

{
i
∣∣ i ∈ {1, 2, . . . , p} , Φi(q) ≤ ε

}
. (9)

We have denoted by γs the constraint impulses of a contact constraint, that is,
γs = hγ̂s, for s = n, u, v. The 1

hΦi(q(l)) term achieves constraint stabilization
and its effect is amply discussed in [3].

In previous work, we have shown that the scheme is convergent, as the
time step h goes to 0 to the solution of a measure differential inclusion [1].
Solutions of the subproblems, when the nonlinear constraint is approximated
by a piecewise linear cone, can be found by Lemke’s algorithm [5]. Nonethe-
less, in [4] we have also demonstrated that, as the number of constraints in
the problem increases, the computational cost of Lemke’s method increases
far faster than linearly with the size of the problem. As an alternative we
proposed to solve the problem as a monotone optimization by introducing
a relaxation over the complementarity constraints, that is, we modified the
time-stepping scheme by replacing the equation (6) with:

0 ≤ 1
h

Φi(q(l)) + ∇ΦiT

v(l+1)

−μi

√
(Di,T

u v)2 + (Di,T
v v)2 ⊥ γi

n ≥ 0, i ∈ A(q(l), ε).
(10)

We note that the modified formulation does fit the paradigm put forth in [27].
We also note, however, that, at least in its most evident obvious formulations
the problem would violate either assumption (H2) or assumption (H4) that
are used in that reference to prove existence of solutions, though it is also
clear that even mild regularizations would satisfy those assumptions.

In this work, we do not discuss elastic or partially inelastic collision. This
is equivalent to considering a 0 restitution coefficient. It is conceivable that
the approach in [32,5] can be adapted to our scheme if restitution is needed,
but that is an issue that needs further study, due to the effective normal
compliance that this scheme presents, as discussed below. What ever the
modification, however, it is likely to result in a cone complementarity one-
step problem whose matrix has similar structure to the one considered here.
How to solve that problem, as opposed to the time stepping scheme itself, is
the focus of this article.
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We have shown in [1] that, as h → 0, the solution of the modified time-
stepping scheme will approach the solution of the same measure differential
inclusion as the original scheme. In addition, we have shown that the iterates
produced by the modified scheme approach the ones of the original scheme

provided that μiγi
n

√
(Di,T

u v)2 + (Di,T
v v)2 << 1 [4]. We remark that this

regime is precisely the one in which pebble bed simulators operate [33], an
application that motivates our second example, as well as other granular flow
applications.

The physical meaning of the modified scheme was described to some ex-
tent in [1], and is connected to the microscopic description of contact with
friction as rigid piecewise linear asperities whose tangent of the side angle
is equal to the macroscopic friction coefficient. The effect of the modifica-
tion on the iterates of the time stepping scheme is that it allows for some
amount of normal motion at the contact even when the body is supposed
to be in contact. In some sense, the scheme allows for a “boundary layer”,
effectively normal compliance, at the contact whose size is proportional to
μvT h (but that otherwise does not depend on any parameter, as penalty
schemes do). This interpretation can be demonstrated on a two-dimensional
example assuming persistent contact that is already established. Of course,
the modification (10) may not be suitable for all simulations with contact
and friction and a good example of an unsuitable configuration is the case
where two bodies are in initial contact with large tangential velocity, as is
discussed in [1].

For the rest of the paper we use the modified scheme, which uses (10)
instead of (6).

2.6 Cone complementarity formulation

If we now write the optimality conditions for the equilibrium constraint in
(7), we obtain that, for any i ∈ A(q(l), ε), there exists a Lagrange multiplier
λi such that

λiγi
u = −Di,T

u v, λiγi
v = −Di,T

v v, λi ≥ 0 ⊥ μiγi
n−

√
(γi

u)2 + (γi
v)2 ≥ 0. (11)

The first two equations imply that λi

√
(γi

u)2 + (γi
v)2 =

√(
Di,T

u v
)2

+
(
Di,T

v v
)2

,

while the last equation implies that

0 = λi

√
(γi

u)2 + (γi
v)2

(
μiγi

n −
√

(γi
u)2 + (γi

v)2
)

and, in turn, that

μiγi
n

√(
Di,T

u v
)2

+
(
Di,T

v v
)2

= λi
((

γi
u

)2
+

(
γi

v

)2
)

. (12)
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We now define, for i ∈ A(ql, ε) the vectors

ui = (ui
1, u

i
2, u

i
3), wi = (γi

n, γi
u, γi

v)

ui
1 =

1
h

Φi(q(l)) + ∇ΦiT

v(l+1), ui
2 = Di,T

u v, ui
3 = Di,T

v v.

We calculate the scalar product

uiT

wi = γi
n

(
1
h

Φi(q(l)) + ∇ΦiT

v(l+1)

)
+ γi

uDi,T
u v + γi

vDi,T
v v

(10),(11)
= μiγi

n

√(
Di,T

u v
)2

+
(
Di,T

v v
)2

− λi
((

γi
u

)2
+

(
γi

v

)2
)

= 0,

which implies that
uiT

wi = 0, and thus ui ⊥ wi. (13)
We now define the cones

Λi =
{

(x, y, z) ∈ R
3|x ≥ μi

√
y2 + z2

}
, FCi =

{
(x, y, z) ∈ R

3|μix ≥
√

y2 + z2
}

It immediately follows that Λi is the negative polar cone of FCi, that is,
ũ ∈ Λi and w̃ ∈ FCi imply that ũT w̃ ≥ 0. Then (7), (10), and (13) imply
that the following set of cone complementarity constraint holds:

−ui ∈ FCi◦ ⊥ wi ∈ FCi, i ∈ A(q(l), ε), (14)

where we denote by C◦ the polar cone of a given cone C, that is, C◦ =
{x ∈ R

m| 〈x, y〉 ≤ 0, ∀y ∈ C}.
We now define the vector

k̃(l) = Mv(l) + hft(t(l), q(l), v(l)). (15)

Then, equations (15) and (14), together with (5) and the definition of the
vectors ui and wi, result in the following problem:

Mv(l+1) = k̃(l) +
∑

i∈A(q(l),ε)

(
γi

nDi
n + γi

uDi
u + γi

vD
i
v

)
,

i ∈ A(q(l), ε)
(

1
hΦi(q(l)) + ∇ΦiT

v(l+1), Di,T
u v(l+1), Di,T

v v(l+1)
)

∈ −FCi◦ ⊥ (γi
n, γi

u, γi
v) ∈ FCi.

(16)

We denote by nA the number of elements in the set A(ql, ε). We then
define the following vectors:

b ∈ R
3nA =

(
1
hΦi1 (q(l)), 0, 0, 1

hΦi2 (q(l)), 0, 0, . . . , 1
hΦinA (q(l)), 0, 0

)
d ∈ R

3nA =
(

1
hΦi1(q(l)) + D

iT
1

n M−1k̃(l), D
iT
1

u M−1k̃(l), D
iT
1

v M−1k̃(l),

1
hΦi2 (q(l)) + D

iT
2

n M−1k̃(l), D
iT
2

u M−1k̃(l), D
iT
2

v M−1k̃(l),

. . . , 1
hΦinA (q(l)) + D

iT
nA

n M−1k̃(l), D
iT
nA

u M−1k̃(l), D
iT
nA

v M−1k̃(l)

)
γ ∈ R

3nA =
(
γi1

n , γi1
u , γi1

v , γi2
n , γi2

u , γi2
v , . . . , γ

inA
n , γ

inA
u , γ

inA
v

)
(17)

10



11

and the following matrices

Di =
[
Di

n, Di
u, Di

v

]
, i ∈ A(q(l), ε),

D =
[
Di1 , Di2 , . . . , DinA

]
, N = DT M−1D.

(18)

Note that the matrix N is positive semidefinite.
In addition, for a vector d̃ ∈ R

3nA , we define by d̃
i ∈ R

3 = (d̃3∗(i−1)+1,

d̃3∗(i−1)+2, d̃3∗i). Note that d̃
i

is a vector, whereas d̃i is a real number compo-
nent. This convention allows us, after multiplying with M−1 its first equation,
to write the problem (16) as the conic complementarity problem

(Nγ + d)i ∈ −FCi◦ ⊥ γi ∈ FCi, i = 1, 2, . . . , nA. (19)

3 Convergence Theory of the Iterative Method

We now describe the structure of projection operators over direct sums of
cones. Assume that we have a set of closed convex cones Υ i ⊂ R

ni , where the
index takes the values i = 1, 2, . . . , nk. We consider the Cartesian product of
such cones Υ =

⊕nk

i=1 Υ i, which we assume is a cone in R
nc , that is, that the

sum of the dimensions of the element cones satisfies nc =
nk∑
i=1

ni. In this sec-

tion and in the sequel, for a vector x ∈ R
nc , we denote by xi, i = 1, 2, . . . , nk

its components that satisfy xi ∈ R
ni , that is, x = (x1, x2, . . . , xnk

). Since
all the operations we will carry out will be on blocks corresponding to the
partition of x into its components xi, there will be no confusion between xi

and the components of x. Note that the Cartesian product cone is also a
convex cone. Note that we have chosen to use subscripts to denote indices of
blocks of the vector x in order to avoid collusion with iteration indices. When
particularizing the results to the case of the cone complementarity problem
(19) we will again use superscripts for variables γ pertaining to a contact
with index i.

For a convex cone, C ⊂ R
m, we denote by ΠC(y) the projection of the

vector y ∈ R
m onto the convex cone C. From the theory of convexity, it

follows that the projection has the following properties.

P1 ‖ΠC (y1) − ΠC (y2)‖2 ≤ 〈ΠC (y1) − ΠC (y2) , y1 − y2〉 , ∀y1, y2 ∈ R
m

[16][Proposition 3.1.3].
P2 x = ΠC(y) ⇔ x ∈ C, y − x ∈ C◦, 〈x, y − x〉 = 0 [16][Proposition 3.2.3].
P3 ΠΥ (x) = (ΠΥ 1(x1), ΠΥ 2(x2), . . . , ΠΥ nk (xnk

))
P4 Υ ◦ =

⊕nk

i=1 Υ i,◦

The last two properties are a straightforward application of the properties
of convex cones and their projections.

Consider now the symmetric positive semidefinite matrix N . We define
the following cone complementarity problem:

(CCP ) si = (Nx + q)i ∈ −Υ i,◦, xi ∈ Υ i, 〈xi, si〉 = 0, i = 1, 2, . . . , nk.
(20)

11



12

It is immediate that it represents the optimality conditions of the following
optimization problem with conic constraints:

(OC) min f(x) = 1
2xT Nx + qT x

s.t. xi ∈ Υ i, i = 1, 2, . . . , nk.

The goal of this section is to analyze the following iterative method. We
start with an arbitrarily chosen initial point x0 ∈ Υ . The iterative method is
defined by the formula

xr+1 = λΠΥ

(
xr − ωBr

(
Nxr + q + Kr

(
xr+1 − xr

)))
+ (1 − λ) xr,

r = 0, 1, 2, . . . ,
(21)

where λ, ω are parameters that satisfy 0 < λ ≤ 1, ω > 0; for each r, the
matrix Kr is a strictly block upper triangular or strictly block lower trian-
gular, with blocks corresponding to the partition of the vector x ∈ R

nc into
the components xi as outlined in the beginning of the section. In addition,
Br is a positive diagonal matrix, which is made of identity blocks whose sizes
correspond to the same partition of the vector x. We therefore have

Br =

⎛⎜⎜⎜⎝
η1In1 0 · · · 0
0 η2In2 · · · 0
...

...
. . .

...
0 0 · · · ηnk

Innk

⎞⎟⎟⎟⎠ , Lr =

⎛⎜⎜⎜⎜⎝
0 K12 K13 · · · K1nk

0 0 K23 · · · K2nk

0 0 0 · · · K3nk

...
...

...
. . .

...
0 0 0 · · · 0

⎞⎟⎟⎟⎟⎠ , (22)

where ηi > 0, i = 1, 2, . . . , nk, Ini ∈ R
ni×ni , Kij ∈ R

ni×nj , 1 ≤ i < j ≤ nk,
and we have either that Kr = Lr, or that Kr = LrT .

We will use the following assumptions.

A1 The matrix N of the problem (CCP) is symmetric and positive semi-
definite.

A2 There exists a positive number, α > 0 such that, at any iteration r, r =
0, 1, 2, . . ., we have that Br � αI

A3 There exists a positive number, β > 0 such that, at any iteration r, r =
0, 1, 2, . . ., we have that (xr+1−xr)T

(
(λωBr)−1 + Kr − N

2

)
(xr+1−xr) ≥

β
∥∥xr+1 − xr

∥∥2
.

To analyze the convergence behavior of the iteration (21), we used the
same approach as Murty [24], adapted to the case of general convex cones.
We first characterize the solution of the cone complementarity problem in
terms of a fixed point of an appropriate mapping.

Theorem 1 Assume that B is a positive definite diagonal matrix with a
block structure prescribed in (22). The vector x ∈ Υ is a solution of the
cone complementarity problem (CCP) if and only if it satisfies the following
fixed-point relationship:

ΠΥ (x − ωB (Nx + q)) = x.

12
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Proof By the second property of projections [P2] we have that the vector x
satisfies the fixed-point relationship if and only if it satisfies the following
relationships:

x ∈ Υ, (x − ωB (Nx + q)) − x = s ∈ Υ ◦, 〈x, s〉 = 0.

In turn, these are equivalent to

xi ∈ Υ, (−ωB (Nx + q))i = si ∈ Υ ◦, 〈xi, si〉 = 0, i = 1, 2, . . . , nk.

From the property (P3) of the cones and the fact that the diagonal matrix
B has the structure described in (22), such that the blocks corresponding to
the components of x are multiples of the identity, it immediately follows that

(−ωB (Nx + q))i = ηiω (− (Nx + q)i, ) ,

where we have used the notation from (22). In turn, this implies that the
previously displayed equation is equivalent to

xi ∈ Υ, (− (Nx + q))i = si ∈ Υ ◦, 〈xi, si〉 = 0, i = 1, 2, . . . , nk,

which is precisely (CCP). The proof is complete. ��
Theorem 2 Assume that B is a positive definite matrix with the structure
described in (22). Then ∀x ∈ R

nc we have that

(ΠΥ (x) − x)T
B−1 (ΠΥ (x) − y) =

〈
(ΠΥ (x) − x) , B−1 (ΠΥ (x) − y)

〉 ≤ 0, ∀y ∈ Υ.

Proof From the definition of the total cone Υ we have that Υ =
⊕nk

i=1 Υ i.
Since the matrix B is diagonal with the structure described in (22), we
immediately have that〈

(ΠΥ (x) − x) , B−1 (ΠΥ (x) − y)
〉

=
nk∑
i=1

1
ηi

〈(ΠΥ (x) − x)i , (ΠΥ (x) − y)i〉

=
nk∑
i=1

1
ηi

〈ΠΥ i(xi) − xi, ΠΥ i(xi) − yi〉.

The last relation follows from the property [P3] of the cones and projections
onto them. It is therefore sufficient to show that

xi ∈ R
ni ⇒ 〈ΠΥ i(xi) − xi, ΠΥ i(xi) − yi〉 ≤ 0, ∀yi ∈ Υ i. (23)

Using property [P1] of the cones, we have that

〈ΠΥ i(xi) − yi, ΠΥ i(xi) − yi〉 ≤ 〈ΠΥ i(xi) − yi, xi − yi〉 , ∀yi ∈ Υ i, xi ∈ R
ni .

Using the fact that the scalar product is a bilinear form and taking the term
from the right to the left with a change sign, we obtain that

〈ΠΥ i(xi) − yi, ΠΥ i(xi) − xi〉 ≤ 0, ∀yi ∈ Υ i, xi ∈ R
ni ,

which proves the equation (23) and therefore the theorem. The proof is com-
plete. ��
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Theorem 3 Let {xr : r = 1, 2, . . .} be the sequence of points obtained under
the iterative scheme (21). Assume that x0 ∈ Υ and that the sequences of
matrices Br and Kr are bounded. Then we have that

f(xr+1) − f(xr) ≤ −β
∥∥xr+1 − xr

∥∥2

for any iteration index r, and any accumulation point of the sequence xr is
a solution of (CCP).

Proof The proof is identical to the proof from Murty [24], where the projec-
tion on the positive orthant, +, is replaced with the projection on the cone
ΠΥ . The only property of the projection that is used is the one from Theorem
2, which holds for the general case as well. We nonetheless include it here for
completeness.

Since the initial point satisfies x0 ∈ Υ and from (21), we conclude that
xr ∈ Υ , ∀r = 1, 2, . . . From straightforward manipulation it follows that

f
(
xr+1

)− f (xr) = ωBr (Nxr + q)T (ωBr)−1 (
xr+1 − xr

)
+

(
xr+1 − xr

)
N

(xr+1−xr)
2

(
(xr+1−(1−λ)xr)

λ − xr + ωBr
(
Nxr + q + Kr

(
xr+1 −

(ωBr)−1 (
xr+1 − xr

)
+

(
xr+1 − xr

) (
N
2 − (λωBr)−1 − Kr

) (
xr+1 − xr

)
=

λ

(
(xr+1−(1−λ)xr)

λ − (
xr − ωBr

(
Nxr + q + Kr

(
xr+1 − xr

))))T

(ωBr)−1

(
(xr+1−(1−λ)xr)

λ − xr

)
+

(
xr+1 − xr

) (
N
2 − (λωBr)−1 − Kr

) (
xr+1 −

From (21) we know that(
xr+1 − (1 − λ) xr

)
λ

= ΠΥ

(
xr − ωBr

(
Nxr + q + Kr

(
xr+1 − xr

)))
.

We also know that λ > 0. Using these and Theorem 2, we conclude that
the first term in the right-hand side of the long equality above is ≤ 0. We
therefore have that

f
(
xr+1

)− f (xr) ≤ (
xr+1 − xr

) (
1
2N − (λωBr)−1 − Kr

) (
xr+1 − xr

)
≤ −β

∥∥xr+1 − xr
∥∥2

.
(24)

The last inequality follows from conditions [A3] and proves the first part of
our claim.

Since β > 0, the equation (24) implies that f (xr) − f
(
xr+1

) ≥ 0. Hence
{f (xr) : r = 1, 2, . . .} is a monotone nonincreasing sequence of real numbers.
Let x̄ be an accumulation point of the sequence {xr : r = 1, 2, . . .}. Hence,
there exists a sequence of positive integers such that the sequence of xr

with r belonging to this subsequence of integers converges to x̄. Since the
sequences of Brand Krare bounded sequences of matrices, we can again find a
subsequence of the above sequence of positive integers satisfying the property
that both the subsequences of Brand Kr with r belonging to this subsequence

14
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converge to the limits. Let {rt : t = 1, 2, . . .} be this final subsequence of
positive integers. Therefore, we can assume that

lim
t→∞Brt = B̄, lim

t→∞Krt = K̄, lim
t→∞xrt = x̄.

In addition, from property (A2) it follows that B̄ is a diagonal matrix with
positive diagonal entries. Since f (x) is a continuous function, we have that
f (x̄) = limt→∞ f (xrt). Since {f (xr) : r = 0, 1, . . .} is a nonincreasing se-
quence of real numbers with a convergent subsequence, f (xrt), it follows
that the entire sequence is itself convergent. This and (24) together imply
that 0 = limt→∞

(
f (xrt) − f

(
xrt+1

)) ≥ limt→∞ β
∥∥xrt − xrt+1

∥∥2 ≥ 0. From
this and the fact that the sequence {xrt} is convergent to x̄, it follows that{
xrt+1

}
is also convergent to the same limit. These facts imply that

0 = limt→∞
∥∥x1+rt − xrt

∥∥
= λ

∥∥ΠΥ

(
xrt − ωBrt

(
Nxrt + q + Krt ]

(
xrt+1 − xrt

)))− xrt
∥∥

= λ
∥∥ΠΥ

(
x̄ − ωB̄ (Nx̄ + q)

)− x̄
∥∥ .

So we have that ΠΥ

(
x̄ − ωB̄ (Nx̄ + q)

)− x̄ = 0. By Theorem 1, we have that
(Mx̄ + q, x̄) is a solution for CCP. ��

Note that the preceding result does not mean that the sequence will
converge, since it is still possible that the sequence will diverge to infinity
and have no accumulation point. The proper alternative is related by the
following result.

Theorem 4 Under the assumptions of the section, either (a) the sequence
xr is bounded, or (b) there exists a 0 �= y ∈ Υ, that satisfies Ny = 0. In case
(a), any two accumulation points z1 and z2 satisfy Nz1 = Nz2.

Proof Assume that case (a) does not hold. Then the sequence xr will have a
subsequence xri that satisfies xri → ∞, as i → ∞. Consider the sequence

yi =
xri

‖xri‖ ,

which, being bounded, must have an accumulation point ȳ. We assume, with-
out loss of generality, that the entire sequence yi converges to ȳ ∈ Υ . From
the previous theorem, we have that the sequence f (xri) is decreasing, and
we obtain that

f(xri)

‖xri‖2 =
1
2

(
xri

‖xri‖
)T

N

(
xri

‖xri‖
)

+
(

qT

‖xri‖
)(

xri

‖xri‖
)

.

Taking the limit as i → ∞, we obtain that ȳT Nȳ ≤ 0. Using assumption
[A1], we obtain that ȳT Nȳ = 0. From assumption [A1] it follows that ȳ is
a minimum for the function yT Ny, and from the optimality conditions it
follows that Nȳ = 0. Since ȳ ∈ Υ , case (b) must hold. We have thus proved
that the outcome of the iterative method can be only (a) or (b).
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Assume now that we are in case (a), and we have two accumulation points
z1 ∈ Υ and z2 ∈ Υ . From Theorem 3 we have that both z1 and z2 are a
solution of (CCP), and therefore they satisfy the following relationships.

z1 ∈ Υ, z2 ∈ Υ,−(Nz1 + q) ∈ Υ ◦,−(Nz2 + q) ∈ Υ ◦.

Since both the cone Υ and the cone Υ ◦ are convex sets, it follows that z2 +
λ
(
z1 − z2

) ∈ Υ and that Nz2+q+λ
(
Nz1 − Nz2

) ∈ −Υ ◦, for any parameter
λ ∈ [0, 1]. In turn, from the definition of the polar cone, it follows that

g (λ) =
〈
z2 + λ

(
z1 − z2

)
, Nz2 + q + λ

(
Nz1 − Nz2

)〉 ≥ 0, ∀λ ∈ [0, 1] .

Using the fact that z2 satisfies
〈
z2, Nz2 + q

〉
= 0 being a solution of (CCP),

we obtain that

λ
〈(

z1 − z2
)
, Nz2 + q

〉
+ λ

〈
z2,

(
Nz1 − Nz2

)〉
+ λ2

〈(
z1 − z2

)
,
(
Nz1 − Nz2

)〉
≥ 0, ∀λ ∈ [0, 1]

from which it follows that〈(
z1 − z2

)
, Nz2 + q

〉
+

〈
z2,

(
Nz1 − Nz2

)〉 ≥ 0.

By using the same argument but switching z1 and z2, we obtain that

− 〈(
z1 − z2

)
, Nz1 + q

〉− 〈
z1,

(
Nz1 − Nz2

)〉 ≥ 0.

Adding the last two equations, we obtain that〈(
z1 − z2

)
, Nz2 − Nz1

〉
+

〈
z2 − z1,

(
Nz1 − Nz2

)〉 ≥ 0,

with which, using the symmetry of the matrix N that follows from assump-
tion A1, we obtain that

2
〈(

z1 − z2
)
,
(
Nz1 − Nz2

)〉 ≤ 0.

Using again assumption A1, we have that Nz1 = Nz2, which completes the
proof. ��
Corollary 1 Assume that the friction cone of the configuration is pointed
(that is, there does not exist a choice of reaction forces whose net effect is
zero). If the relevant parameters satisfy assumptions [A2] and [A3], then the
algorithm (21) for CCP applied to (19) produces a bounded sequence, and
any accumulation point results in the same velocity solution.

Proof Assume that the sequence xr is produced by the algorithm (21) whose
parameters satisfy Assumptions [A2] and [A3]. Then, from Theorem 4 there
exists 0 �= y ∈ Υ such that Ny = 0. From (18) this implies that Dy = 0.
In turn, from the definition of D in (18) and Subsection 2.3, this implies
that there exist nonzero constraint feasible impulses that produce a zero net
effect on the system. This contradicts the assumption that the friction cone
is pointed [38].

Therefore boundedness of the iteration sequence and the existence of an
accumulation point are assured. Uniqueness of the velocity follows from the
second part of Theorem 4, since Nz1 = Nz2 and the definition of D in (18)
implies that Dz1 = Dz2, which, in turn, from (16) implies that the velocity
solution is unique. The proof is complete. ��
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Note that N is symmetric positive semi-definite and therefore assumption
[A1] is satisfied. Assumption [A2] is easily satisfied, whereas assumption [A3]
can be satisfied by a trial-and-error approach, whereas if the iterates xr+1

and xr do not satisfy [A3], than the parameter ω is decreased by factor of two,
and the iterate x(r+1) is recomputed. It is immediate that such a strategy
can decrease the parameter ω only a finite number of times.

4 Implementation

The CCP method proposed here can be applied to the simulation of multi-
body systems with a large number of parts and contacts because, where an
upper limit on the number of iteration is enforced, the iteration (21) can run
in O(n) space and O(n) time.

Previous sections showed that generic multibody problems with frictional
contacts, expressed with the system (5)–(8), embed the cone complementarity
problem (19). Hence, the iterative method (21) can be used to solve such
convex CCP, because (19) is equivalent to the more general problem (20)
where one considers the specific case of three-dimensional cones Υi. That is,
for the ith friction cone Υi we have that ni = 3 and that there is an associated
vector with a normal and two tangential reactions: γi = {γi

n, γi
u, γi

v}. The
complete vector of unknown scalar reactions is γ ∈ R

3nA . From Section 3,
we have that nk = nA and nc = 3nA.

Given (17), the final time-stepping scheme can be seen as a sequence of
three main operations: a CCP problem that finds unknown reactions γ (25a),
a linear application (25b) that gives the new speeds v(l+1), and a position
update (25c):

(Nγ + d) ∈ −Υ o ⊥ γ ∈ Υ (25a)

v(l+1) = M−1
(
k̃ + Dγ

)
(25b)

q(l+1) = q(l) + hΓ (q(l))v(l+1). (25c)

The biggest computational overhead is caused by the first problem, that
is, the CCP (25a). In fact, (25c) is immediate, and (25b) can be computed
quickly because in most cases the matrix M is diagonal and its inverse M−1

can be precomputed easily.
We recall that N = DT M−1D. The full D matrix can be partitioned

in nA vertical blocks Di ∈ R
m×3, each pertaining to the corresponding ith

cone. We also recall that, from (18), we have that

D =
[
D1|D2|...|DnA

]
.

Using (17), we can rewrite the term r from (17) in a more compact form:

d = DT M−1k̃ + b. (26)

The convergence theory about the iterative scheme (21) leaves some de-
grees of freedom in choosing ηi values that build the diagonal blocks of the
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iteration matrix B. A trivial choice could be to use the same ηi = ξ value
for all diagonal blocks, that is, B = ξI, and then use the overrelaxation pa-
rameter ω to control the convergence. However, setting the same value for
all ηi may slow convergence in systems with large mass ratios, even with
an optimal ω. A more practical approach, which copes better with systems
affected by uneven masses, is to use ηi = 1/ḡi, where ḡi is the average of
the diagonal values of the ith block of the N matrix. We note that ḡi can be
computed easily from the trace of the 3 × 3 matrix Di,T M−1Di, as

ḡi =
Trace(Di,T M−1Di)

3
. (27)

Also the K matrix in (21) can be chosen freely, within the convergence
limits posed by assumptions [A1]–[A3]. Among the most noticeable options,
we note the case where K = 0, which results in a scheme like a projected
Jacobi, or the case where K is built by using the lower blocks of N , so
that Ki,j = Di,T M−1Dj , where 1 ≤ j < i ≤ nA. In practical terms this
means that, as soon as computed, a triplet γi with three reaction values
will be used also for computing the following γi+1 triplet, and so on for
all i, without needing to finish a single iteration, which results in a Gauss-
Seidel-type iteration. Numerical tests show that this last option, similar to a
projected SOR scheme with immediate update of unknown vector, converges
faster than the case of K = 0. Hereafter, we will assume that such a kind of
K matrix is used. Another choice, that we do not explore here, is the one of
having the matrix K be block-diagonal with block lower triangular blocks,
which would be equivalent with block Jacobi, where for each block we do a
Gauss-Seidel-type iteration. The latter is suitable for a parallel iteration with
low communication overhead.

We recall that the matrix N is a product of large matrices; N = DT M−1D,
and it is full even if D and M are sparse. For systems with a large number of
contacts, the size of N would be prohibitive and clearly would not satisfy the
goal of O(n) space complexity. To this end, direct multiplication of vectors
and matrices in (21) must be avoided; otherwise the effort and the space
requirement would be superlinear in the number of constraint.

For the reasons above, a scheme that does not need N computed explicitly
has been developed, exploiting the sparsity of M and D. Also the K matrix
does not need to be explicitly built, if we adopt the above mentioned choice
of K as the upper block-structure of N . These considerations lead to the
following implementation of the rth step of the iteration (21), expressed as
an inner loop with index i = 1 . . . nA on all nA friction cones Υ i:

δir = γir − ωηi

(
Di,T M−1

(
i−1∑
z=1

Dzγz,r+1+

+
nA∑
z=i

Dzγzr + k̃i

)
+ bi

)
(28)

γi,r+1 = λΠΥ i

(
δir

)
+ (1 − λ)γir. (29)
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In the case of friction in three-dimensional space, the implementation of the
projection operator ΠΥ i(δi) : R

3 → R
3 is straightforward.

For improved performance, some operations can be computed at the be-
ginning of the iteration because their outcome would remain unchanged. In
detail, we introduce the m × 3 matrix si = M−1Di and the 3 × 3 matrix
gi = Di,T M−1Di.

Considering the optimizations above, we can express the final CCP algo-
rithm with the following pseudocode:

Algorithm 1

1. For i = 1, 2, . . . , nA compute the m × 3 matrices si = M−1Di and 3 × 3
matrices gi = Di,T si.

2. For i = 1, 2, . . . , nA, compute ηi = 3/Trace(gi).
3. If warm starting with some initial guess γ∗, initialize reactions as γ0 = γ∗,

otherwise γ0 = 0.
4. Initialize speeds: v =

∑nA
i=1 siγ0 + M−1k̃.

5. For i = 1, 2, . . . nA, perform the updates
δi,r =

(
γi,r − ωηi

(
Di,T vr + bi

))
;

γi,r+1 = λΠΥ

(
δi,r

)
+ (1 − λ)γi,r ;

Δγi,r+1 = γi,r+1 − γi,r ;
v := v + siT

Δγi,r+1.
6. Repeat the step 5 by looping on the list of contacts in backward direction,

if symmetric updates are desired.
7. r := r + 1. Repeat from 5 until convergence, or until r > rmax.

The iterations, usually stopped when an approximation threshold has
been reached, can be also prematurely aborted when r exceeds a limit rmax

on the maximum number of iterations if the simulation must meet hard-real-
time requirements.

With minimal changes to the ΠΥ (·) operator, the proposed method can
easily adapted to the case of friction in 2D or the case of generic unilateral
constraints. Also, without major modifications to the main scheme, classical
bilateral constraints can be added. In that case, the cones Υ i can be taken
to be R

li , where li is the dimension of the force vector associated to a joint
and the projection on such a cone is the identity. Therefore the scheme is
modified by simply replacing (29) with

γi,r+1 = λδir + (1 − λ)γir . (30)

In our simulations, we chose ω = 1 and λ = 1, except for the test of
convergence of the residual with respect to ω. We cannot guarantee a priori
that this will satisfy condition [A3], but it did for all our simulations. In
addition, the matrix sequences Kr and Br were constant. We can therefore
claim that Theorem 3 does apply and, since the sequence did not diverge
(and was in fact convergent), any accumulation point is a solution of the
cone complementarity problem (25a). In addition, Theorem 4 is applicable
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to show that any accumulation point has the same velocity solution. It is dif-
ficult to verify numerically the condition of Corollary 1 (the pointed friction
cone assumption). Nonetheless, boundedness of the iterates was observed in
all cases. In addition, our proofs of the theoretical results allow for similar
conclusions if ω varies from iteration to iteration. Therefore, we could ensure
that at some iteration the appropriate ω is chosen after decreasing its value
a few times until assumption [A3] holds. It can be shown that if the value
of ω is halved each time [A3] does not hold and the respective iteration is
rejected, then [A3] will eventually be satisfied after a finite number of steps.
In our experiments, however, the values we have chosen for ω and λ have
worked for all iterations without need of further adjustment.

Finally, the overall scheme (25) for advancing a single time step can be
expressed with the following pseudocode:

Algorithm 2

1. Set t = 0, step counter l = 0, provide initial values for v(l) and q(l).
2. Perform collision detection between shapes of bodies, obtaining nA possi-

ble contact points within an ε distance. For each contact point, compute
Dn, Du, Dv and residual Φ(q).

3. For each body, compute forces ft(q, v, t), then compute k̃ with (15) and
b with (17).

4. Use Algorithm 1 to obtain unknown impulses γ and speeds v(l+1) for the
CCP problem.

5. Update positions using q(l+1) = q(l) + hΓ (q(l))v(l+1).
6. Increment t := t + h, l := l + 1, and repeat from step 2 until t > tend

We remark that choosing a proper value for the collision envelope ε is
not trivial. If a very small or zero value is used, contacts will enter the CCP
solver only when it is too late and some amount of interpenetration will be
unavoidable: this will affect negatively the stability of the method. On the
other hand, if too large values are used, the collision detection algorithm
will return too many potential contacts which will waste computational re-
sources for the CCP solution and which could occasionally create troubles
with convex shapes: this will decrease the efficiency and the robustness of
the method. We experienced that a simple yet efficient heuristic is to choose
ε as the maximum distance which can be spanned by whatever point of the
moving body, given its speed.

5 Examples

We present the results of our algorithm on two granular materials applica-
tions. For the larger simulation, the number of impulse variables exceeded
400,000.
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Fig. 2 Shaker benchmark, for a 1500-sphere case, showing vibration-induced gran-
ular segregation of large objects. After ten seconds of simulation three black in-
truder particles, originally placed at the bottom of the shaker, will rise at the top
surface.

5.1 Size segregation in a shaker

The first example is meant as a benchmark to evaluate the performance of
the solver when dealing with many contacts with friction. A rectangular box
is filled with spheres; then the box is shaken by means of an articulated sus-
pension and a crank mechanism (Fig. 2). When large objects are mixed with
the spheres, a phenomenon called vibration-induced size segregation moves
larger objects on top: this effect can be observed also in our simulations.

Different parameters have been tested, for example repeating the simu-
lation with a varying number of spheres up to 1500. In all cases the mass of
the spheres is m = 0.01kg, their diameter is d = 26mm, the friction coeffi-
cient is μ = 0.3, and the time step is h = 2π/50Ωs, with Ω rad/s being the
frequency of the crank. The amplitude of the vibration has been tested up
to A = 10mm.

Plotting of ||Δγ|| (Fig. 3) during the iteration of the algorithm shows the
convergence of the method for varying values of the overrelaxation factor ω.

Figure 4 shows how the CPU spends time in various parts of the simula-
tion algorithm. For this benchmark, a shaker with 1,000 rigid bodies was sim-
ulated with an upper limit of 40 iterations for the CCP solver. One can easily
see that the solution of the CCP is the bottleneck in the entire simulation
process, while collision detection and other tasks (time integration, Jacobian
update, etc.) are less CPU-intensive. In this example, the 40-iteration limit
was enough to keep the feasibility errors at negligible levels (max. interpene-
tration ||εPn|| < 0.002 d). However, if lower precision is acceptable as in case
of virtual reality or real-time applications, fewer iterations can be used, thus
reducing the CCP timings to levels which are comparable to the collision
detection timings.

To show how the number of iterations affect the precision of the solution
to the complementarity problem, in Fig. 5 we report the maximum error
in terms of speed violation ||εV n|| in contact constraints, during 300 time
steps of simulation. Speed is measured in d/s, where d is the diameter of the
spheres.
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Similarly, we report in Fig. 6 the maximum position error ||εPn|| in con-
tact constraints, that is, the maximum interpenetration. The error is mea-
sured in d units. One can see that, despite the large number of objects in
contact, acceptable precision can be obtained also with a moderate number
of iterations.

By performing a set of six shaker simulations with an increasing number
of objects, hence for increasing numbers of contacts, one can obtain a graph
as in Fig. 8, which shows how the CPU effort grows linearly with the num-
ber of frictional contacts. Here, for each simulation, CCP timings have been
recorded after ten seconds of transient, when spheres are at steady state and
form a dense packing, because this is a nontrivial configuration that requires
significant CPU efforts. The linear-time complexity is a consequence of the
loop in the fifth step of the algorithm, which is O(p) with p reaction forces γi

if a maximum number of iterations is enforced (40 iterations in this example).
Note that the fourth step of the algorithm, performing a computation that is
linear in terms of number of rigid bodies, has a moderate or negligible impact
on overall performance. Despite the fact that the theoretical complexity of
the algorithm for fixed number of iterations is linear, some deviation from
linearity can be experienced in complex applications when large amounts of
contacts are simulated, because CPU cache misses can become more frequent
as the memory access starts to become more and more intense.

Figure 7 show that only a portion of the potential contacts will be active
(i.e., with nonzero reaction force) after the CCP solution. Since the compu-
tational effort is proportional to the number of potential contacts entering
the CCP solver, regardless of the active/inactive outcome, a proper collision
detection algorithm should take care to report the smallest number of poten-
tial contacts, that is, only the surface pairs that may give interpenetration
in a single time step given the actual state of bodies. This precaution would
keep the active contacts as a relatively fixed percentage of the number of
potential constraints.
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5.2 Granular flow from a silo

The numerical method proposed in this article can be used to simulate dense
granular flows in silos. This problem arises in many engineering applica-
tions, most noticeably in the development of the promising fourth-generation
uranium-based, graphite-moderated, helium-cooled very high temperature

     

Fig. 9 Frames from the simulation of 36,000 rigid bodies with frictional contacts
flowing from a three-dimensional funnel. On a T2600 2 GHz processor, each solu-
tion of the CCP problem (nearly half a million of variables, including constraint
multipliers and speeds) with 140 iterations, took 19 s of CPU time on average.
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nuclear reactor, where thousands of graphite fuel pebbles drain very slowly
in a continuous refueling process [13].

Pebble flow in such pebble-bed reactors (PBRs) is not easily accessible to
experiments, and no reliable continuum model is yet available for analytical
approaches. These facts motivate the development of fast numerical meth-
ods. Simulations of PBR reactors have been recently performed with DEM
discrete-element methods [33]; however, the DEM approach is based on a
stiff spring-dashpot contact model which requires a very small time step in
order to guarantee the stability of the integration. Conversely, the method
proposed here can enforce rigid contacts without the need of artificial stiff-
ness; hence larger timesteps can be used. For example, the flow simulation of
Fig.9, representing 11 seconds of drainage from a silo 3.5m wide with 36,000
uranium-graphite spheres with d = 0.06m and friction coefficient μ = 0.6,
exploited a timestep h = 0.01s that is three orders of magnitude larger than
the timestep required by the DEM method in [33]. The simulation took about
four hours to complete for 5 seconds of simulated time, with a penetration er-
ror comparable to the one in the size segregation case. But timing is perhaps
less relevant since it depends on items such as cache management that can
vastly change with different optimization than the fact that the simulation
completed with low penetration error for a fixed (and relatively small) num-
ber of iterations, 140, for a very high density configuration. The maximum
number of contacts for which the problem was benchmarked was almost half
a million, which in turn resulted in more than two millions of variables for
the CCP. This is a promising approach to the simulation of full-scale reactors
and other large granular flow problems, though further tests are needed to
determine whether the maximum penetration error does not increase with
an increasing number of uranium-graphite spheres.

6 Conclusions

Aiming at a linear-time solution of dynamical systems with thousands of con-
straints and contacts, we have presented a novel method for solving the cone
constrained subproblems that appear in a time-stepping approach recently
proposed in [1]. The method has the flavor of a Gauss-Seidel with overrelax-
ation and is proven to converge under fairly standard assumptions about the
configuration of the system.

We implemented this method into the HyperOctant library of our multi-
body project, Chrono::Engine [39]. Our method is able to handle large sim-
ulations with tens of thousands of colliding rigid bodies and hundreds of
thousands of constraint impulse variables and scales well in this range. In
previous work [4,40] we have shown that simplex-like methods do not scale
well for systems in configurations of the type solved here. In future work, and
as appropriate software packages become available, we will carry out com-
parisons with interior-point methods for optimization problems with conic
constraints.

Because of the low computational overhead of our method, we foresee that
it could be endorsed even in the emerging application fields of physical engines

24



25

for videogames and virtual interactive environments, which can exploit the
benefits of the method for real-time performance.
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A Notations

A.1 Multibody system

– n: number of bodies.
– m = 6n: dimension of the position state vector.
– M : Mass matrix, positive definite, of size m × m.
– q: vector of generalized positions of dimension m.
– v: vector of generalized velocites of dimension m.
– t: time of the system.
– h: time step used by the time-stepping scheme.
– ft(t, q, v), fe(t, q, v), fc(q, v): the total, external, and, respectively, Coriolis forces

acting on the system, vectors of dimension m.

– p: number of contact constraints that can become active (no more than

„
n
2

«
).

– A(ql, ε) set of ε-active contact constraints, a set with no more than p elements.

– nA: dimension of set A(ql, ε).
– D: aggregate matrix of normal and tangential directions at the contact in gen-

eralized coordinates, a matrix of dimension m × 3nA.

A.2 Contact and friction model

– Φ(q): the gap function, which indicates whether a contact constraint is active.
– n, t1, t2: the normal and tangential vectors at a contact, three-dimensional vec-

tors.
– FN ,FT : the normal and tangential force at a contact, three-dimensional vectors.
– vT : the tangential velocity, a three-dimensional vector.
– bγn, bγu, bγv: normal and tangential force multipliers.
– γn, γu, γv: normal and tangential impulse multipliers.
– Dn, Du, Dv: the normal and tangential vectors at a contact in generalized co-

ordinates, m-dimensional vectors.
– FN , FT : the normal and tangential force in generalized coordinates, m-dimensional

vectors.
– μ: the friction coefficient.
– FC: the Coulomb friction cone, a subset of a three-dimensional space.

A.3 Cone Complementarity Problems

– nk: number of cones Υi whose direct sum give the total constraint cone of the
cone complementarity problem.

– ni: dimension of the vector space R
ni in which the component Υi is embedded.
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– nc =
Pnk

i=1 ni: dimension of the unknown vector of the cone complementarity
problem.

– Υ : the total constraint cone of the cone complementarity problem, a subset of
R

nc .
– N : matrix of the cone complementarity problem of dimension nc × nc.
– d: free term of the cone complementarity problem, a vector of dimension nc.
– C◦: the polar cone of a convex cone C.
– ΠC(·): the projection operator on a closed, convex cone C.

A.4 Iterative scheme

– K: a strict block upper or lower triangular matrix.
– B: a block diagonal matrix, with multiple of identity blocks.
– ω, λ: scalar parameters of the iterative scheme.
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