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Abstract

Railway level crossing (LX) safety continues to be one of the most critical issues for railways, despite an ever-
increasing focus on improving design and application practices. Accidents at European LXs account for about
one-third of the entire railway accidents and result in more than 300 deaths every year in Europe. Due to the
non-deterministic causes, the complex operation background and the lack of thorough statistical analysis based on
accident/incident data, the risk assessment of LXs remains a challenging task. In the present paper, some LX accident
prediction models are developed. Such models allow for highlighting the influence of the main impacting parameters,
i.e., the average daily road traffic, the average daily railway traffic, the annual road accidents, the vertical road profile,
the horizontal road alignment, the road width, the crossing length, the railway speed limit and the geographic region.
The Ordinary Least-Squares (OLS) and Nonlinear Least-Squares (NLS) methods are employed to estimate the re-
spective coefficients of variables in the prediction models, based on the LX accident/incident data. The validation and
comparison process is performed through statistical means to examine how well the estimation of the models fits the
reality. The outcomes of validation and comparison attest that the improved accident prediction model has statistic-
based approbatory quality. Moreover, the improved accident prediction model combined with the NB distribution
shows relatively high predictive accuracy of the probability of accident occurrence.

Keywords: Level crossing safety, Train-car collision, Accident prediction modeling, Statistical analysis;

1. Context and related works1

Accidents at railway level crossings (LXs) often give rise to serious material and human damage and hamper2

railway safety reputation, although the majority of accidents are caused by vehicle driver violations. LX safety is3

one of the most critical issues for railways which needs to be tackled urgently (Ghazel, 2009; Mekki et al., 2012; Liu4

et al., 2016). In 2012, there were more than 118,000 LXs in the 28 countries of the European Union (E.U.) which5

correspond to an average of 5 LXs per 10 line-km (ERA, 2014). Accidents at European LXs account for about6

one-third of the entire railway accidents. They result in more than 300 deaths every year in Europe (Liu et al., 2016).7

In some European countries, accidents at LXs account for up to 50% of railway accidents (Ghazel and El-Koursi,8

2014; Evans, 2011b). In the entire E.U. zone, the overall number of deaths per fatal accident in railways from 19909

to 2009 is 4.10, with no apparent long-term change over time (Evans, 2011a). In France, the railway network shows10

more than 18,000 LXs for 30,000 km of railway lines, which are crossed daily by 16 million vehicles on average,11

and around 13,000 LXs show heavy road and railway traffic (SNCF Réseau, 2011). Despite numerous measures12

already taken to improve the LX safety, SNCF Réseau (the French national railway infrastructure manager) counted13
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100 collisions at LXs which led to 25 deaths in 2014. This number was half the total number of collisions per year14

at LXs a decade ago, but still too large (SNCF Réseau, 2015). In order to significantly reduce the accidents and15

their related consequences at LXs, it is crucial to establish a high quality accident prediction model and carry out a16

thorough analysis to understand the potential reasons for accidents occurring at LXs. Indeed, this paves the way for17

making appropriate safety diagnoses at LXs.18

Many existing works dealing with LX safety are devoted to developing qualitative approaches, in order to under-19

stand the potential reasons causing accidents at LXs, such as surveys (Wigglesworth, 2001), interviews (Read et al.,20

2016), focus group methods (Stefanova et al., 2015) or driving simulators (Larue et al., 2015), rather than collecting21

real field data. In recent years, a systems analysis framework (Leveson, 2011; Read et al., 2016; Wilson, 2014) and22

a psychological schema theory (Salmon et al., 2013; Stanton and Walker, 2011) have been used to analyze the con-23

tributory factors underlying the accidents occurring at LXs. A study presented by Salmon et al. (2013) described a24

collision between a loaded semi-trailer truck and a train, which occurred in North Victoria, Australia, when the truck25

crossed the LX while the LX is occupied by railways without lights flashing. According to the investigation of the26

Office of the Chief Investigator (OCI), the truck driver in this study was not aware of the train and the activated state27

of the level crossing until it was too late to stop the truck. A study conducted by Davey et al. (2008) discussed the28

intentional violation of vehicle drivers crossing LXs, particularly focusing on vehicle driver’s complacency due to29

the high level of familiarity. Tey et al. (2011) conducted an experiment to measure vehicle drivers’ responses to LXs30

equipped with stop signs (passive), flashing lights and half barriers with flashing lights (active) respectively. In this31

study, the vehicle drivers’ responses result from both the field survey and a driving simulator. Although these avail-32

able qualitative approaches are beneficial to understand factors causing LX accidents, they do not allow for predicting33

the number or the probability of accident occurrence, or quantifying the contribution degree of the various impacting34

factors. Thereby, quantitative safety analysis approaches are crucial to thoroughly understand the impacting factors35

and enable the identification of practical design and improvement recommendations to prevent accidents at LXs.36

One can notice that a number of quantitative studies on statistical models to predict LX accident frequency open a
significant vista on understanding the risk related to LX accidents. In 1941, L. E. Peabody and T. B. Dimmick of the
U.S. Bureau of Public Roads developed one of the earliest railway-highway crossing accident prediction models to
estimate the number of accidents at railway-highway crossings in 5 years, named Peabody-Dimmick Formula (Ogden,
2007). This formula was developed based on the accident data of rural railway-highway crossings in 29 states in the
U.S. and was utilized through the 1950s. As shown in Eq. (1), the parameters considered in this formula are the
average daily road traffic V , the average daily railway traffic T , and the protection coefficient indicative of warning
devices adopted P. K is an additional parameter.

A5 =
1.28 × (V0.170 × T 0.151)

P0.171 + K (1)

However, advances in both warning device technologies and LX design features quickly led to an unavailability37

of the predefined formula form and coefficients that reflected the conditions pertaining to LX accidents in 1941.38

The next evolutionary step in LX accident prediction was the New Hampshire Index (Oh et al., 2006) which is
given as follows:

HI = V × T × P f (2)

where HI represents the hazard index; V is the average daily road traffic; T is the average daily railway traffic and P f39

is the protection factor indicative of the warning devices adopted.40

The New Hampshire model is a relative formula which can be used to rank the importance of crossing upgrades.41

Due to its simplicity, it has been widely used across the U.S. However, it is limited in that it does not predict the42

expected number of collisions, but only gives some indications about the priorities in terms of LX safety.43

The accident prediction formula developed by the U.S. Department of Transportation (USDOT) in the early 1980s
sought to overcome the limitations of earlier models (Chadwick et al., 2014). This comprehensive formula comprises
three primary equations:

a = K × EI × MT × DT × HP × MS × HT × HL (3)

B =
T0

T0 + T
× a +

T
T0 + T

× (
N
T

), T0 =
1

0.05 + a
(4)
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A =


0.7159 × B, for passive devices;
0.5292 × B, for flashing lights;
0.4921 × B, for gates;

(5)

where a is the initial collision prediction (collisions per year at a given LX); K is the formula constant; EI is the44

exposure index (a variant of traffic moment) based on the product of highway and railway traffic; MT is the index45

for the number of main tracks; DT is the index for daily through trains during daylight; HP is the index for highway46

paved; MS is the index for maximum train speed; HT is the index for highway type; HL is the index for highway47

lanes. B is the adjusted accident frequency; T0 is the weighting factor and N is the number of accidents observed in T48

years at a given LX. Finally, A is the normalized accident frequency.49

The USDOT formula is the most commonly used model in the U.S. today. A specified table of USDOT provides50

each of the indexes for LXs equipped with passive controls, flashing lights and gates (Austin and Carson, 2002).51

Although the formula is comprehensive, its current definition makes it difficult to identify or prioritize design or52

improvement activities that will most effectively address LX safety-related problems, since it does not provide the53

magnitude of the characteristics’ contribution to the LX safety.54

The Australian Level Crossing Assessment Model (ALCAM) is a location specific and parameterized risk model
which provides a method for assessing risks to LX users, train passengers and train staff (Woods et al., 2008). The
ALCAM model is given as follows:

ALCAM Risk Score = Infrastructure Factor × Exposure Factor × Consequence Factor (6)

where the Infrastructure Factor is the output of a complex scoring algorithm that assesses how the physical properties55

at each LX site will affect human behavior; the Exposure Factor is a function of the LX control type, vehicle (or56

pedestrian) volumes and train volumes (i.e., the Peabody-Dimmick Formula is used as the Exposure Factor function)57

to address the combined exposure of trains and road vehicles (or pedestrians) pertaining to various LX control types;58

the Consequence Factor is the expected consequence of a collision which includes deaths and injuries involving both59

railway and roadway. The Infrastructure Factor adjusts the accident probability per year to reflect the actual LX60

site conditions. Multiplying the Infrastructure Factor by the Exposure Factor will give the actual annual likelihood61

of an accident occurring at a particular LX (National ALCAM Committee, 2012). The Consequence Factor is62

expressed in terms of an expected number of equivalent fatalities per year. An equivalent fatality is a combination63

of all types of harm using the ratio: 1 fatality = 10 serious injuries = 200 minor injuries. The ALCAM has been64

applied across all Australian states and in New Zealand since 2003, and overseen by a committee of representatives65

from the various jurisdictions of these countries to ensure its consistency in terms of development and application.66

However, the ALCAM does not cover all kinds of LX accidents, since its main focus is deliberate and accidental67

collisions involving user errors but excluding vandalism and suicide. It should be noticed that some LX physical68

properties considered in ALCAM show a high correlation between each other, which implies the existence of a kind69

of redundancy between the model inputs, and consequently a bias in terms of the outputs.70

In recent studies, authors tended to adopt the Poisson regression model, the NB regression model or variants of the71

Poisson regression model (e.g., zero-inflated Poisson (ZIP) and zero-inflated negative binomial (ZINB)) combined72

with the estimated λ̂ = e
∑m

j=1 β j x j+σ (x j is the independent variable considered and β j is the estimated coefficient73

of x j) (Cameron and Trivedi, 1986; Lawless, 1987; Cameron and Trivedi, 1990; Miaou, 1994; Austin and Carson,74

2002; Chang, 2005; Lu and Tolliver, 2016) to deal with accident statistics. However, this form of estimated λ̂ is not75

appropriate in our case. According to the constraints between the LX accident frequency and impacting variables,76

presented in section 3.2, some variables (e.g., the average daily railway traffic, the average daily road traffic and77

the road traffic accidents) should not be used in an exponential form, due to the logical assumption that the case78

where these variables are equal to 0, would directly lead to 0 accident occurrence. Therefore, these aforementioned79

approaches combined with traditional λ̂ will introduce high bias when predicting the LX accident frequency and the80

probability of accident occurrence.81

These aforementioned investigations indicate a strong need for an appropriate accident prediction model that is82

comprehensive in its consideration of contributing factors to LX safety. More importantly, such a model should83

have good statistical quality and relatively high predictive accuracy. Therefore, in the present study, a new accident84

prediction model and an improved model based on the new model are developed to predict the accident frequency at85
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(a) SAL4 (b) SAL2

(c) SAL0 (d) Crossbuck LX

Fig. 1. Four types of LXs in France.

LXs. The current paper begins with a description of the research context and a review of previous literature on LX86

safety analysis. The coefficients associated with the parameters of our models are estimated based on the French LX87

accident/incident data provided by SNCF Réseau. A thorough statistical analysis for examining the model quality and88

a comparison between predictive accuracies of the two models combined respectively with the Poisson distribution89

and the negative binomial (NB) distribution are then performed. Moreover, the contributions of various parameters90

considered to LX accident occurrence are discussed thoroughly. This paper concludes with a summary of the present91

study and directions for future research.92

2. Study subject93

There are four LX types in France (SNCF, 2015), as shown in Fig. 1:94

a) SAL4: Automated LXs with four half barriers and flashing lights;95

b) SAL2: Automated LXs with two half barriers and flashing lights;96

c) SAL0: Automated LXs with flashing lights but without barriers;97

d) Crossbuck LXs, without automatic signaling.98

As shown in Table 1, SAL2 (more than 10,000) is the most widely used type of LX in France. Moreover, more99

than 4,000 accidents at SAL2 LXs contributed most to the total number of accidents at LXs from 1974 to 2014.100

Table 1. Accidents at different types of LXs in France from 1974 to 2014.

Type of LX Number # Accident

SAL4 > 600 > 600
SAL2 > 10,000 > 4,000
SAL0 > 60 > 50
Crossbuck LX > 3,000 > 700

LX accidents are caused by the following transport modes: 1) motorized vehicle (MV), 2) pedestrian and bicycle101
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(PB). As illustrated in Fig. 2, the motorized vehicle is the main transport mode causing LX accidents in the 21102

geographical regions in France. Moreover, as the LX accident frequency caused by motorized vehicles increases, the103

entire LX accident frequency increases accordingly. On the contrary, pedestrians and cyclists contribute very little to104

the overall risk1 related to LX accidents (Liang et al., 2017).105

Fig. 2. Comprehensive accident frequency in different regions.

Considering the train/motorized vehicle (train-MV) collisions, SAL2 LXs also have the most part of LX accidents106

according to the statistics shown in Fig. 3. For all these reasons, we will limit the scope of our analysis to train-MV107

accidents occurring at SAL2 LXs; in fact, from the aforementioned observation, these accidents can be considered as108

the most representative for LX accidents in general.109

0
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Crossbuck LX

Fig. 3. The number of collisions (train-MV) at different types of LX in France from 1978 to 2013.

3. Methodology110

3.1. Data sources and coding111

The data to support our investigation come from a dedicated accident/incident database provided by SNCF Réseau.112

SNCF Réseau investigated and recorded various attributes of LX accidents/incidents, railway and roadway traffic113

1In this paper, most of the time the term “risk” stands for the occurrence likelihood.

5



characteristics, surrounding characteristics of LXs. Therefore, the accident/incident data and involved LX information114

that cover SAL2 LXs in 21 geographical administrative regions in mainland France from 1990 to 2013 are obtained.115

In the present study, an adequate sample is selected to include the data in the decade from 2004 to 2013, which116

provides reliable and sufficient information about both LX accidents and railway, roadway and LX characteristics.117

Namely, the selected LX inventory presents the LX identification number, the LX location, the LX accident times-118

tamp, the railway traffic volume, the road traffic volume, the LX dimension, the profile and alignment of the entered119

road and so on. There are 8,332 public SAL2 LXs involved in our investigation. The total number of SAL2 LXs in120

France is about 10,000. However, in our investigation we considered only those about which we had enough infor-121

mation (8,332). Using the LX identification number and the LX accident timestamp in the accident/incident database,122

the annual accident frequency at a given SAL2 is obtained. Then, a new database containing 10 years of data is123

created, using again the LX identification number as a common data element, which includes annual LX accident124

frequency, railway, roadway and LX characteristics at a given SAL2 and annual roadway accident statistics. Impact-125

ing parameters pertaining to LX accidents considered in our investigation should be thought to be: (1) important in126

determining accident frequency, (2) more permanent in nature (e.g., sight obstruction noted as a problematic factor127

due to involved alterable construction topography, vegetation and other environmental elements) and (3) not accident-128

dependent (Austin and Carson, 2002). This combined database formed the basis of our investigation. The parameters129

considered in this investigation are shown in Table 2. As shown in Table 2, some minor data transformations in the130

combined database were necessary. Variables that have multiple non-numeric choices (e.g., profile, alignment) are131

encoded as singular indicator variables. Numerical variables, such as the average daily road traffic, the average daily132

railway traffic, the railway speed limit, the LX width and the crossing length are used as they are without transforma-133

tion. The region risk factor is determined by the general accident frequency per SAL2 in the region. The road accident134

factor is determined by the ratio of the annual number of road accidents in a given year to the average number of road135

accidents per year over the period of 10 years considered. The statistical characterization of the variables considered136

is given in Table 3.137

It is worth noticing that by using the Spearman correlation checking (Borkowf, 2002), we found that some other138

parameters tested were not significant (e.g., the road-rail track angle at a given LX) or highly correlated with the139

parameters considered in our analysis (e.g., the number of lanes at a given LX is highly correlated with the LX width).140

3.2. Preliminary accident prediction model141

Based on some preliminary analyses, it is worth noticing that five constraints need to be considered so as to142

develop the model for predicting annual accident frequency at a given SAL2:143

- The predicted accident frequency should always be non-negative;144

- It should be 0 if the average daily railway traffic is 0;145

- It should be 0 if the average daily road traffic is 0;146

- It should be 0 if the annual road traffic accidents are 0;147

- The model should be time-dependent, i.e., it should reflect the variation of accident frequency as time advances.148

For the preliminary accident prediction model, we considered only three parameters in Table 2, which are the
average daily railway traffic, the average daily road traffic and the annual road accidents. The preliminary model is
developed as follows:

λ10P = K × FRAcc × Va × T b (7)

where λ10P represents the annual accident frequency at a given SAL2 during the period of 10 years considered; K is149

the constant coefficient; FRAcc is the road accident factor; V is the average daily road traffic and T is the average daily150

railway traffic. Here, FRAcc is a time-dependent variable which can reflect the variation of annual road accidents as151

time advances.152

The conventional formula of the traffic moment is given by: Traffic moment = Road traffic frequency × Railway153

traffic frequency (Liang et al., 2017). However, based on some previous analyses, we adopt a variant called “corrected154

moment”, or CM for short. CM = Va × T b, where b = 1 − a and the best value of a in terms of fitting is computed to155

be a = 0.354 based on the previous statistical analysis performed by SNCF Réseau (SNCF Réseau, 2010). Therefore,156
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Table 2. Parameters considered and data coding.

Parameter Explanation Data coding

Railway traffic characteristics
Average daily railway traffic The average number of trains

crossing the LX daily
Numerical, used directly;

Railway speed limit The maximum permission
speed of train within the LX
section

Numerical, used directly;

Roadway traffic characteristics
Average daily road traffic The average number of road ve-

hicles crossing the LX daily
Numerical, used directly;

Annual road accidents The number of road accidents in
a given year

Road accident factor:
Annual road accidents in a given year / Average
road accidents per year over the period observed;

LX characteristics
Alignment Horizontal road alignment

shape: “straight”, “curve” or
“S”

Alignment indicator; 0, 1 and 2 represent
“straight”, “curve” and “S”, respectively;

Profile Vertical road profile shape:
“normal” or “hump or cavity”

Profile indicator; 0 and 1 represent “normal” and
“hump or cavity”, respectively;

LX width The entered road width Numerical, used directly;
Crossing length The length of LX that road ve-

hicles need to cross
Numerical, used directly;

Region risk The region of the LX considered Region risk factor, highlighting the general
LX-accident-prone region:
The number o f S AL2 accidents over the observation
period in the region considered / The number
o f S AL2 LXs in the region considered;

Table 3. Statistical characterization of variables considered.

Variable Mean Variance StdDev Min Max

Annual LX accident 0.0057 0.0060 0.0776 0 2
Average daily railway traffic 26.0636 914.5413 30.2413 0.5000 330
Railway speed limit 92.4599 1.7963e+03 42.3829 5 160
Average daily road traffic 826.8022 3.1718e+06 1.7810e+03 0.5700 2.5570e+04
Corrected moment 51.4744 3.7377e+03 61.1367 1.2781 938.5449
Road accident factor 1.0001 0.0189 0.1378 0.8058 1.1988
Alignment 0.2587 0.3209 0.5665 0 2
Profile 0.1488 0.1266 0.3559 0 1
Length 9.6766 14.9545 3.8671 3 59
Width 5.4504 1.8414 1.3569 2 24
Region risk factor 0.3487 0.0142 0.1194 0.1739 0.7747

we consider (V0.354 ×T 0.646) as an integrated parameter that reflects the combined exposure frequency of both railway157

and road traffic. One can notice that Eq. (7) can be rewritten as λ10P = K × RM, where RM = FRAcc × V0.354 × T 0.646.158

Thus, this model can be regarded as a linear model with respect to the composite parameter RM. The Ordinary159

Least-Squares (OLS) method is employed to estimate coefficient K. As shown in Fig. 4, K is estimated as 1.319e-04160

(t − statistic = 33.72 > 1.96 corresponding to a 95% confidence level).161

Fig. 4 indicates that this preliminary model shows that, for high values of corrected moment, there is a significant162

deviation between observed accident frequencies and predicted accident frequencies at SAL2 LXs. Therefore, further163

statistical analysis is carried out to evaluate the quality of the transformed linear model. In this case, we make group164
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Fig. 4. The preliminary accident frequency prediction model λ10P vs. (FRAcc × V0.354 × T 0.646).

classification, which means that the data set is divided into 100 groups with the same number of samples in each165

group. Then, the mean value of λ10P and RM of each group are computed respectively to generate a linear relationship166

between the group-mean λ10P and the group-mean RM. Hence, we can adopt “Residuals vs. Fitted” graph, “Normal167

Q-Q” graph, “Scale-Location” graph and “Residual vs. Leverage” graph (Anscombe, 1973; Chatterjee and Hadi,168

2015) to check the linearity, the normal distribution of residuals, the homoscedasticity (Jarque and Bera, 1980) and169

the abnormal values of the model, respectively. These four graphs pertaining to our group classification analysis170

are shown in Fig. 5. For an idealized linear model: 1) the red line in Fig. 5a should be a horizontal line at 0 and171

residuals should randomly distribute around this line; 2) the standardized residuals shown in Fig. 5b should fall in172

the 45◦ direct line, which can attest the normal distribution of residuals; 3) the red line shown in Fig. 5c should be173

a horizontal line at a certain value and square roots of standardized residuals should randomly distribute around this174

line; 4) Fig. 5d can identify abnormal values and significant values which have an important impact on the model175

fitting, through Cook’s distance. One can notice that residuals in the groups with big ID (i.e., 95, 99 and 100) are176

significant. These residuals correspond to SAL2 LXs with high corrected moment in our data set. Therefore, the177

statistical test results attest the significant deviation between the observed accident frequencies and the predicted178

accident frequencies at SAL2 LXs having high corrected moment. Through checking the accident/incident data,179

these SAL2 LXs with high corrected moment are correspondingly accident-prone LXs in general. We conjecture that180

this preliminary accident prediction model is not appropriate to predict the annual accident frequency at SAL2 LXs181

with high corrected moment. A thorough analysis needs to be performed to develop an improved model which can182

predict the annual accident frequency at a given SAL2 more accurately. Meanwhile, the model should consider more183

impacting variables.184

3.3. Improved accident prediction model185

Based on the previous analysis in section 3.2, we consequently developed an improved version of the prediction186

model, as shown below:187

λ10Y = K × FRAcc × (V0.354 × T 0.646) × e(CPro f ile×IPro f ile+CAlign×IAlign+CWid×Wid+CLeng×Leng+CRS L×RS L+CReg×FReg) (8)

where λ10Y represents the annual accident frequency at a given SAL2 for a period of 10 years; K is the constant188

coefficient; FRAcc is the road accident factor; V is the average daily road traffic; T is the average daily railway traffic189

and V0.354×T 0.646 is regarded as the corrected moment; IPro f ile and CPro f ile are respectively the profile indicator and its190

corresponding coefficient; IAlign and CAlign are respectively the alignment indicator and its corresponding coefficient;191

Wid and CWid are respectively the LX width and its corresponding coefficient; Leng and CLeng are respectively the192

crossing length and its corresponding coefficient; RS L and CRS L are respectively the railway speed limit and its193

corresponding coefficient; FReg and CReg are respectively the region factor and its corresponding coefficient (see194

Table 2).195

Note that appropriate higher orders and interaction terms of covariates can be included in Eq. (8) without difficulty,196

due to the use of exponential form (Miaou, 1994). The Nonlinear Least-Squares (NLS) method and Gauss-Newton197
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Fig. 5. Statistical evaluation of the model quality: (a) Residuals vs. Fitted, (b) Normal Q-Q, (c) Scale-Location, (d) Residual vs. Leverage.

algorithm (Madsen et al., 2004) are adopted to estimate the coefficients of variables. Estimated coefficients are pro-198

vided in Table 4. A |t − statistic| > 1.96 is introduced to identify significant parameters corresponding to a 95%199

confidence level. The average daily railway traffic, the railway speed limit, the average daily road traffic, the annual200

road accidents, the road alignment, the LX width, the crossing length and the region LX-accident-prone factor have201

significant and positive influence on SAL2 accident frequency. However, the test shows that the road profile does202

not have a significant impact. The t − statistic for road profile is not significant which indicates that the coefficient203

of road profile CPro f ile should be 0 and the impact of road profile could be neglected (The interpretation of this fact204

is discussed in section 5.1.3). Moreover, the coefficients of the considered variables with the exponential form can205

reflect their respective contribution degrees to the SAL2 accident frequency. According to these contribution degrees206

(ranked in brackets), the region LX-accident-prone factor is the most important contributor among these variables.207

Table 4. Estimated coefficients of the improved accident prediction model.

Parameter Coefficient Estimated value Standard error t − statistic Significant

K 2.703e-05 5.078e-06 5.322 ×

IPro f ile CPro f ile 3.626e-02 5.706e-02 0.635
IAlign CAlign 3.427e-01 (2) 2.942e-02 11.648 ×

Wid CWid 9.847e-02 (3) 1.494e-02 6.589 ×

Leng CLeng 2.084e-02 (4) 4.284e-03 4.865 ×

RS L CRS L 3.089e-03 (5) 7.586e-04 4.072 ×

FReg CReg 4.962e-01 (1) 1.722e-01 2.882 ×

9



4. Model validation and distribution identification208

In this section, we will validate the quality of the two prediction models and identify an appropriate statistical209

distribution combined with the prediction model of accident frequency, in such a way as to make a more accurate210

estimation of the probability of accidents occurring at a given SAL2 in a given year.211

4.1. Statistical test evaluation212

We applied the two prediction models to estimate the annual accident frequency based on the 10-year accident data213

of SAL2 LXs. The Monte-Carlo test for randomly sampling annual accident frequencies which meet the condition214

that the predicted annual accident frequency at a given SAL2 is equal to or more than the observed annual accident215

frequency at the SAL2 considered is performed (Considering a safety strict principle, the predicted annual accident216

frequency should not be lower than the observed annual accident frequency). Then, the percentages of randomly217

sampled annual accident frequencies that meet this condition are computed to compare with the actual percentages of218

specified entire sampled annual accident frequencies (e.g., as for the entire 80,000 annual accident frequencies sam-219

pled out of 83,320, the actual entire percentage is computed as 80,000/83,320; while k annual accident frequencies220

within the 80,000 frequencies sampled meet the above condition, thus, the percentage of randomly sampled annual221

accident frequencies meeting this condition is computed as k/83,320). Table 5 shows the Monte-Carlo test results.222

One can notice that, for the specified entire random sampling size 80,000, 40,000, 10,000, 5,000 and 500, the percent-223

ages of randomly sampled annual accident frequencies meeting the aforementioned condition computed using λ10Y224

are all closer to the actual percentages of specified entire sampled annual accident frequencies, compared with the per-225

centages of randomly sampled annual accident frequencies computed using λ10P. Moreover, the similarity between226

the percentages of randomly sampled annual accident frequencies meeting the aforementioned condition, which are227

computed using λ10Y , and the actual specified entire percentages is relatively high.228

Although the Monte-Carlo test results indicate that the λ10Y model seems more appropriate, the tested percentages229

of annual accident frequencies sampled according to the aforementioned condition closer to the actual percentages are230

not able to thoroughly attest to the fact that the quality of λ10Y model is definitely better, since the predicted accident231

frequency may be much higher than the accident frequency observed. Therefore, further statistical tests are required232

to comprehensively evaluate the model quality.

Table 5. Monte-Carlo test results.

# Samples Actual percentage of annual
accident frequencies sam-
pled

λ10Y -model estimated per-
centage of annual accident
frequencies sampled

λ10P-model estimated per-
centage of annual accident
frequencies sampled

80,000 0.96015 0.95482 0.94191
40,000 0.48008 0.47747 0.45463
10,000 0.12002 0.11946 0.11416
5,000 0.06001 0.05959 0.05665
500 0.00600 0.00598 0.00576

233

Akaike’s information criterion (AIC) (Bozdogan, 1987), the Bayesian information criterion (BIC) (Weakliem,234

1999), the Pearson chi-square statistic test (PCS) (Dahiya and Gurland, 1972) and the degree of freedom (DF) are235

computed to evaluate the goodness of fit (GOF) of the model. They can be expressed as follows:236

AIC = n + n × ln(2π) + n × ln(RSS/n) + 2(l + 1) (9)

BIC = n + n × ln(2π) + n × ln(RSS/n) + (l + 1)ln(n) (10)

PCS =

n∑
i=1

(Oi − λi)2

λi
(11)
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DF = n − (l + 1) (12)

where n is the sample size; RSS is the sum of the squares of residuals between the annual accident frequencies237

observed and the annual accident frequencies estimated; l is the number of independent exponential parameters; Oi is238

the annual accident frequency observed and λi is the annual accident frequency expected.239

The AIC and BIC are two statistical measures to test the relative quality of models for a given set of data. Smaller240

AIC and BIC values indicate a better model fitting. The PCS test is used to determine whether there is a significant241

difference between the values expected and the values observed. The PCS is roughly equal to the model DF if the242

model fits the data perfectly without any dispersion. In other words, the closer the PCS is to the DF, the better the243

model fits the data (Lu and Tolliver, 2016). These statistical test results are shown in Table 6 with the goodness ranked244

in brackets. Some findings can be noticed: 1) considering AIC and BIC, the λ10Y model gives better results, since the245

AIC and BIC values corresponding to the λ10Y model are much smaller than those for the λ10P model; 2) as for PCS,246

the λ10Y model is also the preferred one, since the PCS of the λ10Y model is closer to DF (DFs of the λ10Y and the λ10P247

are considerably approximative).248

4.2. Statistical distribution identification249

In this section, further analysis is performed to identify a more appropriate statistic distribution combined with the250

accident frequency prediction model. The Poisson distribution shown as Eq. (13) is a natural first choice for modeling251

such accident occurrence. Chang (2005) indicates that accident frequency is likely to be over-dispersed (cf. Eq. (14))252

and suggests using the negative binomial (NB) distribution as an alternative.253

Poi(X = k) =
λke−λ

k!
, k = 0, 1, 2, . . . (13)

where Poi(X = k) is the probability of k accidents occurring, k ∈ IN and λ is the expectation value of the number of254

accidents. In our study, λ is expressed by Eq. (7) or Eq. (8).255

VAR(X)


= E(X)
> E(X), over-dispersed
< E(X), under-dispersed

(14)

The NB model as a special case of Poisson-Gamma mixture model is a variant of the Poisson model designed
to deal with over-dispersed data (Lord and Mannering, 2010; Buddhavarapu et al., 2016). The over-dispersion
could come from several possible sources, e.g., omitted variables, uncertainty in exposure data, covariates or non-
homogeneous LX environment (Miaou, 1994). The NB model considered in this study has the following form:

PNB(X = k) =

Γ

(
k +

1
α

)
Γ (k + 1) Γ

(
1
α

) (
1

1 + αλ

)1/α (
αλ

1 + αλ

)k

, k = 0, 1, 2, . . . (15)

where PNB(X = k) is the probability of k accidents occurring, k ∈ IN; λ is the expectation value of the number of256

accidents and α is the dispersion parameter.257

The relationship between the mean value and the variance in the NB model is given as follows:258

VAR(X) = E(X) + αE(X)2 (16)

If α > 0, there is an over-dispersion; if α < 0, there is an under-dispersion and, in the case where α = 0, the NB model259

reduces to the Poisson model.260

However, the NB model is limited to handling under-dispersed data (α < 0) (Lord and Mannering, 2010). If the261

dispersion parameter α is set as a negative value to try to handle under-dispersion issue, it would no longer be an NB262

model and would lead to unreliable estimation, especially when the sample mean is low and the sample size is small263
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VAR (n) = 1.0171E(n),
R^2 = 0.9916, t-statistic = 128.50
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Fig. 6. Constraint between the group variance and the group mean of annual accidents for all SAL2 LXs.

(Lu and Tolliver, 2016). Oh et al. (2006) proposed the Gamma model to handle under-dispersed samples. The Gamma264

model is given as follows:265

PG(X = k) = Gamma(βk, λ) −Gamma(β(k + 1), λ) (17)

where PG(X = k) is the probability of k accidents occurring, k ∈ IN; λ is the expectation value of the number of
accidents and β is the dispersion parameter. If β < 1, there is an over-dispersion; if β > 1, there is an under-dispersion
and if β = 1, the Gamma model reduces to the Poisson model. However, the Gamma model shown as Eq. (18)
is limited to the time-dependent observation assumption and zero observations (Lord and Mannering, 2010), since
general Γ(x) restricts discrete responses to positive values.

Gamma(βk, λ) =


1, if k = 0

1

Γ(βk)
∫ λ

0 uβk−1e−udu
, if k > 0 (18)

Therefore, the restriction between variance and mean value is significant to identify an appropriate statistical266

distribution. Firstly, we adopted group classification to make preliminary variance analysis, which is that the annual267

accidents at a given SAL2 during the 10 years were divided into 100 groups with the same number of samples in268

each group. Then, the mean value and variance of accidents in each group were computed respectively to analyze269

the relationship between the group variance and the group mean value. The variance analysis is shown in Fig. 6. It270

seems that there is a slight over-dispersion of the data set, since the variance VAR(n) is a bit bigger than the mean271

E(n) (VAR(n) = 1.0171E(n)).272

Since the mean value and the variance are very close to each other, we performed meticulous analyses to assess273

both the Poisson and the NB models with regard to all SAL2 LXs in our accident database so as to identify which274

model is more effective. When applying the NB distribution, we adopt the Maximum Likelihood Estimation (MLE)275

method to estimate the dispersion parameter α of the data set (Dai et al., 2013). Using R language to perform the276

MLE method, α is estimated at 1.9594.277

The log-likelihood statistic (LL) is adopted to assess the GOF of the accident frequency prediction model com-
bined with a statistical distribution and identify the more appropriate distribution for estimating the probabilities of
accident frequency observed. The larger the LL, the more preferred the model (Lu and Tolliver, 2016). The mathe-
matical description of the LL is given as:

LL =

n∑
i=1

ln(P̂i) (19)

where n is the sample size and P̂i is the estimated probability of accident frequency observed. P̂i is computed respec-278

tively according to the accident frequency prediction model combined with the Poisson or the NB distribution.279

LL test results are shown in Table 6. One can notice that for λ10Y model combined with either the Poisson or NB280

distribution, its GOFs are significantly better than λ10P model’s GOFs according to LL results. Furthermore, the GOF281

of λ10Y combined with the NB distribution is better than when combined with the Poisson distribution.282
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Table 6. Model GOF comparison.

Parameter λ10Y Poisson λ10Y NB λ10P Poisson λ10P NB

Railway traffic characteristics
Average daily railway traffic × × × ×

Railway speed limit × ×

Roadway traffic characteristics
Average daily road traffic × × × ×

Annual road accidents × × × ×

LX characteristics
Alignment × ×

Profile × ×

LX width × ×

Crossing length × ×

Region × ×

AIC -190,744 (1) -190,744 (1) -190,591 (2) -190,591 (2)
BIC -190,670 (1) -190,670 (1) -190,573 (2) -190,573 (2)
PCS 65,796 (1) 65,796 (1) 53,108 (2) 53,108 (2)
DF 83,313 83,313 83,319 83,319
LL -2,599 (2) -2,596 (1) -2,631 (4) -2,629 (3)
Goodness score (the lower, the better) 5 4 10 9

Based on the predicted probability of the accident frequency observed, further Cumulative Distribution Function283

(CDF) analysis with regard to the Poisson and the NB distributions is performed to evaluate the quality of the accident284

frequency prediction model combined with these two statistical distributions. As shown in Fig. 7, the relationship285

between the CDF and the corresponding probability of a given event is depicted. P̂(•) denotes the predicted probability286

of a given event obtained through the Poisson or NB distribution; Oi is the observed accident frequency and λi is the287

estimated accident frequency. The blue curve “CDF NB λ10P, Oi > λi” represents the CDF of event “ Oi > λi”288

obtained through the NB distribution combined with the λ10P; the red curve “CDF NB λ10P, Oi <= λi” represents289

the CDF of event “ Oi <= λi” obtained through the NB distribution combined with the λ10P; the green curve “CDF290

POI λ10P, Oi > λi” represents the CDF of event “ Oi > λi” obtained through the Poisson distribution combined with291

the λ10P; the violet curve “CDF POI λ10P, Oi <= λi” represents the CDF of event “ Oi <= λi” obtained through the292

Poisson distribution combined with the λ10P. The interpretation of the remaining curves involving the λ10Y can be293

similarly obtained. Given that some curves are almost covered by some others in Fig. 7, the extracted results of CDF294

analysis shown in Table 7 become clearer for discussion.295
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Fig. 7. CDF of the Poisson and the NB distributions combined with the λ10P and λ10Y models according to the estimated probability.
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Table 7. The extracted results of CDF analysis.

Model CDF P̂(Oi > λi) > 0.005
(CDF in percent)

P̂(Oi > λi) > 0.05
(CDF in percent)

P̂(Oi <= λi) > 0.95
(CDF in percent)

P̂(Oi <= λi) > 0.995
(CDF in percent)

CDF NB λ10P 85.29 (3) 6.61 (1) 99.62 (1) 57.19 (3)
CDF NB λ10Y 79.10 (2) 7.68 (3) 99.36 (3) 66.07 (1)
CDF POI λ10P 85.29 (3) 6.82 (2) 99.61 (2) 57.15 (4)
CDF POI λ10Y 78.89 (1) 9.17 (4) 99.27 (4) 65.94 (2)

Table 7 indicates that:296

1) CDF NB λ10P, Oi > λi:297

In 85.29% of cases, P̂(Oi > λi) is more than 0.005; in 6.61% of cases, P̂(Oi > λi) is more than 0.05;298

2) CDF POI λ10P, Oi > λi:299

In 85.29% of cases, P̂(Oi > λi) is more than 0.005; in 6.82% of cases, P̂(Oi > λi) is more than 0.05;300

3) CDF NB λ10Y , Oi > λi:301

In 79.10% of cases, P̂(Oi > λi) is more than 0.005; in 7.68% of cases, P̂(Oi > λi) is more than 0.05;302

4) CDF POI λ10Y , Oi > λi:303

In 78.89% of cases, P̂(Oi > λi) is more than 0.005; in 9.17% of cases, P̂(Oi > λi) is more than 0.05;304

5) CDF NB λ10P, Oi <= λi:305

In 99.62% of cases, P̂(Oi <= λi) is more than 0.95; in 57.19% of cases, P̂(Oi <= λi) is more than 0.995;306

6) CDF POI λ10P, Oi <= λi:307

In 99.61% of cases, P̂(Oi <= λi) is more than 0.95; in 57.15% of cases, P̂(Oi <= λi) is more than 0.995;308

7) CDF NB λ10Y , Oi <= λi:309

In 99.36% of cases, P̂(Oi <= λi) is more than 0.95; in 66.07% of cases, P̂(Oi <= λi) is more than 0.995;310

8) CDF POI λ10Y , Oi <= λi:311

In 99.27% of cases, P̂(Oi <= λi) is more than 0.95; in 65.94% of cases, P̂(Oi <= λi) is more than 0.995;312

According to the CDF analysis results shown in Table 7, in the cases of “P̂(Oi > λi) > 0.005” and “P̂(Oi <=313

λi) > 0.995”, for the λ10Y model combined with either the Poisson or the NB distribution, its GOFs are significantly314

better than λ10P model’s GOFs. In the cases of “P̂(Oi > λi) > 0.05” and “P̂(Oi <= λi) > 0.95”, the criteria of the315

two models combined with the Poisson and the NB distributions have no obvious distinction, in particular, for the316

criterion “P̂(Oi <= λi) > 0.95”. Furthermore, λ10Y combined with the NB distribution shows a slightly better quality317

than when combined with the Poisson distribution.318

At a later stage in this paper, we carry out a comparison between the predicted probabilities of annual accident319

frequency observed at a given SAL2 according to the λ10Y and the λ10P combined with the Poisson and the NB dis-320

tribution. In this context, group classification analysis is adopted to compute the mean predicted probability and the321

mean observed accident frequency of each group with the same sample size. The relationship between the mean pre-322

dicted probability and the mean observed accident frequency is shown in Fig. 8. The blue and red scatters respectively323

represent the λ10Y model combined with the Poisson and NB distributions. The interpretation of the remaining scatters324

involving the λ10P can be similarly obtained. One can notice that the λ10Y model combined with the Poisson and NB325

distributions respectively predict higher probabilities of observed accident frequencies than the λ10P model combined326

with them. This difference is particularly noticeable in the case where the two prediction models are combined with327

the NB distribution (i.e., the red and green scatters). Moreover, one can also notice that the probability of accident328

occurrence estimated by the Poisson distribution combined with the λ10Y model is higher than that estimated by the329

NB distribution combined with the λ10Y model.330

However, it should be recalled that the higher probability predicted does not necessarily indicate a higher predictive331

accuracy, since the probability of accident occurrence in reality would not be high. Therefore, further analysis to332

assess the predictive accuracy of the Poisson and the NB distributions should be carried out. As shown in Table 8, fk333

denotes the percentage of samples of observed annual accident frequency with k accidents involved in a given year334

( fk = the number of samples of observed annual accident frequency involving k accidents occurring in a given year /335

the total number of samples n). The estimated relative annual accident frequency reflected by estimated probabilities336
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Table 8. The predictive accuracy comparison between the Poisson distribution and the NB distribution.

# Annual ac-
cidents consid-
ered (k)

Observed annual
accident frequency
( fk in percent)

NB-λ10Y estimated
relative annual
accident frequency
( f̂k in percent)

POI-λ10Y estimated
relative annual
accident frequency
( f̂k in percent)

NB-λ10P estimated
relative annual
accident frequency
( f̂k in percent)

POI-λ10P estimated
relative annual
accident frequency
( f̂k in percent)

0 99.4371 99.3915 (1) 99.3903 (2) 99.3279 (3) 99.3255 (4)
1 0.5485 0.5999 (1) 0.6033 (2) 0.6647 (3) 0.6673 (4)
2 0.0144 0.0077 (1) 0.0062 (3) 0.0069 (2) 0.0055 (4)
> 2 0 0.0002 (2) 0.0001 (1) 0.0001 (1) 0.0001 (1)

Goodness score (the lower, the better) 5 8 9 13

on average is computed as: f̂k =
∑n

i=1 P̂(Xi = k)/n, where P̂(Xi = k) is the estimated probability of k accidents337

occurring at a given SAL2 in a given year. According to the goodness of predictive accuracy ranked in brackets,338

the NB distribution shows a higher predictive accuracy with regard to various annual numbers of accidents occurring339

at a given SAL2 during the 10-year period, particularly, when combining with the λ10Y . In the cases of 0, 1 and 2340

accidents occurring at a given SAL2 in a given year, the predictive accuracy of the NB distribution combined with the341

λ10Y takes the first place in all the cases, which means that the probabilities of accident occurrence predicted by the NB342

distribution combined with the λ10Y are closest to the actual frequencies of accident occurrence. In the case of more343

than 2 accidents occurring at a given SAL2 in a given year, the predictive accuracy of the NB distribution combined344

with the λ10Y takes the second place, with the deviation of only 0.0002% compared with fk, the actual percentage of345

observed annual accident frequency samples. In fact, there are no SAL2 LXs showing more than 2 accidents in the346

same year during the 10-year period considered.347

In fact, the prediction performance of ZIP and ZINB regression methods were also examined but resulted in no348

higher goodness-of-fit values and a quite small number of significant parameters (only 4 and 3 significant parameters349

corresponding to ZIP and ZINB, respectively) compared with the Poisson and NB models and, hence, were not350

reported in the comparison.351
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5. Discussion352

5.1. Accident frequency prediction model evaluation353

Based on the aforementioned analyses using the Monte-Carlo, AIC, BIC and PCS tests, one can notice that λ10Y354

model for accident frequency prediction has better GOF and considers impacting variables more comprehensively (cf.355

Table 6, 9 characteristics considered in λ10Y vs. 3 characteristics considered in λ10P). In this section, we will scrutinize356

the impact of variables considered in λ10Y model on SAL2 accident frequency.357

5.1.1. Railway traffic characteristics358

Two different characteristics regarding railway traffic are proved to be significant in terms of affecting SAL2359

accident frequency, namely the average daily railway traffic and the railway speed limit. They positively influence360

the annual accident frequency at a given SAL2. The average daily railway traffic with a power of 0.646 has a more361

decisive impact on the accident frequency than the average daily road traffic with a power of 0.354, since the higher362

the railway traffic frequency appearing at SAL2 LXs, the much higher the SAL2 accident risk. Furthermore, the363

higher the railway speed limit, the higher the SAL2 accident risk. A tentative to explain this finding is that a high364

railway speed limit corresponds to a high actual train speed, therefore, the risk for train-MV collisions is higher.365

5.1.2. Roadway traffic characteristics366

There are two roadway traffic characteristics which have a significant impact on SAL2 accident frequency, namely367

the average daily road traffic and the annual road accidents. The average daily road traffic with a power of 0.354 has368

a positive impact on the annual accident frequency at a given SAL2. If there is no road traffic at a given SAL2, there369

would be no accidents caused by motorized vehicles at this SAL2. Moreover, the higher the combined exposure of370

railway and roadway traffic, the higher the likelihood of an accident occurring.371

One of the most important characteristics to estimate the annual accident frequency at a given SAL2 is the annual372

road accidents. The impact of road accidents was likely to be ignored in the previous studies pertaining to LX safety373

analysis. The present study has clearly shown that the accidents at LXs are above all road accidents and they highly374

depend on the road safety level. Moreover, the road accident factor in λ10Y model is time-dependent, since road375

accidents have an annual variation (vary every year). Correspondingly, the risk related to LX accidents has an annual376

variation as well.377

5.1.3. LX characteristics378

Four LX characteristics, namely the road alignment, the LX width, the crossing length and the LX-accident-prone379

factor of the region, have a significantly positive impact on the annual accident frequency at a given SAL2. It is380

worth recalling that the vertical road profile has no significant impact (|t − statistic| of profile < 1.96). A tentative is381

discussed with SNCF experts to explain this fact as follows: on the one hand, the “hump or cavity” profile would cause382

an increasing risk of accidents involving long/heavy vehicles (trucks, buses, etc.), with relatively low population; on383

the other hand, for most of ordinary cars, such a profile obliges ordinary cars to cross the LX with low speeds, thus384

helps reduce the risk of LX accident occurrence. Besides, for LXs lacking the road profile information, they are treated385

as normal situations (no hump or cavity) according to SNCF experts’ advice. Namely, 0 is used as the profile indicator386

for them when performing data coding. These conjectural reasons need to be further investigated in future works. In387

addition, although the above reasons may be suitable for French LX situation, they would depend on case-by-case388

scenarios and the policy implications in other countries.389

For the other significant LX characteristics, a higher region LX-accident-prone factor, a poorer road alignment390

trace, a larger LX width and a larger crossing length correspond to a higher risk of LX accidents. According to the391

contribution degrees of variables ranked in Table 4, the contribution of the region LX-accident-prone factor to the risk392

of LX accidents takes the first place followed by the contribution of the road alignment, the LX width and the crossing393

length successively.394
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5.2. Statistic distribution evaluation395

According to LL test results shown in Table 6, the NB distribution combined with the λ10Y shows a better quality396

for predicting accident frequency with over-dispersion. Considering the CDF analysis shown in Fig. 7 and Table 7,397

the NB distribution combined with the λ10Y also shows higher percentages of cases meeting the two conditions that398

the probability of the event “the accident frequency estimated no less than the actual accident frequency observed”399

is higher than 0.95 and 0.995, than those of the Poisson distribution combined with the λ10Y . On the other hand, the400

NB distribution combined with the λ10Y shows a lower percentage of cases meeting the condition that the probability401

of the event “the accident frequency estimated less than the actual accident frequency observed” is higher than 0.05,402

than those of the Poisson distribution combined with the λ10Y .403

Moreover, in terms of estimated probabilities of actual accidents occurring at a given SAL2 (cf. Table 8), the404

NB distribution combined with the λ10Y shows a higher predictive accuracy with regard to various annual numbers of405

accidents occurring at a given SAL2 during the 10 years.406

It is worth noticing that, although the NB distribution is more effective than the Poisson distribution when dealing407

with over-dispersed accident count, it requires more extensive computations to estimate the model parameters as well408

as the dispersion parameter and, to generate inferential statistics, compared with the Poisson model.409

6. Conclusions410

In the present study, we have developed an accident frequency prediction model based on LX accident statistics411

and various impacting factors. This model allows for predicting accident occurrence with a considerably high accuracy412

and has a more appropriate form compared with the existing models pertaining to LX accident prediction. Although413

the developed prediction model is tailored to SAL2 LX accidents in France, the general formula form of the model and414

the methodology adopted to set up the model and validate its quality can be applied to different contexts. The scientific415

selection process in our study ensures that the main impacting variables are considered and redundant variables are416

excluded. In fact, impacting variables pertaining to LX risk should be thought to be important in determining accident417

frequency, more permanent in nature and not accident-dependent.418

The region LX-accident-prone factor which can indicate the impact of regional LX safety level on LX accident419

frequency is originally utilized in the improved model. CM, a more effective factor, is proposed in this study to420

replace the conventional traffic moment, single average daily railway traffic or single average daily road traffic when421

explaining the likelihood of LX collisions. The significant impact of road accidents, almost ignored in the past studies,422

is well considered in our study.423

A validation of the model quality is performed by means of a set of comprehensive statistical approaches, namely424

the Monte-Carlo, AIC, BIC and PCS tests, which all indicate that the improved accident prediction model involving425

various influential factors is trustworthy and sound. Moreover, the LL test, CDF analysis and predictive accuracy426

analysis are conjunctively employed to identify a more appropriate statistical distribution for predicting the probability427

of LX accident occurrence. The results obtained attest that the improved model combined with NB distribution has428

relatively high predictive accuracy of the probability of accident occurrence. To the best of our knowledge, such a429

thorough validation process is rarely achieved in similar existing works.430

To sum up, the above contributions of the present study offer an in-depth perspective on potential parameters431

causing LX accidents. Moreover, these contributions pave the way for identifying practical design measures and432

improvement recommendations to prevent accidents at LXs. In future works, we will establish Bayesian risk models433

to quantify the causal relationships between the impacting parameters and the risk related to LX accidents, and assess434

their respective impact on the LX safety level. In addition, the effectiveness of various technical solutions will be435

investigated based on some experiments that we have carried out at several LXs.436
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