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Abstract

Passive scalar dynamics in a turbulent channel flow is studied with Direct Nu-

merical Simulation at friction Reynolds number Reτ = 160 and Prandtl number

Pr = 1. The goal of the study is to assess the grid spacing requirement for an

accurate estimation of various integral turbulent statistics, with a special focus

on the scalar dissipation rate. The implemented spatial resolutions span from

the resolution comparable to the similar Direct Numerical Simulations (DNS)

studies in the past, to the very fine resolution implemented by Galantucci and

Quadrio [1]. All scalar fields are computed in parallel using a single velocity

field resolved with the finest resolution, thus reducing the statistical variability.

In addition, to confidently assess the grid spacing requirement, we also evalu-

ate the statistical uncertainty. The “standard” resolution of the DNS studies

(resolution used by Kim et al. [2]) is usually sufficient for predictions of first

and second-order integral turbulence scalar field statistics. Non-negligible cor-

rections of the fourth-order integral statistics, especially the scalar dissipation

variance profile, are observed with enhancement of the scalar resolution from

the one used in the “standard” DNS studies to the resolution recommended

by Vreman and Kuerten [3], which is roughly two times finer in each spatial

direction. Further resolution enhancements produce only marginal differences.

Keywords: Passive scalar, Dissipation rate, Anisotropy, Direct Numerical

Simulation, Channel flow, Sampling error
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1. Introduction

Since the pioneering efforts of Obukhov [4], Corrsin [5] and Batchelor et al.

([6, 7]), passive scalars in turbulent flows have been the focus of a number of

studies. As summarized in the review by Warhaft [8], experiments and simu-

lations are challenging classical descriptions of passive scalars derived from the5

Kolmogorov cascade phenomenology. Evidences suggest a strong coupling be-

tween large and small scales and no local isotropy at inertial and dissipation

scales. They also suggest that passive scalars are associated with a stronger

intermittency compared with the velocity.

Following Batchelor et al. ([6, 7]), for a unit Prandtl number as herein, the10

smallest spatial scale for scalar mixing is the Kolmogorov scale η =
(
ν3/ε

)1/4
,

where ν is the dynamic viscosity and ε the mean dissipation rate of the turbulent

kinetic energy. Similarly, the smallest time scale is the Kolmogorov time scale

τη =
√
ν/ε. As the passive scalar is intermittent, locally, structures with a

spatial (temporal) span shorter than η (τη) appear in a flow. Suspecting those15

fine structures to be related to highly dissipative events, a number of DNS have

been performed with sub-Kolmogorov scales resolved (Schumacher et al. [9],

Donzis and Yeung [10], Galantucci and Quadrio [1]).

One of the central quantity in those studies is εθ, the scalar dissipation rate,

defined by

εθ = 2α|∇θ|2 = 2α

[
3∑
i=1

(∂iθ)
2

]
(1)

where α is the thermal diffusivity. According to Pope [11], this quantity he calls

the all-important dissipation rate matters in combustion models. It is also a20

central quantity in Reynolds Averaged Navier-Stokes (RANS) turbulence mod-

els as it appears in the budget equation of the scalar variance. Lately, Flageul

et al. [12] showed that the dissipation rate associated with the temperature

variance is discontinuous at the fluid-solid interface in case of conjugate heat

transfer. This is prominent for industrial applications where thermal fatigue is25

a concern.
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Studying homogeneous isotropic turbulence, Schumacher et al. [9] showed

that the improved resolution matters when investigating the tails of the Proba-

bility Density Function (PDF) of εθ, which correspond to low probability events

associated with high or low dissipation rates. More specifically, they show that a30

poorer resolution has a stronger impact on regions of low εθ than on those of high

εθ. On a similar configuration, Donzis and Yeung [10] showed accurate estima-

tion of advanced statistics (scalar dissipation intermittency exponent, structure

functions at moderately high orders and PDF of εθ up to 200 εθ) with a grid

spacing equal to the Batchelor scale, which is exactly the Kolmogorov scale in35

the present study.

Studying a turbulent channel flow (Reτ = 160, Pr = 1), Galantucci and

Quadrio [1] extended the analysis to wall-bounded flows. They showed reso-

lution effects on the profiles of the mean εθ and its variance, but also on the

PDF of εθ and recommended a very fine spatial resolution (∆+
x = ∆+

z = 1 and40

0.43 < ∆+
y < 2). In the streamwise (spanwise) direction, this is 6 (4) times

finer than what is necessary for the velocity according to Vreman and Kuerten

[3]. The authors of the present study estimate that the resolution proposed by

Vreman and Kuerten is sufficient for accurate predictions of the key integral

turbulent statistics of the passive scalar field at Pr = 1, including the average45

scalar dissipation rate and its variance. The main objective of the present paper

is to assess this claim.

The structure of the paper is as follows. In the second section, the gov-

erning equations and the computational setup are described alongside with the

procedure to estimate the sampling error. In the third section, preliminary in-50

vestigation on coarser grids is presented. In the fourth section, the DNS results

are presented. Discussion and conclusions are collected in the last section.

2. Governing equations, computational setup and sampling error

Dimensionless equations of the incompressible turbulent channel flow with

transport of a passive scalar can be found in various sources (Kasagi et al. [13],55
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Kawamura et al. [14]):

∇.u = 0 (2)

∂tu = −∇. (u.u) +
1

Reτ
∇2u−∇ (p) +

−→
1x (3)

∂tθ = −∇. (u.θ) +
1

ReτPr
∇2θ (4)

Equations (3) and (4) are normalized with the channel half width h, the

kinematic viscosity ν and the friction velocity uτ . Low friction Reynolds number

Reτ = 160 and Prandtl number Pr = 1 were selected in order to replicate the

conditions of the simulations performed by Galantucci and Quadrio [1]. As the60

Prandtl number is unity, Kolmogorov and Batchelor length-scales are identical.

Periodic boundary conditions are used in the streamwise and spanwise direc-

tions, labelled x and z, respectively, while the wall-normal direction is labelled

y. The forcing term
−→
1x represents a constant pressure gradient in the streamwise

direction and has a unit amplitude thanks to the normalization used. Bound-65

ary conditions for the passive scalar fields at the channel walls are θ = 1 at

y = 1, and θ = −1 at y = −1 and were previously used in the simulations of

Papavassiliou and Hanratty [15], Johansson and Wikström [16], and Galantucci

and Quadrio [1].

The equations are solved with a pseudo-spectral scheme. Fourier series are70

used in the x and z directions and Chebyshev polynomials are used in the

y direction. Second-order accurate time differencing (Crank-Nicolson scheme

for diffusive terms and Adams-Bashforth scheme for other terms) is used with

maximum Courant number kept at approximately 0.1. The aliasing error is

removed with computation of the nonlinear terms on a grid 1.5 times finer in75

all directions. The computer code is based on the code developed by Gavrilakis

et al. [17], which was later modified by Lam and Banerjee [18]. The code was

used and verified in simulations of Tiselj et al. ([19], [20], [21]).

The extension of the computational domain, normalized with the channel

half width h, was taken from the work of Galantucci and Quadrio [1]: Lx = 4.19,80
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Scalar field Nx ∗Ny ∗Nz ∆+
x

[
∆+
y ,min

,∆+
y ,max

]
∆+
z

1KMM 40 ∗ 129 ∗ 60 16.8 [0.048, 3.93] 5.57

2GQC 64 ∗ 129 ∗ 64 10.5 [0.048, 3.93] 5.23

3S 112 ∗ 129 ∗ 80 5.99 [0.048, 3.93] 4.18

4VK 112 ∗ 181 ∗ 80 5.99 [0.024, 2.78] 4.18

5GQM 360 ∗ 129 ∗ 180 1.86 [0.048, 3.93] 1.86

6S 360 ∗ 181 ∗ 180 1.86 [0.024, 2.78] 1.86

Table 1: Spatial resolution for the transported passive scalar fields.

Ly = 2, and Lz = 2.09. Both in the streamwise and spanwise directions, this is

about 3 times smaller than the domain used in Kasagi et al. [13]. Such a small

computational domain neglects an important part of the large scale structures

in the turbulent flow, however, it is known to be sufficient for special studies fo-

cused on small scale turbulent structures of the velocity field (Jimenez and Moin85

[22]). The small domain offers a platform for simplified studies of the resolution

requirements. It is often overlooked that in addition to obliterating large scale

structures, small domain can be affected by a significant sampling error. For

instance, Galantucci and Quadrio [1] report up to 5% differences in the friction

temperature values in their simulations performed on different resolutions and90

averaged over the time interval of 2400 viscous time units (statistics based on

60 instantaneous fields).

In the present study, the resolution requirement for the passive scalar field

is examined with a single DNS run. The velocity field is calculated on the finest

grid of Nx ∗Ny ∗Nz = 360 ∗ 181 ∗ 180 modes (Case 6S in Table 1). Six distinct95

passive scalar fields are simultaneously transported by this velocity field and

resolved with different number of modes, see Table 1. The naming scheme for

the passive scalar fields is inspired by the name of the authors who promoted

certain resolution. For instance, in 1KMM, KMM stands for Kim, Moser and

Moin [2]. Similarly, in 4VK, VK stands for Vreman and Kuerten [3]. The100

number preceding the letters corresponds to a disputable ranking of the grids:
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1 for the coarsest, 6 for the finest. For the five scalar fields resolved with a lower

resolution, all Fourier and Chebyshev modes above the indicated resolution are

set to zero at the end of each time step.

This approach, which is comparable to the one in Brethouwer et al. [23]105

or Gotoh et al. [24], reduces the statistical variability and eases the separation

of the sampling error from the error induced by a coarser spatial resolution.

The separation of statistical uncertainty and resolution effects is of particular

importance for the present work: the smaller extension of the domain in the

homogeneous directions increases the sampling error, which easily exceeds the110

tiny differences induced by the variable resolution of the passive scalar field,

except for simulations with a very long duration.

The finer resolution (case 6S in Table 1) used in the wall-normal direction

follows Vreman and Kuerten [3]. In the streamwise and spanwise directions, case

6S corresponds to the resolution used by Galantucci and Quadrio [1] in their115

“Medium” simulation. This is 2 to 3 times finer than the recommendation of

Vreman and Kuerten [3]. Cases 5GQM and 2GQC correspond to the “Medium”

and “Coarse” cases in Galantucci and Quadrio [1], respectively. The case 4VK

is using the resolution recommended by Vreman and Kuerten [3]. The case

3S is similar to 4VK except that it uses a coarser wall-normal grid. Lastly,120

the resolution in case 1KMM is comparable with most of the previous DNS

simulations (Kim et. al. [2], Kasagi et al. [13], Tiselj et al. [19]).

The present DNS is performed with a time step of 0.008 ν/u2τ and one

snapshot is taken every 1000 time steps. 700 snapshots are used to reconstruct

the statistics, corresponding to an averaging time of 5600 ν/u2τ .125

DNS is widely used to produce reference data. However, as pointed out

by Oliver et al. [25], statistics obtained from DNS contain non-trivial errors.

Errors arise mainly from the discretization of the equations and from the finite

statistical sampling. As our code is based on a pseudo-spectral method and we

use a fine grid, the spatial discretization error of the Navier-Stokes equation130

is rather low. Thus, the main source of error in our statistics is the sampling

error, which we estimate with the open-source library ar (https://github.
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com/RhysU/ar, see Oliver et al. [25]).

The program arsel, which ships with the library, is used as follows. For each

statistical quantity of interest, the instantaneous value is extracted from each135

snapshot and averaged in the homogeneous directions. The resulting time series

are used to fit autoregressive models with arsel using the --subtract-mean

option. The output of arsel is then processed to extract the average profile

and the sampling error profile. Herein, the sampling error is given as 2 standard

deviations. Given the domain extension, the number of modes used and the time140

step, the probability that the real average and its estimation differ for less than

2 standard deviations is 95%.

As this method can be applied for any statistical quantity, we are able to

estimate the sampling error for the mean temperature, the temperature dissipa-

tion rate or its variance. For a given variable φ, the associated sampling error

is eφ. We also define the dimensionless normalized sampling error E [φ] by

E [φ] (y) =
eφ (y)

eφ (y) + abs
(
φ (y)

) (5)

This normalized sampling error is bounded in [0, 1], the upper bound being

reached when the averaged value abs
(
φ (y)

)
is exactly zero. As most of the

time the averaged value is large compared to the sampling error, E [φ] measures145

the relative uncertainty.

3. Preliminary results on coarser grids

The sampling error on u2τ , whose theoretical value is 1 herein, and ∂yθ (y = ±1)

is illustrated with the four DNS studies on coarser grids described in the Table

2. The results in the large computational box combined with the long and short150

averaging time are taken from the analyses of Tiselj and Cizelj [20], which were

performed at Reτ = 180, Pr = 1 and with slightly different thermal boundary

conditions: both channel walls were heated and a forcing term was present in the

passive scalar equation (4). The small box results are part of the present anal-

ysis: a separate run over longer time interval was made only with a resolution,155
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Label Reτ

L+
x

L+
y

L+
z

∆+
x

∆+
y ,max

∆+
z

Averaging time

in wall units
u2τ ± eu2

τ
∂yθ ± e∂yθ

18L

18S
180

6786

360

2262

17.7

4.42

5.89

24 300

(450 samples)

5400

(100 samples)

1.0004± 0.0016

0.9998± 0.0016

0.9997± 0.0029

1.0005± 0.0033

−180.11± 0.15

180.01± 0.14

−179.74± 0.29

180.14± 0.46

16L

16S
160

670

320

334

16.8

3.93

5.57

24 000

(500 samples)

6000

(125 samples)

1.002± 0.014

1.003± 0.019

1.005± 0.026

0.990± 0.050

6.80± 0.05

6.78± 0.08

6.82± 0.10

6.63± 0.24

Table 2: Sampling error on friction velocity and temperature derivative at the boundaries.

which corresponds to the case 1KMM in Table 1.

The first impression about the statistical uncertainty can be obtained from

the two rightmost columns of Table 2 where the squared friction velocities and

temperature derivatives at both channel walls are shown. As one might ex-

pect, deviation from the theoretical friction velocity of 1 is larger in the smaller160

computational domain and at shorter averaging time intervals. As for the tem-

perature derivative, shorter averaging time also leads to higher sampling error.

Regarding cases Reτ = 160, we observe a relatively large difference on the tem-

perature derivative at both walls. Although this difference gets lower when

increasing the duration of the simulation, it is probably specific to smaller com-165

putational domains, as reported by Jimenez and Moin [22] for velocity statistics.

The case 16S in Table 2 is comparable to the case 1KMM in Table 1. Both

cases correspond to an averaging time roughly 2 times longer than the one in

Galantucci and Quadrio [1], with snapshots taken at a similar frequency for all

those cases. Thus, the case 16S gives a lower bound for the sampling error in170

Galantucci and Quadrio [1]. The Figure 1 shows the normalized sampling error

associated with various statistical quantities for the cases present in Table 2.
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Figure 1: Normalized sampling error for the cases in Table 2. Top: E [θ]. Middle: E
[
θ′2
]

(left) and E [εθ] (right). Bottom: E
[
θ′4
]

(left) and E
[
ε2θ
]

(right).
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The clear trend in Figure 1 is that higher order moments are associated with

higher sampling errors. Regarding the plots on the middle row, the normalized

sampling error for the temperature variance and for the mean dissipation rate175

have a similar amplitude and involve turbulent quantities to the power 2. Qual-

itatively, the situation is similar on the plots in the bottom row, which involve

turbulent quantities to the power 4.

Regarding case 16S, the magnitude of the normalized sampling error is

around 5% for E [θ], except in the middle of the channel, where it gets close to180

100% as the average temperature is zero. It also drops down to zero at the walls

as the temperature is imposed there (Dirichlet boundary condition, θ = ±1).

For cases 18S and 18L, the imposed temperature at the walls is zero, so both the

sampling error and the average temperature tend to zero there. The resulting

normalized sampling error E [θ] at the wall for those cases is around 0.2%.185

Focusing on case 16S for higher order integral statistics, the normalized

sampling error reaches almost 10% for E
[
θ′2
]

and E [εθ], and even 15% for

E
[
θ′4
]

and E
[
ε2θ
]
. These results show that the differences of 7% on the average

of εθ on different grid reported in Galantucci and Quadrio [1] is well within

the sampling error as their simulations have the same domain extension but a190

duration halved compared with the case 16S.

Using the Central Limit Theorem applied to weakly correlated samples de-

scribed in Oliver et al. [25] (Theorem 27.4 in Billingsley [26]), the sampling error

decreases with the square root of the number of samples. For a given sampling

frequency, the error is therefore halved when the duration of the simulation (and195

the number of samples) is increased by a factor 4. This holds quite well when

comparing cases 16S and 16L, or 18S and 18L. Overall, significant reduction of

the sampling error can be achieved using extended computational domains and

/ or simulations with a longer duration.
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Scalar field Nx ∗Ny ∗Nz θ θ′2 θ′3 θ′4 εθ ε′2θ

1KMM 40 ∗ 129 ∗ 60 −7.18 −5.02 −4.42 −3.67 −6.68 −1.26

2GQC 64 ∗ 129 ∗ 64 −9.15 −7.14 −6.50 −5.43 −7.82 −1.91

3S 112 ∗ 129 ∗ 80 −11.8 −10.5 −8.57 −8.11 −9.54 −3.25

4VK 112 ∗ 181 ∗ 80 −11.8 −10.5 −8.58 −8.13 −9.98 −3.29

5GQM 360 ∗ 129 ∗ 180 −13.9 −12.0 −10.0 −10.8 −9.51 −5.53

Table 3: log10 of the quadratic relative error for various quantities.

4. Impact of unresolved smaller scales on statistics200

In this section, we investigate the impact of unresolved smaller scales on

various quantities. First, we investigate dimensionless bulk quantities. Using

the scalar with the finest resolution (6S) as a reference, we can compute a

quadratic relative error. For instance, the quadratic relative error for the average

temperature on the grid 1KMM is defined by:∫ y=1

y=−1
[
θ1KMM (r)− θ6S (r)

]2
dr∫ y=1

y=−1 θ6S (r)
2
dr

(6)

In Table 3, the quadratic relative error is given for various quantities. Look-

ing at the relative error for the moments of the temperature (θ, θ′2, θ′3 and

θ′4), one can extract two trends. First, for all resolutions considered, the higher

the moment, the higher the relative error. Second, the finer the resolution, the

closer to the case 6S. The resolution 1KMM seems sufficient to accurately es-205

timate the average temperature. However, accurate estimation of higher order

moments requires a finer resolution as unresolved smaller scales have a higher

impact on them. The situation is similar for εθ and ε′2θ : the first is relatively

well estimated by the coarsest grid while the second has a stronger dependence

on unresolved smaller scales.210

It is important to stress that the discretization error in Table 3 is typically

several decades lower than the sampling error. However, all the scalar fields are

transported by the same velocity field. Therefore, they are strongly correlated
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and are all plagued by the same sampling error. This allows us to exhibit the

impact of unresolved smaller scales on statistics, even though this impact is215

relatively small compared with the sampling error.

For the turbulent channel flow studied here, at the wall, the temperature

is imposed (θ = ±1) and the temperature evolution equation 4 contains no

source term. As a result, the exact average temperature derivative at the wall

is plagued by statistical uncertainty and depends on the spatial resolution. We

define the friction temperature θτ and the reference temperature θref with:

θτ =
1

ReτPr
∂yθ

(
±Ly

2

)
and θref =

1

ReτPr

θ (Ly/2)− θ (−Ly/2)

Ly
(7)

The theoretical value of the friction velocity, which is equal to one here,

produces a θref not plagued by statistical uncertainty, while θτ is. Therefore, we

use θref to rescale the temperature statistics. Spatial derivatives are expressed

in wall-units using the theoretical value of the friction velocity. For convenience,220

plots are using a wall-normal distance in computational units (y ∈ [−1, 1]).

Complementary with the bulk quantities in Table 3 and the integral profiles

of εθ or its variance, we investigate the anisotropy of the fluctuating temperature

gradient. This is done using the barycentric map defined by Banerjee et al. [27].

Given a symmetric positive semi-definite tensor Mij , the associated (traceless)

anisotropy tensor is

M̃ij =
Mij

Mkk
− 1

3
δi,j (8)

The eigenvalues of M̃ij , λk, verify λ1 ≥ λ2 ≥ λ3. Based on those eigenvalues,

Banerjee et al. [27] define 3 limiting states forming a basis: one-component (1C),

two-component (2C) and three-component (3C). The number of components

corresponds to the number of non-zero eigenvalues of Mij . In the state 3C,225

all three eigenvalues are equal: the tensor is isotropic. In the state 2C, one

eigenvalue is negligible while the two others are equal: the anisotropy is two-

dimensional. In the state 1C, two eigenvalues are negligible: the anisotropy is

one-dimensional.

In the barycentric map, each limiting state is the vertex of an equilateral

triangle. For any symmetric positive semi-definite tensor Mij , there is a unique
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point inside this equilateral triangle with coordinates

[x, y] = (λ1 − λ2) [x1C , y1C ] + 2 (λ2 − λ3) [x2C , y2C ] + (3λ3 + 1) [x3C , y3C ] (9)

where [xiC , yiC ] is the coordinate of the vertex corresponding to the limiting230

state iC. Following Lumley and Newman [28], it is possible to visualize the

anisotropy of a traceless tensor using its second and third invariants. However,

the resulting invariant map is distorted as those invariants are nonlinear func-

tions of the tensors elements. The barycentric map is connected to the invariant

map with a bijection and does not suffer from this bias. This is the main moti-235

vation for the present choice; interested reader will find a deeper analysis of the

barycentric map in Banerjee et al. [27].

The symmetric positive semi-definite tensors investigated here are related

to the temperature derivatives. The first tensor investigated, ∂θ = ∂iθ′∂jθ′,

is relevant to this study as its trace is proportional to the scalar dissipation240

rate εθ and its anisotropy is related to the anisotropy of the fluctuating tem-

perature gradient. The other tensor investigated is the variance of ∂θ : σ
∂θ

=

[∂iθ′∂jθ′]
2−
[
∂iθ′∂jθ′

]2
. Locations where the fluctuating temperature gradient

is isotropic correspond to points of the barycentric map closer to the vertex 3C

of the triangle. The further away from this vertex, the higher the anisotropy.245

Points closer to 1C or 2C correspond to one-dimensional or two-dimensional

fluctuations, respectively. It is important to stress that the barycentric map

does not provide a complete description of the anisotropy as it obliterates the

eigenvectors associated with the eigenvalues.

The left frame of Figure 2 is in agreement with Table 3; the profiles of εθ250

do not show any significant impact of unresolved smaller scales in 1KMM and

3S results. The situation is similar for the barycentric map of the anisotropy of

∂θ (right frame of Figure 2). Due to the imposed temperature at the wall, the

anisotropy at the boundary has only one component (limiting state 1C). Then,

the closer to the middle of the channel, the closer to isotropy (limiting state255

3C).

Focusing on the left frame of Figure 2, one may notice that the profiles of
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Figure 2: Dissipation rate εθ (left) and barycentric map associated with ∂θ (right).

εθ are not exactly symetric. This is not an issue here as this is well within the

sampling error, which is around 10% for εθ, according to Figure 1. However,

performing a simulation with a duration long enough to have a negligible sam-260

pling error, one may obtain a profile that still lacks symetry. This is specific to

the combination of smaller domains and periodicity used here: global mixing

between the lower and upper half of the domain is not perfect due to the absence

of large scale structures.
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Figure 3: 95% confidence interval of the variance of the dissipation rate εθ (left) and barycen-

tric map associated with σ
∂θ

(right).
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The left frame of Figure 3 is also in agreement with Table 3; the variance of265

εθ is significantly impacted by unresolved smaller scales, and the coarsest grid

underestimates this quantity, especially outside of the viscous sublayer where

the discretization error is as large as the sampling error. Closer to the wall,

this impact is less visible and all spatial resolutions produce a similar variance

of εθ. The barycentric map of the anisotropy of σ
∂θ

also shows the impact of270

unresolved smaller scales. In the middle of the channel (y = 0), the coarsest grid

gives a similar weighting for all limiting states (1C, 2C and 3C), this correspond

to the part of 1KMM closer to the middle of the triangle. At this location of the

channel (y = 0), finer grids give a similar weighting only for the limiting states

1C and 3C, but a negligible weight to state 2C, this correspond to the part of275

6S and 3S closer to the edge connecting 1C and 3C.
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Figure 4: Spectra of the streamwise (left) and spanwise (right) contributions to the scalar

dissipation rate εθ at y = 0 (middle of the channel).

Integral quantities provide only a limited amount of information and spectra

in Figure 4 are more insightful. They are taken at the middle of the channel

(y = 0). The spanwise spectra show that the spanwise contribution to εθ is well

resolved even on the coarsest grid. However, this grid is not isotropic and it280

has extended cells in the streamwise direction (∆+
x = 17, ∆+

z = 6 for 1KMM).

This leads to a pronounced bump on the streamwise spectrum of 1KMM at the

highest resolved wavenumbers (k+x ≈ 0.2). As one can notice, the streamwise
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spectrum of 3S also has a bump at the highest resolved frequency (k+x ≈ 0.55).

However, regarding the latter case, this has a negligible impact on the statistics285

of εθ because the bumps correspond to very high frequencies for which the

streamwise contribution to the dissipation is two decades smaller than its peak

value around k+x ≈ 0.05. This does not hold for case 1KMM: the bump on the

streamwise spectrum is present at lower frequencies, for which the streamwise

contribution to the dissipation has a magnitude similar to the one at the peak.290

This explains the severe impact of unresolved smaller scales on the variance of

εθ exhibited in Figure 3.

Figure 5: Instantaneous scalar gradient (
∑
∂iθ

′2) in computational units at y = 0 (middle of

the channel). Logarithmic colormap. Left: 1KMM. Right: 6S.

Figure 5 illustrates the impact of the under-resolution on the gradient of

the scalar. On the one hand, both fields exhibit similar structures at larger

scales, in agreement with the ability of the grid 1KMM to estimate the average295

scalar dissipation rate, as shown in Figure 2. On the other hand, smaller scales

are visibly misrepresented on the coarser grid, as the picture on the left is

plagued by the oscillations, which correspond to the wavenumbers of around

k+ = 0.2 that are overpredicted in 1KMM results shown in the left frame of

Figure 4. This is consistent with the previous results: the grid 1KMM is too300

coarse to properly resolve the sharp gradients which separate dissipative and

non-dissipative regions.
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5. Conclusion

The present investigation demonstrates the impact of a limited resolution

of the smaller scales on the scalar dissipation rate, its variance and on the305

anisotropy of the fluctuating scalar gradient. In a preliminary part, we showed

that simulations of the turbulent channel flow based on smaller domains and

with a limited duration (often used to perform grid sensitivity analysis) are

plagued by a relatively large sampling error, especially for higher order moments

like the scalar dissipation rate or its variance. This sampling error is often larger310

than the discretization error, thus preventing accurate estimation of the latter,

except for simulations with an extended domain and duration.

In the present study, this situation is overcomed by using a single veloc-

ity field to transport several passive scalars with different resolutions: all the

scalars are strongly coupled by the velocity field and plagued by the same sam-315

pling error. The resulting difference between the scalars is solely due to the

discretization error, which can thus be estimated. Another workaround could

be to perform simulations with a duration long enough so that the sampling

error becomes negligible compared with the discretization error, or to perform

many simulations with slightly distinct initial conditions, followed by ensemble320

averaging.

Regarding the key integral turbulence statistics of the passive scalar inves-

tigated here, our results confirm that previous DNS based on a pseudo-spectral

method with the resolution 1KMM (Kim et. al. [2], Kasagi et al. [13], Tiselj

et al. [19]) can estimate the average temperature, its variance and the average325

scalar dissipation rate with a relatively low discretization error, as indicated

Table 3. However, they can only provide qualitative estimation for higher or-

der moments. To accurately estimate those higher order moments, finer grids

must be used. Regarding the variance of the scalar dissipation rate, or the

anisotropy of the fluctuating scalar gradient, the grid recommended by Vreman330

and Kuerten [3] is sufficient for pseudo-spectral schemes (6th order compact

finite-difference schemes typically require a grid 4/3 finer). Our results do not
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preclude existence of scalar structures or events, which are too small to be re-

solved with the Vreman and Kuerten resolution. However, our results show

that these events might significantly affect only the integral turbulence statis-335

tics higher than fourth-order. It is important to stress that a small event can

impact part of the PDF of a turbulent quantity without significantly affecting

the associated integral value.

Our results also suggest that unresolved smaller scales have a stronger im-

pact outside of the viscous sublayer, and have almost no impact closer to the340

wall. Strictly speaking, this observation is valid only for the Dirichlet bound-

ary condition investigated here (imposed temperature), and may not hold for a

Neumann boundary condition (imposed heat flux), a Robin boundary condition

(heat exchange coefficient) or conjugate heat-transfer (fluid-solid thermal cou-

pling). Regarding the latter case, the present analysis will provide a solid ground345

for future investigations on the discontinuity of εθ at the fluid-solid interface.

Data associated with the present paper are available online at http://dx.

doi.org/10.17632/mn74gv69wn.1 and https://repo.ijs.si/CFLAG/sml-scl

under the GNU GPL v3 licence.
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