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Abstract—Despite their great improvements, reliability and 

availability of power electronic devices remain always a focus. In 

safety-critical equipment, where the occurrence of faults can 

generate catastrophic losses, health monitoring of most critical 

components is absolutely needed to avoid and prevent 

breakdowns. In this paper, a noninvasive health monitoring 

method is proposed. It is based on fuzzy logic and the neural 

network to estimate and predict the equivalent series resistance 

(ESR) and the capacitance (C) of capacitors and supercapacitors. 

This method, based on the neo-fuzzy neuron model, performs a 

real-time processing (time series prediction) of the measured 

device impedance and the degradation data provided by 

accelerated ageing tests. 

To prove the efficiency of the proposed method, two 

experiments were performed. The first one was dedicated to the 

estimation of the ESR and C for a set of 8 polymer film 

capacitors, while the second one was dedicated to the prediction 

of the ESR and C for a set of 18 supercapacitors. The obtained 

results showed that combining fuzzy logic and the neural 

network is an accurate approach for the health monitoring of 

capacitors and supercapacitors. 

 

Index Terms—prognosis, ageing, capacitor, supercapacitor, 

artificial neural network, fuzzy logic, time series prediction, 

health monitoring, parameter estimation 

 

I. INTRODUCTION 

Currently, most of transportation systems contain embedded 
electronics equipment providing various functions 
(conversion, energy storage, control, etc.) [1]-[4]. For an 
increased lifetime expectation and safety of these components, 
strong efforts have therefore been devoted to improve 
reliability of power electronic systems with cost-effective and 
sustainable solutions [5]-[7].  

Condition monitoring and health management present 
fundamental ways to improve the lifetime expectation of 
power devices. In this paper, we focus our study on the health 
monitoring of energy storage systems (ESS), particularly on 
metallized polymer film (MPF) capacitors and supercapacitors 
(SCs). The reliability of these components is a major issue 
since chemical solvents (such as acetonitrile, which is 
classified as hazardous) used for SCs and acetylene (noxious 
gases) for MPF capacitors may be released in the case of 
breakdown. Thus, the degradation of (ESS) performance must 
be monitored in order to avoid power breakdown or system 
malfunctioning. 

SCs [8] are intermediate components between batteries 
(used for their very high energy density) and capacitors 
(mostly used for high frequency filtering). These components, 

also called ultracapacitors or electrochemical double layer 
capacitors, use an electrostatic mode to store energy (double 
layer effect). SCs present higher cyclability and higher 
specific power than other ESS based on electrochemical 
transformation such as batteries [9]; which is why SCs are 
appreciated in applications requiring a short duration power 
boost, such as regeneration of braking energy or stop and start 
systems. 

MPF capacitors, on the other hand, present higher power 
density but lower energy density than SCs. Such components 
offer great advantages compared to other capacitor 
technologies, since they have the ability to self-heal. Indeed, 
thanks to this feature, MPF capacitors tend to generally fail 
within an open-circuit failure mode (gradual loss of electrode 
surface) rather than in a short-circuit one. MPF capacitors are 
also known for their low dissipation factor and high dielectric 
stability with frequency and temperature, which are important 
factors for filtering, power factor correction, and high 
temperature applications. 

Accelerated ageing tests conducted on both capacitors and 
SCs showed that most of their failure modes can be monitored 
by the evolution of their precursor parameters of equivalent 
series resistance (ESR) and capacitance (C) [10]-[14]. Thus, 
an effective and reliable monitoring method must be based on 
the double estimation and/or prediction of these electrical 
parameters. 

Even though failure modes and failure mechanisms are well 
known for a component, their estimation/prediction remains 
difficult to obtain, especially when electrical and 
environmental stresses are combined together. These 
constraints require the use of suitable diagnostic or prognostic 
methods to analyze the C and ESR in order to improve the 
health monitoring of SCs and MPF capacitors. 

The objective of this paper is to limit such drawbacks and to 
show that with the same model (MPF capacitors and SC in our 
case), it is possible to detect potential deterioration drifts of 
different energy storage devices 

II. CHOICE OF A HEALTH MONITORING METHOD 

Model-based (or physics-based) methods and data-driven 
methods are often used to monitor ESS degradation [15]-[17]. 
The model-based method uses an analytical model to estimate 
and predict electrical parameters of components, while the 
data-driven method does not require a physical modeling of 
the components and aims to model the relationship between 
the measured data and the component degradation. The choice 
of a method is based on the complexity of the studied 
component and also on the availability of information about 
the component. Research conducted by [18] allowed 
extracting a comparison between these methods. The obtained 
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results led to favor in our case the data-driven method; 
although this mainly depends on the application. 

From literature, artificial intelligence is the most popular 
data-driven method used for health monitoring. More 
specifically, artificial neural networks (ANNs) appear as a 
reliable technology for diagnosis and prognosis. Two types of 
ANNs exist: the feed forward neural networks and the 
recurrent neural networks [19]. These two types of ANNs 
have been successfully used for diagnosis and prognosis. 
However, some authors highlight some drawbacks: 

- ANNs are black boxes and it is not possible to explain and 
analyze the relationship between inputs and outputs; 

- ANNs are prone to over fitting. 
Thus, to overcome these weaknesses, researchers combined 

the ANNs with fuzzy logic to obtain the neuro-fuzzy system 
(NFS). The use of the NFS for diagnosis/prognosis purposes 
requires taking into account the time factor and therefore 
generates a great computational burden. In this context, we 
propose to improve the architecture of the NFS by a new 
architecture named the neo-fuzzy neuron model (NFN). To 
explain how the NFS architecture is improved, consider an 
adaptive neuro-fuzzy system (ANFIS) with four inputs 

denoted {x0, x1, x2, x3} and one output denoted x̂ (see Fig.1). 
If two fuzzy sets (defined by triangular, trapezoidal or 
Gaussian membership functions) are associated with each 
input, the system will contain 16 fuzzy rules (42) =16. These 
rules are given as follows: 
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Where (k = 16) is the number of rules, xi for (i = 0, 1, 2, 3) is 

the ith input and ˆk
x is the output of rule (k). jiµ is the jth 

membership function of the input xi and 0 1 2 3 4{ , , , , }k k k k kc c c c c  

are the coefficients of rule (k). 
The structure of the ANFIS predictor contains five layers 

including the input layer (see Fig. 1). They are defined as 
follows: 
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Fig.1. Architecture of adaptive neuro-fuzzy system for four 
inputs and two membership functions (MF). 

Layer 1 membership function (MF): each input is associated 
with a MF which evaluates the membership degree of the jth 
fuzzy partition with the ith input variable. Here, the MF can be 
any function (triangle, trapezoid or Gaussian). For a Gaussian 
function, we have: 
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with (mji, bji), the Gaussian function parameters (premise 
parameters). 

Layer 2 (Π): in this layer, the weight ωk of each rule (k) is 
associated with the MF of each input by using a T-norm. The 
most widely used T-norm is the product: 

 ( ) ( ) ( ) ( )0 0 1 1 2 2 3 3k j j j jx x x xω µ µ µ µ= ⋅ ⋅ ⋅  (2) 

Layer 3 (N) : the purpose of this layer is the normalization 

of the different weights. The normalization is expressed as 
follows: 
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Layer 4 : this layer computes the contribution of each rule 
(k) by a first-order input function (Takagi-Sugeno approach): 

 ( )0 0 1 1 2 2 3 3 4
ˆ k k k k k k

k t p kx c x c x c x c x cω ω+ = ⋅ + + + +  (4) 

with 0 1 2 3 4{ , , , , }k k k k k
c c c c c  the coefficients of this linear 

combination and are called consequent parameters. 
Layer 5 (Σ): the output of this layer is the sum of all 

incoming rules. 
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The goal of the ANFIS system is to form an adaptive 
network able to approximate an unknown function through the 
learning data and then find the precise values of the 
parameters above (consequent and premise parameters). The 
characteristic of this approach is that ANFIS applies a hybrid 
learning algorithm. The hybrid learning algorithm is an 
association between the gradient descent method and the least 
squares method. The gradient descent method is used to adjust 
the premise parameters (mji, bji), whereas the least squares 
method is used to identify the consequent parameters 

0 1 2 3 4{ , , , , }k k k k k
c c c c c . The inconvenient of the ANFIS system is 

related to a slow convergence of the learning step when the 
number of membership functions is big and/or when the 
number of inputs is big. To solve this problem, we propose the 
use of a new NFS called the NFN [20]. The architecture of a 
NFN is quite close to an artificial neural network architecture 
with several inputs. However, instead of the usual synaptic 
weights, it contains nonlinear synapses. Among the most 
important advantages of the NFN model are the high rate of 
learning, simplicity of calculation, and also that it is 
characterized by the fuzzy rules of "if-then".  

The present paper is focused on the monitoring of MPF 
capacitors and SCs. More precisely, the objective of this paper 
is to show how it is possible to use the NFN model to estimate 



the ESR in the case of the MPF capacitor and to predict the 
evolution of the ESR and C in the case of SCs. 

III. HEALTH MONITORING OF SCS 

A. SCs ageing indicators 

From literature, SCs ageing leads to C decrease and ESR 
increase (see Fig.2). The decrease in C and the increase in 
ESR are not totally linked together as they are not related to 
the same phenomena (storage surface decrease for C and 
separator gas storage, internal pressure increase and contact 
degradation for ESR). Some publications define end of time 
parameters for SC life prediction [12], but we will focus on 
the study of C and ESR through time. So instead of having 
only one information (i.e., the lifetime), one can monitor and 
predict the evolution of SC parameter through time. 

B. SCs ageing factors  

As SC ageing time is quite long under nominal conditions, 
some accelerated ageing tests are performed [12], [21]. The 
goal of those tests is to shorten the ageing test duration 
without implying any new ageing mode. Basically, they need 
voltage to take place and temperature plays the role of an 
acceleration factor [22], as long as the temperature is within 
the operating range of the SC [12]. For out of bonds 
temperatures, new ageing mechanisms will happen but it is not 
the target of this paper. 

Two kinds of accelerated ageing tests are usually 
performed. They are called cycling and floating ageing [22]. 
Cycling ageing consists of charging and discharging the SC in 
cycles. The loss of C and increase of ESR are very fast, but 
ageing is mainly reversible [23]. The acceleration factors for 
cycling ageing are depth of discharge, temperature and the 
root mean square (RMS) value of the current [12]. Floating 
ageing consists of maintaining the voltage and temperature of 
SC as constant as possible through time. Thus, only 
temperature and voltage are ageing factors, since RMS current 
is near to 0 A. This kind of ageing is mainly irreversible. 

Our study will focus on floating ageing since it is the main 
ageing mode for personal vehicles (95% of the time) and 
uninterruptible power supplies (99% of the time) and because 
it is an irreversible ageing mode. Thus, we will not study 
variable ageing constraints. 

Fig. 2 presents averaged ageing results for floating ageing 
tests for 3 groups of three SCs aged with different constant 
voltage and temperature constraints. The results are presented 
in percent compared to the manufacturer rated C and ESR. 
The effect of temperature and voltage can be easily deduced. 
The reference test (60°C, 2.8 V) showed that a lower 
temperature (50°C, 2.8 V) or a lower voltage (60°C, 2.3 V) led 
to lower ageing speed.  

As most of the SC used in hybrid and electric vehicles are 
based on the acetonitrile/activated carbon technology, the 
increase of ESR and the decrease of C through time have the 
same shape. Thus, although the parameter values from the 
learning database will not be the same for another SC, the 
method developed in this paper is applicable to other 
acetonitrile/ activated carbon SCs. 
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(a) C ageing evolution. 
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(b) ESR ageing evolution. 
Fig. 2. Impact of ageing on supercapacitor capacitance (C) and 
equivalent series resistance (ESR) for different accelerated calendar 
ageing test. 

 
C. Prediction of the ESR and C for SCs  

The C and resistance of the tested SC were measured at 100 
mHz by electrochemical impedance spectroscopy (EIS) [23]. 
For any high power/ high C of SC, the impedance behavior is 
similar to the impedance of distributed porous electrodes [24]. 
The C of SC is frequency dependent and goes to its maximum 
value at low frequency [22]. Testing the SC at 100 mHz was a 
good compromise between capacitance estimation and 
acquisition time. Thus we used that frequency for C and ESR 
calculation. 
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with Im(ZSC) and Re(ZSC) the imaginary and real parts of the 
SC impedance (ZSC) measured at 100 mHz. 

This kind of estimation for C and ESR has the advantage of 
taking only experimental data without any other data 
treatment. With the selected SCs and the measurement tools 
used for the paper, the reproducibility of the extracted C and 
ESR were inferior to 0.5%. Other publications use data fitting 
for the identification of the SC model [25], [22]. The fitting is 
used to analyze experimental curves. It consists on 
constructing a curve from mathematical functions and 
adjusting the parameters of these functions to approximate the 
measured curve. For simple cases, the linear regression is used 
if the curve is linear for all parameters, or polynomial 
regression when using a polynomial to simulate the 
phenomenon (the degradation of SCs in our case). 
Conventional regression methods make possible to determine 
the mathematical functions from the data of the curve but are 
inapplicable if the function takes into account physical 
parameters not available in the curve, such as the temperature 
and the supply voltage, which are necessary to provide a good 
estimation of ESR and C.  



As mentioned previously, the ageing of SCs can be 
predicted by estimating the evolution of ESR and C. This 
estimation is based on the following assumption.  

Consider a set of measures denoted "X" performed on a SC. 
These measures are used to estimate an unobservable measure 
denoted ˆ

t p
x + via the function f(X). This function is expressed 

as follows: 

 ( )t t 3 22
ˆ ( ) ( , , , , ,  )

t p t r t r t r tt n r
x f X f V x x x x xθ+ − − −− −= = …  (8) 

ˆ
t p

x + is a measure "x" estimated for a horizon of prediction 

denoted p. The measure "x" corresponds to the ESR if the 

unobservable measure is ˆ
t p

ESR +  and corresponds to the C if 

the unobservable measure is ˆ
t p

C + . xt is a measure acquired at 

time t. xt-r is a measure acquired at time t-r, where r is the 
interval between two measures (expressed in hours). xt-(n-2)r is a 
measure acquired at time t-(n-2)r, where n represents the 
number of measures. Vt, θt are respectively the supply voltage 
Vt and the temperature θt. The ageing estimation of the SC is 

illustrated in Fig. 3 for ˆ
t p

C +  with r=100, n=7 and p=2600, 

3000 h... 
Figure 4 represents the architecture of the proposed NFN 

model. The output of the NFN is expressed as follows: 
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Where f(X) results by the sum of nonlinear functions fi( i
x ). 

Each function fi is related to a normalized input 
i

x  which 

represents the ith position of the series "X". The last and before 
the last position of the series "X" represent respectively the 
supply voltage and the temperature of the SC,

n t
x V= , 
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i
x  is comprised between 0 

and 1 (0≤
i

x ≤1) and is defined by the following formula: 
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where xmax is the maximal value recorded in the training step. 
The function 

i i
f ( x ) depends on the interconnecting weights 

ωji between the ith input 
i

x  and the jth membership 

value
ji i
( x )µ . The function 

i i
f ( x )  is expressed as follows: 
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Where h is the number of MF.  
The membership values are obtained from triangular 

functions spaced equivalently according the number (h) of 
MFs as shown in Fig. 5. 
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Fig. 3. Prediction of the capacitance until a horizon p from XC. 
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Fig. 4. Architecture of a neuro-fuzzy neuron model for the prediction 
of equivalent series resistance and capacitance. 
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Fig. 5. General view of triangular membership functions. 
 
τ0,i , τ1,i,..., τj,i,, τh,i are the positions of the triangular 

functions with τh,i= 1. They are comprised between 0 and 1 
(0≤τj,i ≤1). They are defined according to the number of the 
MF h. For h MFs, the position τj,i is equal to j/h. 

The membership value 
ji i
( x )µ is obtained according to the 

ith input in the intervals 1j ,i ji
,τ τ−   and 1ji j ,i

,τ τ +   . 
ji i
( x )µ  is 

expressed as follows: 
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Based on equation (11) and Fig. 5, the output value of the 
nonlinear synapse

i i
f ( x )  depends only on two neighboring 

MFs (j, j+1). fi( i
x ) is expressed as follows: 

 1 1i i ji ji i j ,i j ,i i
f ( x ) ( x ) ( x )ω µ ω µ+ += ⋅ + ⋅  (13) 

Finally, the estimation of
t p

x̂ +  is given by: 
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where t denotes current time instant, 
t p

x̂ + is the estimated 

value at the horizon t+p. 
The interconnecting weights are calculated in the training 

step after ℓ-iterations by considering equation (9), where the 
output of the NFN model is expressed as follows: 
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The output ˆ ( )
t p

x + ℓ  depends on the MFs 
ji i
( x )µ and the 

adjustable weights ωji(ℓ-1) obtained from the previous 
iteration. Therefore, there are n×h weights to be adjusted 
according to a criterion. This criterion consists on updating the 
synaptic weights by minimizing the quadratic error function 
E(ℓ) which is expressed as follows: 
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The quadratic error is minimized by the gradient descent 
algorithm which allows calculating ωji by the following 
formula: 
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This equation depends on three parameters. The first 
parameter is the learning rate ρ, comprised between 0 and 1, 
used to control the convergence of the learning process. The 
second parameter is the MF 

ji
µ calculated in equation (12). 

The third is the real measure xt+p.  

IV. HEALTH MONITORING OF MPF CAPACITORS 

A. MPF ageing 

MPF ageing leads to a variation in C and ESR. Table I 
resumes the ESR and C evolutions depending on the applied 
stresses [26]. Based on the different failure mechanisms 
shown in Table I, it seems extremely important to monitor 
both the ESR and C, since all of the failures mechanisms can 
be detected through the evolution of these electrical 
parameters. 

 
 
B. MPF ageing factors  

Different factors may have an irreversible impact on 
performance of MPF capacitors with time and deteriorate their 
operating lifetime. Among the numerous ageing factors, 
voltage and temperature are the most prevalent stresses [28].  

Two kind of accelerated ageing test are usually performed. 
(i) Standard ageing by "floating", at a fixed temperature and 
voltage. This makes possible to analyze the behavior of the 
capacitor parameters as a function of time and therefore 
determining the acceleration factors of voltage and 
temperature. (ii) Ageing by current ripple with the application 
of a zero DC voltage. This type of ageing generates 
degradation of the metallization by electrochemical corrosion 
with superposition of a DC voltage to the above mentioned 
current ripple [27], [28]. This test combines the constraints of 
the tests mentioned above (tests with the application of a 
current ripple and "floating") and consists of applying to the 
capacitor similar stresses encountered in a power electronics 
application. It makes it possible to study the impact of using 
the capacitor as a filter element of a static energy converter. In 
the following, standard ageing by "floating" is used to 
accelerate the ageing of MPF capacitors. 

C. Estimation of the ESR and C for MPF capacitor 

The health monitoring of an MPF capacitor consists of 
estimating the ESR and C. This estimation is obtained from 
the capacitor impedance, extracted within the frequency 
domain analysis. Indeed, if we plot Bode diagrams of a MPF 
15µF-400 V capacitor at different ageing states, we note, as 
shown in Fig. 6, two distinct frequency regions separately 
dominated by ESR and C. 

From the plotted curves, one can notice an evolution of the 
ESR and C for different ageing states. From theses curves, one 
can observe that the decrease of the capacitor impedance at 
low frequencies is followed by a decrease of the capacitance 
impedance at the resonant frequency (fres).  This is interpreted 
by a link between the C and ESR. The C is estimated using 
(18) at low frequencies where 1/(2πfC) >> ESR: 
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| | 2
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C
Z fπ

=
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The ESR, estimated on the basis of its relation with C, is 
given by the NFN model where the output of the model is the 
ESR estimated at a time t denoted 

t
ˆESR and the inputs are a 

series of impedances noted Zfi measured at different 
frequencies. This estimation is obtained by considering the 
following assumption.  

Consider a series of impedances "Z" measured from an 
MPF capacitor. These measurements are used to estimate an 

unobservable parameter noted 
t

ˆESR via a function f(Z). This 

function is expressed as follows: 

 ˆ ( ) ( ... )
2 1t fn f fESR f Z f Z , ,Z ,Z= =  (19) 

where n represents the number of impedance measures used 

for the estimation of the
t

ˆESR . In the case of the MPF 

capacitor, n = 4 corresponds to the impedances Zf1 ,Zf2 ,Zf3 and 

Zf4  measured respectively at 200, 300, 400 and 500 Hz at time 
t. The choice of the frequencies 200, 300, 400 and 500 Hz is 
justified by the fact that the impedance of the capacitor for 
frequencies higher than 500 Hz will be disturbed because of 

the low amplitudes of harmonics (i.e., Fig. 13). The 
t

ˆESR  is 

the NFN output which corresponds to the ESR at the resonant 
frequency (~1 MHz).  

 

TABLE I 
COMPARISON BETWEEN CAPACITANCE (C) AND EQUIVALENT SERIES 

RESISTANCE (ESR) EVOLUTIONS UNDER DIFFERENT STRESSES 

Ageing 
tests 

Standard ageing at 
constant voltages 
and temperatures 

High 
ripple 

currents  

High ripple 
current 

with a dc 
voltage 

High 
current 
pulses 

Drawbacks 
ESR  ESR  ESR  ESR  

C  C  C  C  
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Fig. 6. Impact of ageing on capacitance (C) and equivalent series 
resistance (ESR) of a metallized polymer film capacitor for different 
accelerated ageing tests. 

 
Since ESR values may differ from one capacitor to another 

(due to contact resistance), an additional input was introduced 
to the NFN model, that is Zf0 = ESR0 corresponding to the ESR 
of the monitored component at its healthy state (t=0). Very 
often, most of the diagnostic techniques require the knowledge 
of the component initial state regardless of the exploited 
physical quantity. 

Fig. 7 illustrates the inputs and output of the NFN model. 
The output of the NFN is expressed as follows: 

 
0

i

n

t i f

i

ˆESR f ( Z )
=

=  (20) 

with
if

Z a normalized impedance (observation) situated in the 

ith position of the impedance series. The first position of the 
impedance series represents the normalized ESR at the healthy 

state 
0f

Z = 0ESR . 

The function 
ii ff ( Z ) is formulated as follows: 

 
1

h

i fi ji ji fi

j

f ( Z ) ( Z )ω µ
=

= ⋅  (21) 

Where ωji are the interconnecting weights between the ith input 

fi
Z and the jth membership value

ji fi
( Z )µ . 

As for SCs, the membership values
ji fi
( Z )µ are extracted 

from triangular functions spaced equivalently according the 

number (h). 
ji fi
( Z )µ is expressed as follows: 
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The function
ii ff ( Z )depends only on two neighboring 

membership functions (j, j+1). It is expressed as follows: 

 1 1i fi ji ji fi j ,i j ,i fif ( Z ) ( Z ) ( Z )ω µ ω µ+ += ⋅ + ⋅  (23) 

The weight ωji is updated by a learning process based on the 
same principle of (17). 
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Fig. 7. Neo-fuzzy neuron (NFN) architecture for the equivalent 

series resistance (ESR) estimation. 
 

Finally, The estimation of t
ˆESR  is given by: 

 0 0f i fi n fn
ˆESR f ( Z ) ... f ( Z ) ... f ( Z )= + + + +  (24) 

V. EXPERIMENTAL SETUP 

A. Health monitoring of SCs 

1) SC test bench for ESR and C prediction 
Fig. 8 shows the test bench used to obtain the experimental 

ageing results for ESR and C evolution. Nine independent DC 
voltage sources were used to maintain a fixed voltage 
constraint for 9 SCs. A first group of 3 SCs was aged at 2.8 V, 
3 other SCs were aged at 2.7 V and the last 3 SCs group was 
aged at 2.3 V. A programmable thermal chamber allowed 
fixing a temperature constraint equal to 60°C for all SCs. Then 
a second batch of 9 SCs was aged at 50 °C within the same 
voltage constraints. Thus, a total amount of 18 SCs were 
tested. Those ageing results were used for building the 
learning and test database. A 4-point connection was realized 
due to the impedance of the SC which was in the same order 
of magnitude as the electrical wires (0.1 mΩ). An impedance 
spectrometer was used for the characterization of SCs. Some 
of the experimental results are presented in Fig.  2. 

SCs are characterized by galvanostatic mode EIS (sinewave 
current imposed and voltage amplitude and phase measured) 
at ageing voltage (2.3 V, 2.7 V or 2.8 V).  

 

 

 

 

 
Fig. 8. Test bench for supercapacitor ageing. 
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(10 kHz) to the low frequency (10 mHz). The capacitor and 
the resistance were characterized at low frequency (100 mHz), 
see eq. (6) and (7), as the SC is used for low frequency 
applications (1 to 10 s power supply, braking energy recovery 
in electric vehicles, etc.). 

2) Prediction of the ESR and C evolution 

The prediction of the ESR and C passed by three steps: 
database creation, learning and validation. 

- Step 1. Database creation: The learning database was 
created from 12 identical SCs of 3000 F and 2.7 V placed in a 
thermal chamber regulated at 60°C for the first batch of 6 SCs 
and 50°C for the second batch of 6 SCs. Each batch was 
divided into two groups, in which each one was supplied with 
a specific voltage (2.8 V for group 1 and 2.3 V for group 2). 
The ageing evolution of these components showed that SCs of 
the same group followed the same ageing evolution. These 
results validated our measuring method and therefore 
validated the learning database. This was obtained by 
characterizing each SC thanks to an impedance spectrometer.    

- Step 2. Learning: To show the learning capability of 
the NFN model, consider a database composed of two SCs 
noted SC1 and SC3 supplied respectively with 2.8 V and 2.3 V 
at 60°C. Based on the learning database created in step 1, two 
NFN models were created based on the ageing of the 12 SCs 
supplied at 2.3 V and 2.8 V and placed at 50°C and 60°C. The 
first model was used to estimate the ageing of the ESR and the 
second model to estimate the ageing of the C. The input of the 
first NFN model included the time series XESR for SC1 and SC3. 
The interval between each measure was expressed in hours. 
This time series is defined as follows: 

400 300 200 100{ , ,  ,  ,  ,  , }
ESR t t t t t t t

X V ESR ESR ESR ESR ESRθ − − − −=  

The second model included the time series XC for SC1 and 
SC3. These time series are defined as follows: 

400 300 200 100{ , ,  ,  ,  ,  , }
C t t t t t t t

X V C C C C Cθ − − − −=  

The interval r between each measure was fixed to 100 h 
(r=100), (n-2) = 4, θt=60°C,Vt=2.3V for SC3 and Vt=2.8V for 
SC1. The output of the two models corresponded respectively 
to the estimation of the ESR and C, for a horizon of prediction 
(p) equal to 2600 h. 

Two hundred triangular MFs (h=200) were used for each 
input of the NFN model. The interconnecting weights were 
updated in order to match the estimations values (prediction) 
with the desired ones.  

The learning rate ρ was fixed according to normalized root 
mean square error (NRMSE). The NRMSE is the error 
between the estimation and the measure of the ESR and C. It 
is formulated as follows: 

 

( )2

1

1 N

i i

i

max min

ˆy y
N

NRMSE
y y

=

−
=

−


 (25) 

where N represents the number of predicted values, iy  and 

i
ŷ represent respectively the estimated and the real values of 

the ith prediction. ymax and ymin are respectively the maximum 
and minimum values of the curve. 

Figures 9(a) and 9(b) show the estimation results given by 
the two NFN models based on the learning database. The 
second step showed good results for a learning rate ρ = 0.5 
with a NRMSE equal to 0.772*10-6 for the C and a NRMSE 

close to 0 for the ESR. 

- Step 3. Validation: Figures 10(a) and (b) show respectively 
the ageing evolution of the ESR and C of a SC noted SC2 
supplied with 2.7 V at 60°C (blue curve). The input of the 
NFN was the time series XESR and XC. The temperature 
θt=60°C and the voltage Vt was fixed to 2.7 V. Each input of 
the model was connected to 200 MF (h=200). The output of 

the model was the t p
ˆESR +  and t p

Ĉ +  with p = 2600 h (red 

curve). The NRMSE of the ESR and C were respectively 
0.025 and 0.004. Table II gives the NRMSE of the ESR and C 
for different horizons of prediction (p= 100h, 1100h,...).  
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Fig. 9 (a). Learning result of the equivalent series resistance (ESR) 
neo-fuzzy neuron model for SC1 (2.3 V, 60°C) and SC3 (2.8 V, 60°C) 
with a horizon p=2600 h. 
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Fig. 9(b). Learning result of the capacitance (C) neo-fuzzy model for 
SC1 (2.3 V, 60°C) and SC3 (2.8 V, 60°C) with a horizon p=2600 h. 
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Fig. 10(a). Prediction of the capacitance (C) evolution for an 
accelerated ageing test of SC2 (2.7 V, 60°C). 
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Fig. 10(b). Prediction of the equivalent series resistance (ESR) 
evolution for an accelerated ageing test of SC2 (2.7 V, 60°C). 
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Results of Table II show that the values of the NRMSE for 

the ESR and C are very small and therefore demonstrated that 
the introduction of the voltage and temperature in the time 
series of the ESR and C is a good strategy to predict the 
ageing of SCs. The peak in the ESR located after 5500 h (see 
Fig. 10(b)) was due to a stop of two weeks in the ageing 
process. The effect of ageing perturbation disappeared after a 
few times of relaunching. After that, the ESR increased 
normally. 

The decrease in the C value indicated the degree of 
degradation in the contact surface between the electrolyte and 
the electrode of the SC. This decrease was interpreted by a 
decrease in energy storage capability. 

The ageing of the ESR depends on the quality of contacts 
which are linked to the internal pressure of the SC. The 
increase in pressure causes a deformation of the SC, which can 
induce a breakdown in contacts. This defect is observable in 
Fig. 10 (a) where the value of the ESR jumps after 3500 h. 
This defect was not observable in the evolution of the C. This 
is why it is necessary to monitor simultaneously the evolution 
of the ESR and C. 

B. Health monitoring of capacitors 

1) MPF test bench  
The test bench used for the ESR estimation was a switched 

mode power supply 230V AC/24V DC, 0-iSmax as described in 
the block diagram of Fig. 11. 
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Fig. 11. Representation of the switched mode power supply. 
 
Each of the input capacitors C1, C2, C3 and C4 was made of 
two MPF capacitors 15µF-400V connected in parallel. 

2) Estimation of the ESR  

- Step 1. Database creation: 
The database was created from 8 identical MPF capacitors 

of 15µF-400V. These capacitors were subjected to a 
temperature constraint varying between 85°C and 100°C and a 
voltage constraint varying between 1.1 and 1.3∙UR. UR is the 

capacitor rated voltage. The database was obtained by 
evaluating the impedance from the fast Fourier transform 
(FFT) of the current and voltage signals. The C was then 
calculated by using (18) at the low frequency and the ESR was 
estimated by the NFN model.  

 
- Step 2. Learning:  
This step considered the database of the MPF capacitor #1 
(15µF-400V) supplied with 1.1∙UR at 85°C. This database was 
composed of an impedance series corresponding respectively 
to the frequencies (fres, 200 Hz, 300 Hz, 400 Hz and 500 Hz) 
and acquired at different time intervals (hours) during the 
ageing process. This database is summarized in Table III. 

To test the accuracy estimation of the ESR by the NFN 
model, three MPF capacitors of 15µF-400V subjected to 
different electrical and thermal stresses were tested. The 
constraints are defined in Table IV. 

ESR estimation results are given in Table V. 
 

TABLE III 
LEARNED DATABASE 

Input 

Time 

Zfi (mΩ) 

frequency 200 Hz 300 Hz 400 Hz 500 Hz 

0 h 0.015 52.1 34.7 25.8 20.6 

150 h 0.018 54.5 36.3 27 21.6 

350 h 0.021 59.3 39.4 29.3 23.5 

850 h 0.022 64.3 42.8 31.8 31.8 

1350 h 0.023 70.2 46.7 34.7 27.8 

TABLE IV 
TESTED CAPACITORS 

MPF 15 µF # 2  # 4  # 6 

Temperature 85ºC  100ºC 85ºC 

Voltage 1.1∙UR 1.1∙UR 1.3∙UR 

TABLE V 
ESTIMATED EQUIVALENT SERIES RESISTANCE (ESR)  

MPF 15 µF # 2 

Ageing time (h) 50 150 350 850 1300 

ESR estimation error (%) 2.5 2.2 5.8 0.9 3.8 

MPF 15 µF #4 

Ageing time (h) 3 25 74 256 413 

ESR estimation error (%) 2.5 0.18 3.4 1.5 1.8 

MPF 15 µF # 6 

Ageing time (h) 5 26 43 85 116 

ESR estimation error (%) 2.3 1.8 5 0.6 1.4 

 
The obtained results show that estimation errors of the ESR 

were small (error<5.8%). In addition, these results show that 
the introduction of ESR0 in the impedance series allowed 
estimating the ESR of MPF capacitors subjected to electrical 
and thermal stresses which differed from those used in the 
learning phase. 

 
- Step 3. Validation: Online health monitoring 

Health monitoring was validated by measuring online the 
current and voltage across the capacitor C3 where one of its 
MPF capacitor has been replaced by an aged component. The 
ageing process was simulated by replacing at specified 

TABLE II 
NORMALIZED ROOT MEAN SQUARE ERROR (NRMSE) OF THE EQUIVALENT 

SERIES RESISTANCE (ESR) AND CAPACITANCE C FOR SC2 
 

Horizon of prediction p 
(hours) 

NRMSE (%) 

ESR C 

100 0.126 0.036 

1100 0.249 0.041 

16000 0.253 0.041 

26000 0.290 0.043 

46000 0.813 0.049 

 



intervals (1300 h, 413 h, 113 h) the component forming C3 by 
the MPFs (#2, #4, #6). 

Figure 12 shows the curve of the current and voltage 
measured across the aged capacitor. 
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Fig. 12. Voltage and current signals corresponding to an aged 
capacitor. 

After performing a FFT on the current and voltage signals, 
the impedance series Zfi located at the frequencies (fres, 200 Hz, 
300 Hz, 400 Hz and 500 Hz) was extracted. The ESR0, located 
in the resonance frequency was deduced before the ageing 
process thanks to an impedance spectrometer. Figure 13 shows 
the curve of the impedance ZMPF. The blue curve represents 
the impedance identified online from the current and voltage 
signals. The red curve represents the impedance of the MPF 
capacitor measured from the impedance spectrometer. One 
can observe that the two curves are identical in the low band 
frequencies. This is why the impedance series is limited from 
200 to 500 Hz. The estimated ESR and C given in Table VI 
show that the estimated values of ESR and C are coherent with 
those measured with an impedance meter, which proves the 
effectiveness of our approach. 
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Fig. 13. Comparison between the impedance obtained from the 
voltage and current signals (blue curve) and the impedance measured 
by an impedance meter (red curve).  

 
TABLE VI 

ESTIMATED EQUIVALENT SERIES RESISTANCE (ESR) AND CAPACITANCE (C) 

 
MPF 15µF#2 at 

1300 h 
MPF 15µF#4 at 

413 h 
MPF 15µF#6 at 

116 h 

Electrical 
parameter 

Estimated error 

(%) 

Estimated error 

(%) 

Estimated error 

(%) 

C (µF) 0.47 1.6 1.8 

ESR (mΩ) 2.45 2.1 4.4 

VI. CONCLUSION 

A model for the health monitoring of MPF capacitors and 
SCs based on the NFN model has been proposed in this paper. 
The bibliographical research showed that monitoring ESR and 
C is the best way for tracking the ageing of these components. 
For SCs, a time series composed by the ESR or C has been 
used in the NFN model. The obtained results showed that the 
introduction of temperature and voltage in this time series 
allow obtaining good predictions of ESR and C and therefore 
an accurate estimation of the remaining useful life. The same 
model was proposed for the estimation of ESR in the case of 
MPF capacitors. A series of impedances located in the low 
frequencies were used in the NFN model. Since ESR values 
may differ from one capacitor to another, an additional input 
was added to the impedance series, that is the ESR0 
corresponding to the healthy state. This strategy allows a 
robust and accurate estimation of the ESR. The proposed 
approach requires a database creation step and a learning step 
on a healthy and aged state. Further research is currently 
underway to implement the NFN predictor in complex 
industrial facilities and to develop new strategies for health 
monitoring and to generalize it to all ESS devices (batteries). 
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