
HAL Id: hal-01631422
https://inria.hal.science/hal-01631422

Submitted on 9 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Programming Adaptive Microservice Applications: an
AIOCJ Tutorial

Saverio Giallorenzo, Ivan Lanese, Jacopo Mauro, Maurizio Gabbrielli

To cite this version:
Saverio Giallorenzo, Ivan Lanese, Jacopo Mauro, Maurizio Gabbrielli. Programming Adaptive Mi-
croservice Applications: an AIOCJ Tutorial. Simon Gay; António Ravara. Behavioural Types: from
Theory to Tools, River Publishers, 2017. �hal-01631422�

https://inria.hal.science/hal-01631422
https://hal.archives-ouvertes.fr

7
Programming Adaptive Microservice

Applications: an AIOCJ Tutorial⇤

Saverio Giallorenzo1, Ivan Lanese1,
Jacopo Mauro2, and Maurizio Gabbrielli1

1Focus Team, University of Bologna/INRIA, Italy
2Department of Informatics, University of Oslo, Norway

⇤Supported by the COST Action IC1201 BETTY, by the EU project FP7-644298 HyVar:
Scalable Hybrid Variability for Distributed, Evolving Software Systems, by the GNCS group
of INdAM via project Logica, Automi e Giochi per Sistemi Auto-adattivi, and by the EU EIT
Digital project SMAll.

Programming Adaptive Microservice
Applications: an AIOCJ Tutorial

Abstract

This tutorial describes AIOCJ, which stands for Adaptive Interaction Ori-
ented Choreographies in Jolie, a choreographic language for programming
microservice-based applications which can be updated at runtime. The com-
pilation of a single AIOCJ program generates the whole set of distributed
microservices that compose the application. Adaptation is performed using
adaptation rules. Abstractly, each rule replaces a pre-delimited part of the
program with the new code contained in the rule itself. Concretely, at runtime,
the application of a rule updates part of the microservices that compose the
application so to match the behavior specified by the updated program. Thanks
to the properties of choreographies, the adaptive application is free from
communication deadlocks and message races even after adaptation.

Keywords: Adaptation, Distributed Applications, Microservices, Correctness-
by-Design.

1 Introduction

Today, most applications are distributed, involving multiple participants scat-
tered on the network and interacting by exchanging messages. While still
widely used, the standard client-server topology has shown some of its limita-
tions and peer-to-peer and other interaction patterns are raising in popularity
in many contexts, from social networks to business-to-business, from gaming
to public services. Programming the intended behavior of such applications
requires to understand how the behavior of the single program of one of
their nodes combines with the others, to produce the global behavior of the
application. In brief, it requires to master the intricacies of concurrency and
distribution. There is clearly a tension between the global desired behavior of
a distributed application and the fact that it is programmed by developing local

4 Programming Adaptive Microservice Applications: an AIOCJ Tutorial

programs. Choreographies [1, 2, 3, 4, 5], and more specifically choreographic
programming [6], aim at solving this tension by providing to developers a
programming language where they directly specify the global behavior. A
sample choreography that describes the behavior of an application composed
of one client and one seller is:

1 product_name@client = getInput("Insert product name");
2 quote: client(product_name) -> seller(sel_product)

The execution starts with an action performed by the client: an input request
to the local user (line 1). The semicolon at the end of the line is a sequential
composition operator, hence the user input should complete before execution
proceeds to line 2. Then, a communication between the client and the seller
takes place: the client sends a message and the seller receives it. A more
detailed description of the choreographic language used in the example above
is presented in Section 3.

Following the choreographic programming approach, given a choreog-
raphy, the local programs that implement the global specification are auto-
matically generated by the language compiler, ready for the deployment in
the intended locations and machines. For instance, the compilation of the
choreography in the example produces the local codes of both the client
and the seller. The local code of the client starts with a user interaction,
followed by the sending of a message to the seller. The local code of the
seller has just one action: the reception of a message from the client.

The choice of a choreographic language has also the advantage of avoiding
by construction common errors performed when developing concurrent and
distributed applications [7]. Notably, these include communication deadlocks,
which may cause the application to block, and message races, which may lead
to unexpected behaviors in some executions.

Another advantage of the choreographic approach is that it eases the task
of adapting a running distributed application. We recall that nowadays applica-
tions are often meant to run for a long time and should adapt to changes of
the environment, to updates of requirements, and to the variability of business
rules. Adapting distributed applications at runtime, that is without stopping
and restarting them, and with limited degradation of the quality of service, is a
relevant yet difficult to reach goal. In a choreographic setting, one can simply
specify how the global behavior is expected to change. This approach leaves
to the compiler and the runtime support the burden of concretely updating the
code of each local program. This update should be done avoiding misbehaviors

2 AIOCJ Outline 5

while the adaptation is carried out and ensuring a correct post-adaptation
behavior.

This tutorial presents AIOCJ1, which stands for Adaptive Interaction
Oriented Choreographies in Jolie, a framework including i) a choreographic
language, AIOC, for programming microservice-based applications which can
be dynamically updated at runtime and ii) its runtime environment. The main
features of the AIOCJ framework are:

Choreographic approach: the AIOC language allows the programmer to
write the behavior of a whole distributed application as a single program;

Runtime adaptability: AIOCJ applications can be updated by writing new
pieces of code embodied into AIOC adaptation rules. Adaptation rules
are dynamically and automatically applied to running AIOCJ applica-
tions, providing new features, allowing for new behaviors, and updating
underlying business rules.

Microservice architecture: AIOCJ applications are implemented as systems
of microservices [8]. Indeed, we found that the microservice architectural
style supports the fine-grained distribution and flexibility required by our
case. As a consequence, AIOCJ applications can interact using standard
application-layer protocols (e.g., SOAP and HTTP) with existing (legacy)
software thus also facilitating and supporting the integration of existing
systems.

A more technical account of the AIOCJ framework can be found in the liter-
ature, describing both the underlying theory [9] and the tool itself [10]. AIOCJ
can be downloaded from its website [11], where additional documentation and
examples are available.

2 AIOCJ Outline

As described in the Introduction, AIOC is a choreographic language for
programming microservice-based applications which can be dynamically
updated at runtime. The AIOCJ framework is composed of two parts:

• the AIOCJ Integrated Development Environment (IDE), provided as
an Eclipse plugin, that lets developers write both AIOC programs and

1 The tutorial refers to version 1.3 of AIOCJ.

6 Programming Adaptive Microservice Applications: an AIOCJ Tutorial

Figure 1 The AIOCJ IDE

the adaptation rules that change the behavior of AIOCJ applications at
runtime;

• the AIOCJ Runtime Environment (RE), which is used to support the
execution and the adaptation of AIOCJ applications.

The AIOCJ IDE (see the screenshot in Figure 1) offers standard functionalities
such as syntax highlighting and syntax checking. However, the most important
functionality of the IDE is the support for code compilation. The target
language of the AIOCJ compiler is Jolie [12, 13], the first language natively
supporting microservice architectures. A key feature of the Jolie language is
its support for a wide range of communication technologies (TCP/IP sockets,
Unix domain sockets, Bluetooth) and of protocols (e.g., HTTP, SOAP, JSON-
RPC) that makes it extremely useful for system integration. AIOC inherits this
ability since it makes the communication capabilities of Jolie available to the
AIOC programmer.

Since AIOC is a choreographic language, each AIOC program defines a
distributed application. The application is composed of different nodes, each
taking a specific role in the choreography. Each role has its own local state,
and the roles communicate by exchanging messages. The structure of AIOCJ
applications makes the compilation process of AIOCJ peculiar for two main
reasons:

• the compilation of a single AIOC program generates one Jolie microser-
vice for each role involved in the choreography, instead of a unique
executable for the whole application;

• the compilation may involve either an AIOC program, or a set of AIOC
adaptation rules. In particular, the latter may be compiled even after the

2 AIOCJ Outline 7

compilation, deployment, and launch of the AIOC program. Thus AIOC
adaptation rules can be devised and programmed while the application is
running, and therefore applied to it at runtime.

Adaptation rules target well-identified parts of AIOC programs. Indeed, an
AIOC program may declare some part of its code as adaptable by enclosing it in
a scope block. Abstractly, the effect of the application of an AIOC adaptation
rule to a given scope is to replace the scope block with new code, contained
in the adaptation rule itself. Concretely, when the distributed execution of
an AIOC program reaches a scope, the AIOCJ RE checks whether there
is any adaptation rule applicable to it. If this is the case, then the running
system of microservices adapts so to match the behavior specified by the
updated choreography. This adaptation involves coordinating the distribution
and execution of the local codes corresponding to the global code in the
adaptation rule. If instead no rule applies, the execution proceeds as specified
by the code within the scope.

In the rest of this section we describe the architecture of AIOCJ and
the workflow that developers, or better DevOps2, have to follow in order to
compile, deploy, and adapt at runtime an AIOCJ application (a more detailed
step-by-step description is in Section 6). We instead dedicate Sections 3 to 5
to the description of the AIOC language.

2.1 AIOCJ Architecture and Workflow

The AIOCJ runtime environment comprises a few Jolie microservices that
support the execution and adaptation of compiled programs. The main mi-
croservices of the AIOCJ runtime environment are:

• Adaptation Manager, a microservice in charge of managing the adaptation
protocol;

• Adaptation Server, a microservice that contains a set of adaptation rules;
• Environment, a microservice used to store values of global properties

related to the execution environment. These properties may be used to
check whether adaptation rules are applicable or not.

More precisely, a runtime environment includes one Adaptation Manager,
zero or more Adaptation Servers, each of them enabling a set of adaptation
rules, and, if needed to evaluate the applicability conditions of the rules,

2 DevOps is a portmanteau of “development” and “operations” used to indicate the
professional figure involved in the development, deployment, and operation of the application.

8 Programming Adaptive Microservice Applications: an AIOCJ Tutorial

Runtime Environment

Choreography

Client

Seller

Adaptation
Server

Adaptation
Manager

Environment

AIOC Language Jolie Language

Adaptation
Rules

AIOC Language

Compilation on

role client

Compilation on

role seller

Compilation
1

2

3

Figure 2 The AIOCJ framework — deployment and execution of a choreography.

one Environment microservice. Adaptation Servers can be added or removed
dynamically, thus enabling dynamic changes in the set of rules.

Microservices compiled from AIOC code interact both among themselves,
as specified by the choreography, and with the Adaptation Manager, to carry
out adaptation. Indeed, when a scope is about to be executed, the Adaptation

Manager is invoked to check whether the scope can be executed as it is, or if it
must be replaced by the code provided by some adaptation rule, made available
by an active Adaptation Server. In fact, when started, an Adaptation Server

registers itself at the Adaptation Manager. The Adaptation Manager invokes
the registered Adaptation Servers to check whether their adaptation rules
are applicable. In order to check applicability, the corresponding Adaptation

Server evaluates the applicability condition of the rule, possibly interacting
with the Environment microservice. The first applicable adaptation rule, if any,
is used to replace the code of the scope.

Let us consider an example. Take a simple choreography in AIOC involv-
ing two roles, client and seller. Figure 2 depicts the process of compilation

1� and execution 2� of the AIOC. From left to right, we use the IDE to
write the AIOC and to compile it into a set of executable Jolie microservices
(Client and Seller). To execute the generated application, we first launch the
Adaptation Manager and then the two compiled microservices.

Now, let us suppose that we want to adapt our application. Assuming that
the choreography has at least one scope, we only need to write and introduce
into the system a new set of adaptation rules. Figure 2 depicts the needed steps.
From right to left, we write the rules (outlined with dashes) and we compile
them using the IDE 3�. The compilation of a set of adaptation rules in AIOCJ
produces a single Adaptation Server (also outlined with dashes). After the

3 Choreographic Programming 9

compilation, the generated Adaptation Server is deployed and started, and it
registers itself at the Adaptation Manager. If environmental information is
needed to evaluate the applicability condition of the rule, then the DevOps
has also to deploy the Environment microservice. From now on, until the
Adaptation Server is shut down, the rules it contains are active and can be
applied to the application. Actual adaptation happens when a scope is about
to execute, and the applicability condition of the rule for the current scope
is satisfied. This adaptation is performed automatically and it is completely
transparent to the user, except for possible differences in the visible behavior
of the new code w.r.t. the original one.

3 Choreographic Programming

The main idea of choreographic programming is that a unique program de-
scribes the behavior of a whole distributed application. The main construct of
such a program are interactions, such as:

quote: client(product_name) -> seller (sel_product)

This interaction specifies that role client sends a message to role seller
on operation quote. The value of the message is given by the evaluation of
expression product_name (here just a variable name) in the local state of
role client. The message will be stored by the seller in its local variable
sel_product. An interaction involves two roles of the choreography, but other
choreography constructs involve just one role. For instance, an assignment
like continue@client = "y", means that the string "y" is assigned to the
variable continue of role client, as specified by the @ operator.

Let us now detail a simple AIOC program implementing a client/seller
interaction featuring a payment via a bank (see Listing 7.1). We will use
this program as running example throughout the tutorial. Lines 1–6 form the
preamble, which specifies some deployment information:

• line 2 declares the starter of the choreography, i.e., the first role that
needs to be started and the one that coordinates the start of the application
by waiting for the other roles to join;

• lines 3–5 specify how the roles participating to the choreography can
be reached. In this case, all the three roles communicate using TCP/IP
sockets, as specified by the "socket://" prefix of the URI.

The actual code is introduced by the keyword aioc. After the local assign-
ment at line 9, line 10 introduces a while loop. The @client suffix specifies

10 Programming Adaptive Microservice Applications: an AIOCJ Tutorial

1 preamble {
2 starter: client
3 location@client: "socket://client.com:5000"
4 location@seller: "socket://seller.com:5050"
5 location@bank: "socket://bank.com:6000"
6 }
7
8 aioc {
9 continue@client = "y";
10 while(continue == "y")@client{
11 product_name@client = getInput("Insert product name");
12 quote: client(product_name) -> seller(sel_product);
13 price@seller = getInput("Quote product: " + sel_product);
14 if (price > 0)@seller{
15 quoteResponse: seller(price) -> client(product_price);
16 accept@client = getInput(
17 "Do you accept to buy the product: " + product_name +
18 " at price: " + product_price + "? [y/n]");
19 if (accept == "y")@client{
20 orderPayment: client(product_price) -> bank(amount);
21 authorisePayment@bank = getInput(
22 "Do you authorise the payment: " + amount + " [y/n]?");
23 if (authorisePayment == "y")@bank{
24 issuePayment: bank(amount) -> seller(payment);
25 productDelivery: seller() -> client();
26 r@client = show("Object delivered")
27 } else {
28 r@client = show("Payment refused")
29 }
30 }
31 } else {
32 _r@client = show("Product " + product_name + " unavailable.")
33 };
34 continue@client = getInput("Continue shopping? [y/n]")
35 }
36 }

Listing 7.1 Running example: basic choreography.

that the guard is evaluated by the client in its local state. Notice that the
decision about whether to enter the loop or not is taken by the client but it
impacts also other roles. These roles are notified of the choice by auxiliary
communications which are automatically generated. The assignment at line
9 and the while loop starting at line 10 are composed using a semicolon,

4 Integration with Legacy Software 11

which represents sequential composition. Line 11 is again an assignment,
where built-in function getInput is used to interact with the local user. The
function creates a window showing the string in parameter and returns the
input of the user. Line 12 is an interaction between the client and the seller. The
next interesting construct is at line 14, featuring a conditional. As for while
loops, the conditional specifies which role is in charge of evaluating the guard,
and other roles are automatically notified of the outcome of the evaluation.
Function show (line 26) is a built-in function like getInput, simply showing
a message.

Abstracting from the technical details, the choreography specifies that the
client asks the quote for a product (line 12), and then decides whether to buy
it or not (line 19). In the first case, the client asks the bank to perform the
payment (line 20). If the payment is authorized (line 23), then the money is
sent to the seller (line 24), which delivers the product to the client (line
25). At the end of the interaction, the client may decide to buy a new product
or to stop (line 34).

When writing AIOC programs, beyond the usual syntactic errors, one
should pay attention to a semantic error peculiar of choreographic program-
ming. Indeed, a semicolon specifies that the code before the semicolon should
be executed before the code after the semicolon. However, since there is no
central control, such a constraint can only be enforced if for each pair of
statements S and T such that S is just before the semicolon and T is just after
the semicolon, there is a role occurring in both S and T. This property is called
connectedness [9] and it is needed to enforce the sequentiality of the actions.
When connectedness does not hold, AIOCJ IDE alerts the user by showing
the error “The sequence is not connected”. Instead of asking the programmer
to satisfy connectedness, one could extend AIOCJ to automatically insert
auxiliary communications to ensure connectedness, similarly to what is done
for while loops and conditionals. Such an extension is left as future work.

4 Integration with Legacy Software

The example in the previous section shows how one can program a
distributed application in AIOCJ. However, such a distributed application
is closed: there is no interaction between the application and the outside world,
except for basic visual interactions with the users of the application. As we
will see below, AIOCJ applications are not necessarily closed systems. Indeed,
AIOCJ provides a strong support to integration with legacy software. We

12 Programming Adaptive Microservice Applications: an AIOCJ Tutorial

1 include quoteProduct from "socket://localhost:8000" with SOAP
2 include makePayment from "socket://localhost:8001/IBAN" with HTTP
3
4 preamble {
5 starter: client,
6 location@client: "socket://client.com:5000"
7 location@seller: "socket://seller.com:5050"
8 location@bank: "socket://bank.com:6000"
9 }
10
11 aioc {
12 continue@client = "y";
13 while(continue == "y")@client{
14 product_name@client = getInput("Insert product name");
15 quote: client(product_name) -> seller(sel_product);
16 price@seller = quoteProduct(sel_product);
17 if (price > 0)@seller{
18 quoteResponse: seller(price) -> client(product_price);
19 accept@client = getInput(
20 "Do you accept to buy the product: " + product_name +
21 " at price: " + product_price + "? [y/n]");
22 if (accept == "y")@client{
23 orderPayment: client(product_price) -> bank(amount);
24 authorisePayment@bank = makePayment(amount);
25 if (authorisePayment == "y")@bank{
26 issuePayment: bank(amount) -> seller(payment);
27 productDelivery: seller() -> client();
28 r@client = show("Object delivered")
29 } else {
30 r@client = show("Payment refused")
31 }
32 }
33 } else {
34 _r@client = show("Product " + product_name + " unavailable.")
35 };
36 continue@client = getInput("Continue shopping? [y/n]")
37 }
38 }

Listing 7.2 Running example: integration with external services.

5 Adaptation 13

already cited that AIOCJ is based on the microservice technology. As such,
it supports interaction with external services via standard application-layer
protocols, such as SOAP and HTTP. Such services are seen as functions inside
AIOC programs, and can be invoked and used inside expressions.

Let us see how this can be done by refining our running example from
Listing 7.1 into the one in Listing 7.2.

In Listing 7.2, lines 1 and 2 declare two external services, quoteProduct
invoked using SOAP and makePayment invoked using HTTP (more precisely,
a POST request carrying XML data). Both external services communicate
with AIOCJ using TCP/IP sockets. The first service is invoked at line 16 by the
seller and it is used to check the price of a given product. In principle, such
a service can be either publicly available or a private service of the seller.
Here, we assume that this service gives access to the seller IT system, e.g.,
to the database storing prices of the available products. The second service
is invoked at line 24 by the bank, and gives access to the bank IT system.
One can easily imagine to make the example more realistic by adding other
external services taking care, e.g., of shipping the product.

We now discuss in more detail how function arguments are encoded for
service invocation and how the result is sent back to the caller. In general
AIOCJ functions can have an arbitrary number of parameters, separated by
commas. The parameters are embedded in a tree structure which is then
encoded according to the chosen application-layer data protocol. The tree
structure has an empty root with a number of children all named p (for
parameter) carrying the parameters of the invocation, in the order in which
they are specified. The return value instead has basic type (such as string,
integer, double) and it is contained in the root of the response message.

For instance, consider a sample function myFunction, with three parame-
ters, a string, an integer, and a double. If the data protocol for myFunction is
SOAP, then the AIOCJ application would send a SOAP message as reported
in Listing 7.3. A possible reply to the message above is a SOAP message of
the form reported in Listing 7.4.

Other application-layer data protocols would produce similar structures.
Currently, AIOCJ supports SOAP, HTTP, SODEP (i.e., Jolie’s binary data
protocol), JSON/RPC, and XML/RPC. As far as the communication medium
is concerned, AIOCJ supports other options beyond TCP/IP sockets, namely
Bluetooth with URIs of the form "btl2cap://0050CD00321B:101" and Unix
domain sockets with URIs of the form "localsocket://var/comm/socket".
The choice of the communication medium and the choice of the application-
layer data protocols are orthogonal.

14 Programming Adaptive Microservice Applications: an AIOCJ Tutorial

1 <?xml version="1.0" encoding="utf-8" ?>
2 <SOAP-ENV:Envelope
3 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
4 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
5 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
6 <SOAP-ENV:Body>
7 <myFunctionRequest>
8 <p xsi:type="xsd:string">parameter1</p>
9 <p xsi:type="xsd:int">2</p>
10 <p xsi:type="xsd:double">3.14</p>
11 </myFunctionRequest>
12 </SOAP-ENV:Body>
13 </SOAP-ENV:Envelope>

Listing 7.3 Function invocation: SOAP message request.

1 <?xml version="1.0" encoding="utf-8" ?>
2 <SOAP-ENV:Envelope
3 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
4 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
5 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
6 <SOAP-ENV:Body>
7 <myFunctionResponse xsi:type="xsd:string">
8 responseValue
9 </myFunctionResponse>
10 </SOAP-ENV:Body>
11 </SOAP-ENV:Envelope>

Listing 7.4 Function invocation: SOAP message response.

5 Adaptation

We now come to the main feature of AIOCJ, namely the support for adaptation.
Adaptation is performed in two stages:

1. when writing the original AIOC program, one should foresee which parts
of the code could be adapted in the future, and enclose them into scopes;

2. while the AIOC program is running, one should write adaptation rules to
introduce the desired new behavior.

We introduce in Listing 7.5 three scopes to show how adaptation can be
enabled in the running example in Listing 7.2.

5 Adaptation 15

1 include quoteProduct from "socket://localhost:8000" with SOAP
2 include makePayment from "socket://localhost:8001/IBAN" with HTTP
3
4 preamble {
5 starter: client
6 location@client: "socket://client.com:5000"
7 location@seller: "socket://seller.com:5050"
8 location@bank: "socket://bank.com:6000"
9 }
10
11 aioc {
12 continue@client = "y";
13 while(continue == "y")@client{
14 product_name@client = getInput("Insert product name");
15 quote: client(product_name) -> seller(sel_product);
16 price@seller = quoteProduct(sel_product);
17 if (price > 0)@seller{
18 quoteResponse: seller(price) -> client(product_price);
19 accept@client = getInput(
20 "Do you accept to buy the product: " + product_name +
21 " at price: " + product_price + "? [y/n]");
22 if (accept == "y")@client{
23 orderPayment: client(product_price) -> bank(amount);
24 authorisePayment@bank = makePayment(amount);
25 if (authorisePayment == "y")@bank{
26 scope @seller {
27 issuePayment: bank(amount) -> seller(payment);
28 productDelivery: seller() -> client()
29 } prop { N.scopename = "transaction-execution" };
30 scope @seller {
31 r@client = show("Object delivered")
32 } prop { N.scopename = "success-notification" }
33 } else {
34 scope @seller {
35 r@client = show("Payment refused")
36 } prop { N.scopename = "failure-notification" }
37 }
38 }
39 } else {
40 _r@client = show(product_name + " is unavailable.")
41 };
42 continue@client = getInput("Continue shopping? [y/n]")
43 }
44 }

Listing 7.5 Running example: enabling adaptation.

16 Programming Adaptive Microservice Applications: an AIOCJ Tutorial

Scope transaction-execution at lines 26–29 encloses the body of the
business transaction, with the idea that this can be changed to support integra-
tion with a shipper service, or more refined payment protocols. Then, we have
two scopes, success-notification (lines 30–32) and failure-notification
(lines 34–36), which are in charge of notifying the client of the outcome of
the transaction, with the idea that different forms of notification, e.g., via e-mail
or SMS, could be implemented in the future. Developers can equip scopes
with properties describing their nature and characteristics. These properties
can be used to decide whether a given rule should apply to a given scope
or not. In the example, we just use a property scopename to describe each
scope. In general, however, many properties can be used. For example, if
some scope encloses a part of the code which is critical for security reasons,
one of its properties could declare the security level of the current code. Such
a declaration is under the responsibility of the programmer and it is in no way
checked or enforced by the AIOCJ framework.

Note that each scope is followed by an annotation @role that declares the
coordinator of the adaptation procedure of the scope. The coordinator is in
charge of invoking the Adaptation Manager, which handles the selection of an
applicable adaptation rule. The Adaptation Manager can access the internal
state of the coordinator to check whether an adaptation rule is applicable or
not. The coordinator is also in charge of fetching the local codes compiled
from the selected adaptation rule and of distributing them to the other roles.

Remark 1 We highlight that there is no precise convention on how to place
scopes: one should try to foresee which parts of the AIOC program are
likely to change. As a rule of thumb, parts which are critical for security
or performance reasons may be updated to improve the security level or
the performance of the application. Parts which instead implement business
rules may need to be updated to change the business rules. Finally, parts
that manage interactions with external services may need to be updated to
match changes in the external services. There is also a trade-off involved in the
definition of scopes. On the one hand, large scopes are rarely useful, since
they could be updated only before the beginning of their execution, which can
be quite early in the life of the application. On the other hand, small scopes
may be problematic, since a meaningful update may involve many of them and
currently AIOCJ does not provide a way to synchronize when and how scopes
are updated.

Now that the application in Listing 7.5 is equipped with scopes, it is
ready to be deployed, and offers built-in support for adaptation. While the

5 Adaptation 17

1 rule {
2 on { N.scopename == "transaction-execution" and
3 E.split_payment_threshold < price }
4 do {
5 issuePayment: bank(amount / 2) -> seller(first_payment);
6 productDelivery: seller() -> client();
7 issuePayment: bank(amount / 2) -> seller(second_payment);
8 payment@seller = first_payment + second_payment
9 }
10 }

Listing 7.6 Adaptation rule: split payment.

application is running, a new need may emerge. Assume for instance that the
application, meant for trading cheap products, needs to be used also for more
expensive ones. In this previously unforeseen setting, the fact that the payment
is performed in a single installment and before the shipping of the product
may be undesirable for the Client. One can meet this new need by providing
an adaptation rule (see Listing 7.6) where the payment is performed in two
installments, each consisting in half of the original amount: one sent before
and the other after the delivery of the product. This rule targets scopes with
property scopename equal to transaction-execution and it applies only
if the price of the product is above a split_payment_threshold available
in the Environment microservice. The idea is that such a threshold may be
agreed upon by the client and the seller or established by some business
regulation. We remark that properties of the scope, like N.scopename, are
prefixed by N while values provided by the Environment microservice, like
E.split_payment_threshold, are prefixed by E. Names with no prefix refer
to variables of the role that coordinates the adaptation of the scope, such as
price in this example.

We note that the above adaptation rule changes the choreography and, as a
consequence, the behavior of two of its roles. In general, an adaptation rule can
impact an arbitrary number of roles. We also note that the need for adaptation
is checked — and adaptation is possibly performed — every time the scope is
executed. In this example, if the client buys many products, some with price
above the threshold and some below, the need for adaptation is checked for
each item and adaptation is performed only for the ones with a price above the
threshold. In essence, purchases of cheap products follow the basic protocol
whilst purchases of expensive ones follow the refined protocol introduced by
the adaptation rule.

18 Programming Adaptive Microservice Applications: an AIOCJ Tutorial

1 rule {
2 include log from "socket://localhost:8002"
3 include getTime from "socket://localhost:8003"
4 newRoles: logger
5 location@logger: "socket://localhost:15000"
6 on { N.scopename == "success-notification" }
7 do {
8 r@client = show("Object delivered")
9 |
10 {
11 log: seller(sel_product + " " + payment) -> logger(entry);
12 time@logger = getTime();
13 log_entry = time + ": " + entry;
14 { r1@logger = log(log_entry) | r2@logger = show(log_entry) }
15 }
16 }
17 }

Listing 7.7 Adaptation rule: logging.

We now consider another need that may emerge. Assume that the seller
decides to log all its sales, e.g., for tax payment reasons. Again, one may
write an adaptation rule (see Listing 7.7) to answer this need. This rule targets
the scope with property N.scopename = "success-notification" (lines 30–
32 in Listing 7.5), which was not exactly intended for logging, but can be
adapted to do so by taking care of repeating in the new code also the original
notification message (line 31 in Listing 7.5, repeated at line 8 in Listing 7.7).
The rule exploits both a new role, logger, and two external services log and
getTime. External services are declared exactly as in AIOC programs. Note
that here we omit the application-layer protocol of both services, hence the
default, SOAP, is used.

The additional role is declared using keyword newRoles (line 4). New
roles in AIOCJ rules should not be involved in the target AIOC program and
take part to the choreography only while the body of the rule executes. As for
normal roles, the URI of new roles is declared using the keyword location.

6 Deployment and Adaptation Procedure

In this section we describe the steps that DevOps need to follow to deploy the
AIOCJ application of Listing 7.5 and to adapt it at runtime. When reporting
paths, we use the Unix forward slash notation.

6 Deployment and Adaptation Procedure 19

Compiling and Running an AIOC. As already mentioned, AIOCJ IDE runs
as an Eclipse plugin. Hence, to create a new AIOC program we create a
new project and a new file inside it with .ioc extension. We write the code
in Listing 7.5 and we compile it by clicking on the button “Jolie Endpoint
Projection” . The compilation creates three folders in the Eclipse project:
epp_aioc, adaptation_manager, and environment.

Within the folder epp_aioc we can find one subfolder for each role in the
AIOC program containing all the related code. The main file is named after
the role and has the standard Jolie extension .ol. The subfolder needs to be
moved in the host corresponding to the location of the role declared in the
preamble of the AIOC program. For example, the subfolder client should
be moved into the host located at "client.com".

Within the folders adaptation_manager and environment the main files
are, respectively, main_adaptationManager.ol and environment.ol.

Before starting the compiled AIOC program, we make sure that the ex-
ternal services included in the choreography are running. To run the AIOC
program, we first launch the Adaptation Manager with

jolie adaptation_manager/main_adaptationManager.ol

Then, we run the roles in the choreography, beginning from the client, which
is declared as the starter of the choreography. For instance, the client —
previously deployed at "client.com" — can be launched with

jolie client/client.ol

At the moment there is no need to run the Environment. As soon as the last
role is started, the execution of the AIOCJ application begins.
Adapting a Running AIOC. Adaptation rules are defined using the same
Eclipse plugin as AIOC programs. They need to be stored in a new .ioc file,
either in the same project as the AIOC program or in a new one.

As for AIOC programs, the compilation of a set of adaptation rules is
triggered by the “Jolie Endpoint Projection” button and produces a folder
named epp_rules, which corresponds to a unique Adaptation Server. Inside
the folder, the main file is AdaptationServer.ol within path

__adaptation_server/servers/server

Also in this case, before starting the Adaptation Server, we make sure that the
external services included in the rules are running.

20 Programming Adaptive Microservice Applications: an AIOCJ Tutorial

If some adaptation rule has an applicability condition that checks some
Environment variables (e.g., variable E.split_payment_threshold in List-
ing 7.6, line 3), the Environment microservice needs to be launched, run-
ning the program environment.ol. Environment variables can be added
and removed both by console interaction or by editing the configuration
file environmentVariables.xml.

If some adaptation rule needs a new role, the location declared for it
should be able to interact with the Adaptation Server that contains the rule.
To this end, AIOCJ provides a dedicated microservice called Role Supporter,
which needs to be deployed in the host corresponding to the target location.
This is done by moving to the corresponding host the folder

role_supporter/ruleN/roleName

where N is the sequential number of the rule, from top to bottom, inside the
file .ioc, and roleName is the name of the new role. The folder contains the
code of the utility microservice, RoleSupporter.ol, and an automatically
generated configuration file config/location.iol. For instance, the config-
uration file for the RoleSupporter for role logger in the rule in Listing 7.7
(assuming it is the only rule in the .ioc file) is

role_supporter/rule1/logger/config/locations.iol

If the location of the new role is unspecified, then "localhost:9059" is
used by default and the corresponding folder is default_role_supporter.

Once both the external services and the Role Supporters are running, we
can launch the Adaptation Server. When launched, the Adaptation Server

registers at the Adaptation Manager and the compiled adaptation rules become
enabled. From now on, when a scope is reached during execution, the rules in
the Adaptation Server are checked for applicability.

Both microservices implementing roles of AIOCJ applications and the
ones in AIOCJ RE — namely the Adaptation Manager, the Environment, the
Adaptation Servers, and the Role Supporters — can be re-deployed on hosts
different from the default ones. This requires to move the corresponding folder,
but also to update the configuration files that contain their addresses, including
their own configuration file. Notably, no recompilation is needed. We report in
Figure 3 the dependency graph among the locations of AIOCJ microservices.
In the figure, the notation A ! B means that microservice A must know
the deployment location of microservice B. At the bottom of each box we

7 Conclusion 21

Adaptation
Manager

config/locations.iol

Environment

config/locations.iol

Adaptation Server

Server location: __adaptation_server/servers/server/AdaptationServer.ol
Other locations: config/locations.iol

Roles and New
Roles

config/locations.iol

Role Supporter

config/locations.iol

Figure 3 Location dependency graph among AIOCJ microservices.

report the path to the corresponding configuration file for locations, which
is config/locations.iol except for the deployment location of Adaptation

Servers which is directly contained in their own main file.

7 Conclusion

In this tutorial we have given a gentle introduction to the AIOCJ framework
and to the AIOC language. While both adaptation and choreographies are thor-
oughly studied in the literature, their combination has not yet been explored
in depth. As far as we know, AIOCJ is the only implemented framework in
this setting. Theoretical investigations of the interplay between adaptation
and multiparty session types [14, 15, 16] (which use choreographies as types
instead of as a language) have been undertaken. A relevant work considers
self-adaptive systems [14]. It uses multiparty session types to monitor that
the computation follows the expected patterns, and it performs adaptation by
moving from one choreography to the other according to external conditions.
However, all possible behaviors are present in the system since the very
beginning. Another work studies how to update a system so to preserve the
guarantees provided by multiparty session types [15]. Another study, still
preliminary, describes multiparty session types that can be updated from both
inside and outside the system [16]. None of the three proposals above has
been implemented. On the other side, we find two implemented approaches
for programming using choreographies, Scribble [4, 17] and Chor [2], but
they do not support adaptation. Chor is particularly related to AIOCJ, since
they both produce Jolie code and they share part of the codebase. Finally, the
main standard in the field of choreographic specifications, WS-CDL [5], does

22 AIOCJ Tutorial

not support adaptation. Moreover, WS-CDL is just a specification language
and not an executable one. Further information on choreographies can be
found in two surveys. One presents a general description of the theory of
choreographies and session types [18]. The other accounts for their use in
programming languages [19].

As future work we would like to understand what is needed to make
AIOCJ more usable in practice. To this end, we are experimenting by applying
AIOCJ to case studies developed for other approaches to adaptation, such as
Context-Oriented Programming [20] and distributed [21] and dynamic [22]
Aspect-Oriented Programming. Initial results in this direction can be found on
the AIOCJ website [11]. Another direction is to provide automated support
for the deployment of AIOCJ applications using containerization technologies
such as Docker [23].

References

[1] M. Carbone, K. Honda, and N. Yoshida, “Structured communication-centered pro-
gramming for web services,” ACM Trans. Program. Lang. Syst., vol. 34, no. 2,
2012.

[2] M. Carbone and F. Montesi, “Deadlock-Freedom-by-Design: Multiparty Asynchronous
Global Programming,” in POPL, pp. 263–274, ACM, 2013.

[3] I. Lanese, C. Guidi, F. Montesi, and G. Zavattaro, “Bridging the Gap between Interaction-
and Process-Oriented Choreographies,” in SEFM, pp. 323–332, IEEE, 2008.

[4] K. Honda, A. Mukhamedov, G. Brown, T. Chen, and N. Yoshida, “Scribbling interactions
with a formal foundation,” in ICDCIT, vol. 6536 of LNCS, pp. 55–75, Springer, 2011.

[5] World Wide Web Consortium, Web Services Choreography Description Language Version
1.0, 2005. http://www.w3.org/TR/ws-cdl-10/.

[6] F. Montesi, “Kickstarting choreographic programming,” in WS-FM:FASOCC, vol. 9421
of LNCS, pp. 3–10, Springer, 2014.

[7] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mistakes: a comprehensive study on
real world concurrency bug characteristics,” in ASPLOS, pp. 329–339, ACM, 2008.

[8] S. Newman, Building Microservices. " O’Reilly Media, Inc.", 2015.
[9] M. Dalla Preda, M. Gabbrielli, S. Giallorenzo, I. Lanese, and J. Mauro, “Dynamic

choreographies - safe runtime updates of distributed applications,” in COORDINATION,
vol. 9037 of LNCS, pp. 67–82, Springer, 2015.

[10] M. Dalla Preda, S. Giallorenzo, I. Lanese, J. Mauro, and M. Gabbrielli, “AIOCJ: A
choreographic framework for safe adaptive distributed applications,” in SLE, vol. 8706 of
LNCS, pp. 161–170, Springer, 2014.

[11] “AIOCJ website.” http://www.cs.unibo.it/projects/jolie/aiocj.
html.

[12] “Jolie website.” http://www.jolie-lang.org/.
[13] F. Montesi, C. Guidi, and G. Zavattaro, “Composing services with JOLIE,” in Proc. of

ECOWS’07, pp. 13–22, IEEE, 2007.

http://www.w3.org/TR/ws-cdl-10/
http://www.cs.unibo.it/projects/jolie/aiocj.html
http://www.cs.unibo.it/projects/jolie/aiocj.html
http://www.jolie-lang.org/

References 23

[14] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri, “Self-adaptive multiparty sessions,”
Service Oriented Computing and Applications, vol. 9, no. 3-4, pp. 249–268, 2015.

[15] G. Anderson and J. Rathke, “Dynamic software update for message passing programs,”
in APLAS, vol. 7705 of LNCS, pp. 207–222, Springer, 2012.

[16] M. Bravetti et al., “Towards global and local types for adaptation,” in SEFM Workshops,
vol. 8368 of LNCS, pp. 3–14, Springer, 2013.

[17] “Scribble website.” http://www.jboss.org/scribble.
[18] H. Hüttel et al., “Foundations of session types and behavioural contracts,” ACM

Computing Surveys, vol. 49, no. 1, 2016.
[19] D. Ancona et al., “Behavioral types in programming languages,” Foundations and Trends

in Programming Languages, vol. 3, no. 2-3, pp. 95–230, 2016.
[20] R. Hirschfeld, P. Costanza, and O. Nierstrasz, “Context-oriented Programming,” Journal

of Object Technology, vol. 7, no. 3, pp. 125–151, 2008.
[21] R. Pawlak et al., “JAC: an aspect-based distributed dynamic framework,” Software:

Practice and Experience, vol. 34, no. 12, pp. 1119–1148, 2004.
[22] Z. Yang, B. H. C. Cheng, R. E. K. Stirewalt, J. Sowell, S. M. Sadjadi, and P. K. McKinley,

“An aspect-oriented approach to dynamic adaptation,” in WOSS, pp. 85–92, ACM, 2002.
[23] D. Merkel, “Docker: Lightweight linux containers for consistent development and

deployment,” Linux J., vol. 2014, no. 239, 2014.

http://www.jboss.org/scribble

