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A New Algorithm to Search for Irreducible Polynomials Using Decimal Equivalents of Polynomials over Galois Field GF(p q )

In this paper a new algorithm to find the decimal equivalents of all monic irreducible polynomials (IPs) over Galois Field GF(p q ) has been introduced. This algorithm is effective to find the decimal equivalents of monic IPs over Galois Field with a large value of prime modulus and also with a large extension of the prime modulus. The algorithm introduced in this paper is much more time effective with less complexity. It is able to find monic irreducible polynomials for a large value of prime modulus and also with large extension of the prime modulus in few seconds.

Introduction.

. The use of basic arithmetic operations (i.e. addition, multiplication, and inversion) over finite fields, GF(p q ), where p is prime modulus and q is extension of the prime modulii, are dominant in many

cryptographic algorithms such as RSA algorithm [START_REF] Abdulah | Division and Inversion Over Finite Fields, Cryptography and Security in Computing[END_REF], Diffie-Hellman key exchange algorithm [START_REF] Diffie | New directions in cryptography[END_REF], the US federal Digital Signature Standard [START_REF]Digital signature standard (DSS)[END_REF], elliptic curve cryptography [START_REF] Miller | Use of elliptic curves in cryptography[END_REF] [START_REF] Koblitz | Elliptic curve cryptosystems[END_REF], and also recently pairing-based cryptography [START_REF] Boneh | Identity-based encryption from the Weil pairing[END_REF] [START_REF] Shamir | Identity-based cryptosystems and signature schemes[END_REF]. Due to elliptic curve based schemes, most efficient finite fields that are commonly used in cryptographic applications are prime fields GF(p) and binary extension fields GF (2 n ). The standard 8-bit S-Box of Advance Encryption Standard is usually generated by using a monic irreducible polynomial {11B} as the modulus in extended binary Galois Field GF (2 8 ) and a particular additive constant {63} in Binary Galois Field GF [START_REF] Lidl | Finite Fields[END_REF]. Rijndael used this particular modulus and the additive constant in the original proposal of Advance Encryption Standard . It has also been discovered that the other moduli and constants can also be used to make the generation of 8-bit S-Boxes more dynamic [START_REF] Daemen | Rijndael, Version 2[END_REF][11] [START_REF]PUB 197: the Official AES Standard[END_REF]. Recently, pairing-based cryptography based on bilinear pairings over elliptic curve points stimulated a significant level of interest in the arithmetic of ternary extension fields GF(3 n ) [START_REF] Kim | Subset Restricted Random Walks for Pollard Rho Method on F p m[END_REF].

Polynomials over finite fields have been studied since the time of Gauss and Galois [START_REF] Dörrie | Great Problems of Elementary Mathematics: Their History and Solutions[END_REF] [START_REF]Galois Theory[END_REF]. The determination of special types of polynomials such as irreducible, primitive, and permutation polynomials, is a long standing and well studied problem in the theory and application of finite fields [START_REF] Zaman | Multiplicative Polynomial Inverse over GF(73): Crisis of EEA and its Solution[END_REF] [START_REF] Zaman | An Algorithm to find the Irreducible Polynomials over Galois Field GF(pm)[END_REF] [START_REF] Mitra | On the Construction of m-Sequences via Primitive Polynomials with a Fast Identification Method[END_REF] [START_REF] Zieve | On Some Permutation Polynomials Over Fq Of The Form X r h(X (Q-1)/D )[END_REF]. On the other hand, in recent years there has been intensive use of special polynomials in many areas including algebraic coding theory for the error-free transmission of information [START_REF] Siddesh | Error Free Transport of Transmitter Payload over Ad Hoc Wireless Network Using Osculating Polynomial Cross Products[END_REF], cryptography for the secure transmission of information [10][11] [START_REF]PUB 197: the Official AES Standard[END_REF], and polynomials over finite fields appear very naturally in several areas of combinatorics. First, due to the finite number of elements, the enumeration of various special kinds of polynomials over finite fields is an interesting and extremely important research area in combinatorics, especially in design theory, polynomials are used to construct and describe cyclic difference sets and special types of designs such as group divisible designs [START_REF] Hurd | Group Divisible Designs With Two Groups and Block Size Five With Fixed Block Configuration Spencer[END_REF]. Divisibility conditions on trinomials over finite fields have been shown to produce orthogonal arrays with certain strengths [START_REF] Panario | Divisibility of Polynomials over Finite Fields and Combinatorial Applications[END_REF], and bivariate and multivariate polynomials can be used to represent and study latin squares and sets of orthogonal latin squares and hypercubes of prime power orders [START_REF] Ballif | Mutually Orthogonal Latin Squares[END_REF] [START_REF] John | Strong Forms of Orthogonality for Sts of Hypercube[END_REF]. Polynomials over finite fields are the key ingredient in the construction of error-correcting codes such as BCH [START_REF] Peterson | Error-Correcting Codes[END_REF], Goppa [START_REF] Peterson | Error-Correcting Codes[END_REF], Reed-Solomon [START_REF] Peterson | Error-Correcting Codes[END_REF], and Reed-Muller codes [START_REF] Peterson | Error-Correcting Codes[END_REF], among others. Moreover, polynomials also play a key role in other areas of coding theory such as the determination of weight enumerators [START_REF] Alexander | On Some Polynomials Related To Weight Enumerators of Linear Codes[END_REF], the study of distance distributions [START_REF] Gil | On the Distance Distribution of Codes[END_REF], and decoding algorithms [START_REF] Lin | Novel Polynomial Basis and Its Application to Reed-Solomon Erasure Codes[END_REF]. Large extensions of finite fields (especially over the two-element field) are important in cryptography . Elements in these extension fields can be represented by polynomials over the prime subfield [START_REF]A Brief Introduction to Modern Cryptography[END_REF]. Thus, constructions of extension fields and fast arithmetic of polynomials are important practical questions . In addition, polynomials over finite fields are important in engineering applications. Linear recurrence relations over finite fields produce sequences of field elements [START_REF] Hanif | Least Period of Linear Recurring Sequences over a Finite Field[END_REF]. Linear feedback shift registers are used to implement these recurrences. Characteristic polynomials over finite fields are one of the main tools when dealing with shift registers [START_REF] Li Yujuan | On the Primitivity of some Trinomials over Finite Fields[END_REF]. In particular, primitive characteristic polynomials produce sequences with large periods, and thus have found many applications in areas such as random number generation [START_REF] Wang | On The Use Of Reducible Polynomials As Random Number Generators[END_REF].

In past decades many results towards the enumeration of classes of univariate irreducible polynomials over finite field or Galois Field with certain characteristics have appeared in the literature. Such polynomials are used to implement arithmetic in extension fields found in many applications, including coding theory [33][34], cryptography [START_REF] Chor | A knapsack type public key cryptosystem based on arithmetic in finite fields[END_REF] [START_REF] Das | Generation of AES S-Boxes with various modulus and additive constant polynomials and testing their randomization[END_REF], multivariate polynomial factoring [START_REF] Kaltofen | Factorization of multivariate polynomials over finite fields[END_REF] parallel polynomial arithmetic [START_REF] Eberly | Very fast parallel matrix and polynomial arithmetic[END_REF]. Many algorithms had also been introduced along with to determine irreducible polynomials over finite fields, including a composite polynomial method to find monic irreducible polynomials by a hand on calculation over Galois field with prime modulus 2 to 7 with for extensions 1 to 11 [START_REF] Church | Tables of Irreducible Polynomials for the first four Prime Moduli[END_REF], Rabin's algorithm to find monic irreducible polynomials over Galois Field GF(p) where p is a prime integer, An improvement of Rabin's algorithm with less complexity [START_REF] Jacques | An Improvement of Rabin's Probabilistic Algorithm For Generating Irreducible Polynomials Over Gf(P)[END_REF], an algorithm that constructs a degree d irreducible polynomial over finite fields proved that under the generalized Riemann hypothesis by Adleman and Lenstra [START_REF] Adleman | Finding irreducible polynomials over finite fields[END_REF], a deterministic algorithm that runs in polynomial time for fields of small characteristic [START_REF] Shoup | New algorithms for finding irreducible polynomials in finite fields[END_REF], and recently a method that uses the concept of p-nary equivalent of multiplicative inverses of the elemental polynomials (ep) of a basic monic irreducible polynomial to determine a basic monic polynomial to be irreducible [START_REF] Zaman | An Algorithm to find the Irreducible Polynomials over Galois Field GF(p m )[END_REF].

A basic polynomial BP(x) over finite field or Galois Field GF(p q ) is expressed as, BP(x) = a q x q + a q-1 x q-1 + ---+ a 1 x + a 0.

B(x) has (q+1) terms, where a q is non-zero and is termed as the leading coefficient [START_REF] Canright | A very Compact S-box for AES[END_REF]. A polynomial is monic if a q is unity, else it is non-monic. The GF(p q ) have (p qp) elemental polynomials ep(x) ranging from p to (p q -1) each of whose representation involves q terms with leading coefficient a q-1 . The expression of ep(x) is written as, ep(x) = a q-1 x q-1 + ---+ a 1 x + a 0 , where a 1 to a q-1 are not simultaneously zero.

Many of BP(x), which has an elemental polynomial as a factor under GF(p q ), are termed as reducible. Those of the BP(x) that have no factors are termed as irreducible polynomials IP(x) [START_REF] Lidl | Finite Fields[END_REF][46] and is expressed as, IP(x) = a q x q + a q-1 x q-1 + ---+ a 1 x + a 0 , where a q ≠ 0.

In Galois field GF(p q ), the decimal equivalents of the basic polynomials of extension q vary from p q to (p q+1 -1) while the elemental polynomials are those with decimal equivalents varying from p to (p q -1). Some of the monic basic polynomials are irreducible, since it has no monic elemental polynomials as a factor.

In this paper a new algorithm to determine the decimal equivalents of monic irreducible polynomials over extended Galois fields, also for large value of prime modulus and its large extensions is demonstrated with example. In this algorithm the decimal equivalents of each of two monic elemental polynomials at a time with highest degree d and (q-d) where d = 0 to (q-1)/2, are split into the p-nary coefficients of each term of those two monic elemental polynomials. The coefficients of each term in each two monic elemental polynomials are multiplied, added with each other and modulated to obtain the p-nary coefficients of each term of the monic basic polynomial. The decimal equivalent of the resultant monic basic polynomial is termed as the decimal equivalent of a reducible monic basic polynomial. The decimal equivalents of polynomials belonging to the list of reducible polynomials are cancelled leaving behind the monic irreducible polynomials.

For convenient understanding, the proposed algorithm is presented in Sec.2 for Galois Field GF(p q ) and for clarity of understanding the algorithm is described with example of Galois Field GF(7 7 ), where p=7 and q=7 has also been demonstrated in the same section . The method is able to find all monic irreducible polynomials IP(x) over any Galois Field GF(p q ), also for large value of prime modulus and its large extension. Sec. 3 demonstrates the obtained results to show that the proposed searching algorithm is actually able to search over any Galois field GF(p q ) with any value of prime modulus and its extension, such as, p €{ 3, 5, 7,....,101,..,p} and q € { 2, 3, 5, 7,…,101,….q}. In Sec.4 and 5, the conclusion of the paper and the references are illustrated. A list of decimal equivalents of all the monic irreducible polynomials over Galois Field GF (7 5 ) is given in Appendix-1. Initial part of the list of decimal equivalents of all the monic irreducible polynomials over Galois Field GF(101 3 ) is given in Appendix-2.

Algorithm to find Decimal Equivalents of Irreducible Polynomials over Galois Field GF(p q

). In this section the new algorithm to search for Decimal equivalents of all monic Irreducible polynomials over Galois Field GF(p q ) has been described with example. The detailed structural description of the algorithm is given in sub sec.2.1. The detailed mathematical description of the algorithm is given in sub sec.2.2. The Computational Algorithm is demonstrated in sec.2.3.The example of the said algorithm for Galois Field GF(7 7 ) is given in sub sec 2.4. The analysis of time complexity is illustrated in sub sec.2.5.

Structural Description of the Algorithm.

In this algorithm the decimal equivalents of each of two monic elemental polynomials at a time with highest degree d and (q-d) where d € {0,..,(q-1)/2}, are split into the p-nary coefficients of each term of those two monic elemental polynomials. The coefficients of each term in each two monic elemental polynomials are multiplied, added respectively with each other and modulated to obtain the p-nary coefficients of each term of the monic basic polynomial. The decimal equivalent of the resultant monic basic polynomial is termed as the decimal equivalent of a reducible monic basic polynomial. The decimal equivalents of polynomials belonging to the list of reducible polynomials are cancelled leaving behind the monic irreducible polynomials. For Galois Field GF(p q ), where p is prime modulus and q is the extension of the field, the algorithm is given as follows,

Step 1. Generate Decimal Equivalents of all Monic Elemental Polynomials dec(ep(x)) over Galois Field GF(p q ).

Step 2. Split dec(ep(x 1 )), dec(ep(x 2 )) with highest degree d and (q-d) respectively where d = 1 to ((q-1)/2), are split into p-nary coefficients of each term of each monic elemental polynomial ep(x).

Step 3. Multiply and add terms with degree d to 0 and (q-d) to 0 to obtain the decimal coefficients of each term of the Basic Polynomial BP(x).

Step 4. Split coefficient of each term of BP(x) into p-nary coefficients.

Step 5. Obtain the decimal equivalent of the Basic Polynomial BP(x) or dec(BP(x)) as Decimal equivalent of Reducible Polynomial.

Step 6. The decimal equivalents of polynomials belonging to the list of monic reducible polynomials are cancelled leaving behind the monic irreducible polynomials.

Step 7. Stop.

Mathematical Structure of the Algorithm.

Here the interest is to find the monic irreducible polynomials over Galois Field GF(p q ), where p is the prime modulus and q is the extension of the prime modulus and p must be a prime integer. Since the indices of multiplicand and multiplier are added to obtain the product. The extension q can be demonstrated as a sum of two integers, d 1 and d 2 , The degree of highest degree term present in elemental polynomials of GF(p q ) is (q-1) to 1, since the polynomials with highest degree of term 0, are constant polynomials and they do not play any significant role here, so they are neglected. Hence the two set of monic elemental polynomials for which the multiplication is a monic basic polynomial, have the degree of highest degree terms d 1 , d 2 where, d 1 € {1,2,3,..,((q-1)/2)}, and the corresponding values of d 2 € {(q-1), (q-2), (q-3).,...,q-((q-1)/2)}. Number of coefficients in the monic basic polynomial BP(x) = (q+1); they are defined as BP 0, BP 1, BP 2, BP 3, BP 4, BP 5, BP 6, BP 7…….., BP q, the value of the suffix also indicates the degree of the term of the monic basic polynomial. For monic polynomials BP q = 1.

Coefficients of each term in the 1 st monic elemental polynomial EP 0 , where, d 1 € {1,2,…..,((q-1)/2)}; are defined as EP 0 0 , EP 1 0 ,……., EP ((q-1)/2-1) 0 . Coefficients of each term in the 2 nd monic elemental polynomial EP 1 where d 2 € {(q-1), (q-2), (q-3).,...,q-((q-1)/2-1)}; are defined as EP 0

1 , EP 1 1 , EP 2 1 , EP 3 1 , EP 4 1 , … , EP q-((q-1)/2-1) 1 .
The value in suffix also gives the degree of the term of the monic elemental polynomials. Total number of blocks is the number of integers in d 1 or d 2, i.e. (q-1)/2 . Now, the Mathematical Structure of (q-1)/2 th block for the algorithm is as follows, (q-1)/2 th block: BP 0 = (EP 0 0 × EP 0 1 ) mod p.

BP 1 = (EP 0 0 × EP 1 1 + EP 1 0 × EP 0 1 ) mod p. BP 2 = (EP 0 0 × EP 2 1 + EP 1 0 × EP 1 1 + EP 2 0 × EP 0 1 ) mod p. BP 3 = (EP 0 0 × EP 3 1 + EP 1 0 × EP 2 1 + EP 2 0 × EP 1 1 + EP 3 0 × EP 0 1
) mod p. ………………………………………………………………… ………………………………………………………………… BP q-1 = (EP 0 0 × EP (q-1) 1 + EP 1 0 * EP (q-2) 1 +………….+ EP (q/2-1) 0 * EP (q-1)-(q- 1)/2 1 ) mod p. BP q = (EP (q-1)/2 0 * EP q-(q-1)/2 1 ) mod p. Now the given basic monic polynomial is illustrated in Eq.1. and its decimal equivalent is calculated as in eq.2, BP(x) = BP q x q + BP q-1 x q-1 +….+ BP 5 x 5 + BP 4 x 4 + BP 3 x 3

+ BP 2 x 2 + BP 1 x 1 + BP 0 x 0 ……………………….. (1) 
Decm_eqv(BP(x))= BP q ×p q + BP q-1 ×p q-1 +….+ BP 5 ×p Similarly all the decimal equivalents of all the resultant basic polynomials or reducible polynomials for all a and its corresponding b values are calculated. The polynomials belonging to the list of reducible polynomials are cancelled leaving behind the irreducible polynomials.

Description of the Computational Algorithm.

Here the Basic polynomials over Galois Field overGalois Field GF(p q ) is presented as BP(x) and Elemental polynomials over the same Galois field is presented as ep(x). For Galois Field GF(p q ) the prime modulus = p and the extension of the prime modulus = q. Highest degree term of the 1 st elemental polynomial ep(x 1 ) is d 1 € {1,2,3,…………,(q-1)/2} and second elemental polynomial ep(x 2 ) is d 2 € { (q -1), (q-2), (q-3),...,q -(q-1)/2}. Number of terms in 1 st elemental polynomial € {N(d 1 )} and number of terms in 2 nd elemental polynomial € {N(d 2 )}.

Coefficients of each ep(x) are demonstrated as EPep_ indx_i , where 1≤ i ≤2.

Here Number of terms in Basic Polynomial = p+1. Coefficients of BP(x) = BP bp _ indx, where 0≤ bp_indx ≤ q, The said Computational Algorithm is as follows,

Step 1. for block = 1 to (N(d 1 ) or N(d 2 )) do the following steps.

Step 2. for ep_index_1 = 1 to (q-1)/2 do the following steps.

Step 3. for ep_index_2 = (q-1) to (q-((q-1)/2)) do the following steps.

Step 4. for bp_index = 0 to q do the following steps. ). Means it is much faster as Rabin's algorithm [START_REF] Jacques | An Improvement of Rabin's Probabilistic Algorithm For Generating Irreducible Polynomials Over Gf(P)[END_REF] for larger value of prime modulus and its modification [START_REF] Jacques | An Improvement of Rabin's Probabilistic Algorithm For Generating Irreducible Polynomials Over Gf(P)[END_REF]. Since the time complexity of the both Rabin's algorithm and its modification depends upon the value of prime modulus so it becomes a slow algorithm for large value of the prime modulus. But the new algorithm is much effective and works better as the value of prime modulus and the extension of prime modulus grows larger since time complexity depends only on the value of the extension of the Galois field. So this algorithm is suitable to find monic Irreducible polynomials of higher value of prime modulus and the extension of prime modulus . 

Description of the Computational Algorithm for Galois Field GF(7 7 ).

Here the Basic polynomials over Galois Field overGalois Field GF(7 7 ) is presented as BP(x) and Elemental polynomials over the same Galois field is presented as ep(x). For Galois Field GF(7 Step 1. for block = 1 to 3 do the following steps.

Step 2. for bp_index = 1 to 8 do the following steps.

Step 3. for ep_index_1 = 1 to 3 do the following steps.

Step 4. for ep_index_2 = 6 to4 do the following steps.

Step 5. for P 1 = 2 to 4 and P 2 = 7 to 5 do the following steps.

Step 6. BP bp_indx = (Σ(EP ep _ indx_1 p1 ×EP ep _ indx_2 p2

)) mod p; Step 7. Stop.

Results.

The algebraic method or the above pseudo code has been tested on GF(3 3 ),GF( 73 ),GF( 113

), GF(101 3 ), GF (3 5 ), GF (7 5 ), GF(3 7 ), GF(7 7 ),. Numbers of monic Irreducible polynomials given by this algorithm are same as in hands on calculation by the theorem to count monic irreducible polynomials over Galois Field GF(p q ) [START_REF] Church | Tables of Irreducible Polynomials for the first four Prime Moduli[END_REF]. The list of Numbers of monic irreducible polynomials for a particular Galois Field are given below for all of the above ten Extended Galois Fields. The list of all Irreducible monic basic polynomials of ten extended Galois fields are available in reference [START_REF] Dey | The list of Decimal Equivalents of All the Monic Irreducible Polynomials over Galois Field GF(3^3)[END_REF] 7 ) is given in Appendix and also available in the link given in [START_REF] Dey | The list of Decimal Equivalents of All the Monic Irreducible Polynomials over Galois Field GF(7^7)[END_REF].

Ex.GF. GF(3 3 ) GF( 73 ) GF( 113 ) GF(101 

Conclusion.

To the best knowledge of the present authors, there is no mention of a paper in which the composite polynomial method is translated into an algorithm and turn into a computer program. The new algorithm is a much simpler to find monic irreducible polynomials over Galois Field GF(p q ). It is able to determine decimal equivalents of the monic irreducible polynomials over Galois Field with a large value of prime modulus, also with large extensions of the prime modulii. So this method can reduce the time complexity to find monic Irreducible Polynomials over Galois Field with large value of prime modulii and also with large extensions of the prime modulii. So this would help the crypto community to build S-Boxes or ciphers using irreducible polynomials over Galois Fields with a large value of prime modulii, also with the large extensions of the prime modulii.

Step 5 . 4

 54 for P 1 = 1 to N(d 1 ) and P 2 = 1 to N(d 2 ) do the following steps. Step 6. BP bp_indx = (Σ(EP ep _ indx_1 p1 ×EP Time Complexity of the New Algorithm. This Algorithm have a time complexity of O(n 5

  Comparison of time complexity of the new algorithm with other Algorithms is given below,

	Algorithms Time Complexity	New Algorithm O(n 5 )	Rabin's Algorithm O(n 4 (log P) 3 )	Rabin's Algorithm(mod) 0(n 4 (log p) 2 + n 3 (log P) 3 )

  [START_REF] Dey | The list of Decimal Equivalents of All the Monic Irreducible Polynomials over Galois Field GF(7^3)[END_REF][49][START_REF] Dey | The list of Decimal Equivalents of All the Monic Irreducible Polynomials over Galois Field GF(101^3)[END_REF][51][START_REF] Dey | The list of Decimal Equivalents of All the Monic Irreducible Polynomials over Galois Field GF(7^5)[END_REF][53][START_REF] Dey | The list of Decimal Equivalents of All the Monic Irreducible Polynomials over Galois Field GF(7^7)[END_REF]. A part of the list of monic Irreducible Polynomial over GF[START_REF] Koblitz | Elliptic curve cryptosystems[END_REF] 
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