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Time and Frequency Patterns Identification of sEMG Signals Using Hilbert-Huang Transform
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This article reports the identification of two groups of patterns in time and frequency, also a muscular intensity characteristic associated to hand movement per user, all this results were obtained by superficial myoelectric signal analysis using Hilbert-Huang transform. Muscular signals were acquired from five muscles of the right forearm from five healthy subjects. Using a four channels acquisition system with differential configuration myoelectric signals were recorded for six movements of the fingers in flexion and extension. Electrodes were placed over five forearm anterior, posterior and finger linked muscles. Time pattern corresponds to sinusoidal oscillations with average length of 24.5 ms, corresponding to voluntary contraction and relaxation of the muscles. These oscillations are present into all acquisition channels and there is evidence about groups of two consecutive oscillations with a range of 30 ms between them. Also, there found a pattern of three frequencies: 83.3 Hz, 96.7 Hz and 113.3 Hz, present into contraction and relaxation timeslot. Using Hilbert transform were identified the instantaneous frequencies that indicate the state of the muscles from doss to active and vice versa. There is an intensity characteristic identified in the recordings about behavior of muscles per movement for each subject being repetitive and unique. These processes could decrease time computing to obtain intrinsic characteristics for myoelectric signals.

La señal mioeléctrica superficial es ruidosa [START_REF] Loren | Functional Electromyography[END_REF] [START_REF] Naït-Ali | Advanced Biosignal Processing[END_REF], este ruido puede tener origen de un sistema electrónico cercano, ser intrínseco al cuerpo o bien ser inducido por la cercanía de fuentes electromagnéticas [START_REF] Loren | Functional Electromyography[END_REF]. El ruido más común está dado por los tejidos que rodean al músculo o por los propios músculos, así como potenciales presentes de otros movimientos del sujeto de prueba, ruido por artefactos, el ruido de la línea comercial, sistemas de comunicación inalámbrica entre otros. Es importante limpiar las señales mioeléctricas para obtener las MUAPs sin ruido y así, estar en capacidad de analizarlas para obtener sus características, tales como: tiempos, tasas de disparo, sincronización, intervalos y morfología; esta información también ayuda a saber la anatomía y salud de las fibras musculares [START_REF] De Luca | Decomposition of Surface EMG Signals[END_REF]. Las principales características de una señal mioeléctrica son sus amplitudes, de entre 0.1 mV y 10 mV, y sus frecuencias, varían entre 20 Hz y 500 Hz, aproximadamente [START_REF] Najarian | Biomedical Signal and Image Processing[END_REF] [START_REF] Webster | Medical Instrumentation: Application and Design[END_REF]. En las señales biológicas no es suficiente la identificación de cierta frecuencia, sino que es de utilidad saber su localización en el tiempo y el espacio, esta información provee mayor información acerca del comportamiento muscular en relación a movimientos específicos, patrones de contracción y desordenes de tipo patológicos [START_REF] Pinzon-Morales | Pattern Recognition of Surface EMG Biological Signals by Means of Hilbert Spectrum and Fuzzy Clustering[END_REF]. Varios algoritmos han sido propuestos para limpiar, eliminar ruido y filtrar señales mioeléctricas, sin embargo, los métodos usados en los últimos años, trabajan bajo el esquema de descomposición para extraer las posibles componentes sinusoidales y no sinusoidales en los potenciales de acción de las unidades motoras, estos métodos realizan la descomposición con el fin de detectar diferencias en formas, cambios e incluso resolver superposiciones [START_REF] Lesser | IPUS: an architecture for the integrated processing and understanding of signals[END_REF] [19] [START_REF] Yamada | Decomposition of Electromyographic Signal by Principal Component Analysis of Wavelet Coefficient[END_REF] [START_REF] Zennaro | A Software Package for the Decomposition of Long-Term Multichannel EMG Signal Using Wavelet Coefficients[END_REF]. En los últimos años, métodos como wavelets y la transformada de Hilbert-Huang han sido propuestos para eliminación de ruido, descomposición, detección, análisis y predicción de señales no lineales y no estacionarias para obtener sus características en tiempo, frecuencia, energía e intensidad [START_REF] Flanders | Choosing a wavelet for single-trial EMG[END_REF] [23] [START_REF] Tsolis | Signal Denoising Using Empirical Mode Decomposition and Higher Order Statistics[END_REF] [25] [START_REF] Phinyomark | Application of Wavelet Analysis in EMG Feature Extraction for Pattern Classification[END_REF] [27] [START_REF] Yan | Improved Hilbert-Huang transform based weak signal detection methodology and its application on incipient fault diagnosis and ECG signal analysis[END_REF]. Trabajos desarrollados por Carlo De Luca y Hamid Nawab se enfocan en la descomposición de señales electromiográficas superficiales (sEMG) y en la mejora de métodos que resuelvan la precisión y consistencia de las MUAPs a través del uso de sistemas basados en inteligencia artificial [START_REF] De Luca | Decomposition of Surface EMG Signals[END_REF] [START_REF] Nawab | Improved decomposition of Intramuscular EMG signals[END_REF]. León y sus colaboradores reportan el uso de sistemas de clasificación de alto nivel usando máquinas de soporte vectorial y redes neuronales para la detección de movimientos de la mano [START_REF] León | Multiclass Motion Identification using Myoelectric Signals and Support Vector Machines[END_REF] [31] [START_REF] León | System for the identification of Multiple Movements of the Hand[END_REF].

Recientes investigaciones soportan la hipótesis de que las señales sEMG pueden ser usadas para anticipar los movimientos de los músculos [START_REF] Hoffman | Predicting Human Biomechanics with EMG[END_REF] [34] y así tomar decisiones por adelantado para controlar dispositivos protésicos u ortésicos [START_REF] Park | Real-time thumb-tip force predictions form noninvasive biosignals and biomechanical models[END_REF] [START_REF] Hoozemans | Prediction of handgrip forces using surface EMG of forearm muscles[END_REF] [37] [START_REF] Altamirano-Altamirano | Multichannel sEMG Signal Analysis Using Hilbert-Huang Transform to Identify Time-Frequency Features[END_REF].

Uno de los objetivos primarios de nuestra investigación es mejorar el tiempo de cómputo de las características de las señales EMG como una forma de controlar prótesis usando sensores superficiales [START_REF] Munoz | Implantable electrode for chronic recording from skeletal muscle[END_REF] [START_REF] De Luca | Decomposition of Surface EMG Signals[END_REF].

Este trabajo reporta los procesos para la identificación de dos patrones y una característica de las señales sEMG de cinco músculos del antebrazo con cuatro canales de adquisición en un arreglo de electrodos diferenciales y usando la transformación Hilbert-Huang como técnica para detectar, medir, filtrar y descomponer las señales, esto para movimientos de flexión y extensión de los dedos de la mano derecha.

La transformada de Hilbert-Huang fue desarrollada por Huang en 1999, para el análisis en tiempo-frecuencia que simultáneamente provee una excelente resolución. Este análisis consiste en dos principales procesos, la Descomposición en Modo Empírico (DME) y la Transformación de Hilbert (TH) [START_REF] Huang | Introduction to the Hilbert-Huang Transform and Its Related Mathematical Problems[END_REF] [START_REF] Rato | On the HHT, its problems, and some solutions[END_REF].

La DME consiste en descomponer una señal dada en un grupo de señales elementales llamadas Funciones de Modo Intrínseco (FMIs). Dada cualquier señal, ( ) las FMIs son encontradas por un proceso iterativo, el algoritmo de separación [START_REF] Huang | The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis[END_REF], representado en la Fig. 1: Figura 1. Diagrama de flujo del algoritmo de separación para el proceso de descomposición de las señales en sus modos intrínsecos.

El número de extremos decrementa conforme se va de una a otra FMI, esta descomposición debe ser completada con un número finito de FMIs.

La frecuencia de las señales sEMG adquiridas, que es un sistema no estacionario, cambia en cada instante de tiempo. La identificación de la contracción y relajación muscular implica la localización de la frecuencia aparecida, es entonces que calculamos la frecuencia instantánea de las FMIs.

La frecuencia instantánea puede ser identificada usando la transformada de Hilbert, y se define como:

( ) = ( ) (1) 
( ) = ( ) -( ) = ( ) ( ) (2) 
dónde:

( ) = ( ( ) + ( ) (3) 
( ) =arctan ( ) ( ) (4) 
Aquí ( ) y ( ) representan la amplitud instantánea y la fase de ( ) respectivamente, por lo que dan el mejor ajuste de las variaciones de amplitud y fase de la función trigonométrica a ( ). De la fase instantánea, la frecuencia instantánea ( ) se define como:

( ) = ( ) (5) 
La frecuencia instantánea es físicamente significativa sí, y sólo sí, ( ) es simétrica con respecto del nivel medio cero [START_REF] Huang | Introduction to the Hilbert-Huang Transform and Its Related Mathematical Problems[END_REF]. La transformada de Hilbert requiere que las señales sean transformadas en mono componentes antes de la implementación [START_REF] Kijewski-Correa E | Afficacy of Hilbert and Wavelet transforms for time-frequency analysis[END_REF].

Después de estos dos procesos, la señal ( ) descompuesta se puede representar como la suma de cada FMI ( ) y el residuo ( ), entonces la frecuencia instantánea puede ser calculada.

( ) = ∑ + (6) 
II. MÉTODOS

A. Sistema de Adquisición

Usando el sistema de adquisición BIOPAC® MP35 de 4 canales se registraron las señales sEMG de cinco músculos del antebrazo en cinco individuos sanos de entre 21 años y 30 años de edad.

Las señales se registraron en una base de datos con el uso del programa BLS™ PRO versión 3.7 bajo las condiciones: 2 kHz de frecuencia de muestreo y una ganancia de 1000.

El sistema es de 4 canales analógicos con un filtro de banda Chebyshev 2 de sexto orden configurado de 10 Hz a 500 Hz. Las señales obtenidas están asociadas a seis movimientos de flexión y extensión de los cinco dedos de la mano, mostrados en la Fig. 2: A La hipótesis bajo la cual se seleccionaron estos movimientos es que si el dedo I, es capaz de tocar a los otros cuatro dedos y a la palma, entonces es posible realizar 27 combinaciones entre ellos [START_REF] Altamirano-Altamirano | Hand Prosthesis with 5 DOF using Embedded Systems[END_REF].

En la Fig. 3 se muestra el arreglo de electrodos con una distribución foco-vértice, análogo a las partes de una elipse, esta distribución fue usada para cada canal. Se compone de dos electrodos diferenciales y un electrodo de referencia. Los electrodos diferenciales (V+ &V-) son colocados en los puntos focales de una elipse virtual dibujada sobre cada músculo; el electrodo de referencia (Tierra) se coloca en el vértice del eje menor, ya sea el inferior o el superior, dependiendo de la colocación de los demás canales de adquisición. A fin de obtener el menor número de electrodos de referencia, la colocación de éste dependerá de la posición de otro u otros canales. En el caso de dos músculos, por ejemplo, son aledaños, compartirán el electrodo de referencia colocándolo en el vértice menor de ambas elipses, pero para un canal será el vértice superior y para el otro canal será el vértice inferior. Esta configuración del arreglo permitirá, incluso, aislar la señal del músculo aledaño. La elipse dibujada sobre cada músculo tendrá que seguir la distribución longitudinal del músculo para abarcar la mayor superficie muscular posible [START_REF] Masuda | Recruitment threshold and muscle fiber conduction velocity of single motor units[END_REF]. 

B. Protocolo de registro

Para hacer el registro de las señales musculares asociadas a los cinco movimientos de los dedos, se realizaron los siguientes pasos:

1. A partir de una posición relajada de la mano, el individuo estuvo sentado y apoyando el antebrazo sobre una mesa con la palma de la mano hacia arriba. 2. El registro tiene una duración de 8 segundos a partir del inicio de la prueba y por movimiento.

3. En el segundo 4, el usuario realiza un movimiento de flexión y extensión, inmediato, sin sostener la contracción, para regresar a la posición de relajación, al llegar al segundo 8 se finaliza el registro. 4. Se comienza un nuevo registro, se repite el paso 3 nueve veces más, para tener 10 registros por movimiento. 5. Se repiten los pasos 3 y 4 para los cuatro movimientos restantes hasta completar cinco movimientos en total.

Los pasos 1 a 5 se aplican a cada individuo. Entonces, de los movimientos y sus repeticiones, se obtienen 60 registros por individuo; de los cinco individuos obtenemos un total de 300 registros. Cada registro contiene las señales de los cuatro canales en una matriz 4 x 16,000 elementos.

Después de este proceso, los registros fueron cortados entre los segundos 3.5 y 4.5 reduciéndolos a 1 segundo, 4 x 2000 elementos, este segmento corresponde a la parte de contracción y relajación muscular voluntarias que realizaron los individuos en cada movimiento. A partir de esta base de datos se realizó el análisis de forma individual con la transformada de Hilbert-Huang. Se emplearon dos tipos de normalización y ventaneo.

C. Normalización

La normalización es fundamental en el proceso de descomposición, el algoritmo de descomposición programado identifica la amplitud de las señales, para determinar si son o no Funciones de Modo Intrínsecas o residuos de la señal.

La primera normalización se realiza obteniendo el factor α, que es el recíproco del valor máximo absoluto de la señal sEMG en cada canal, en una muestra de 1000 ms.

á = á ( ) ; = 1, … ,4 (8) 
= á ; = 1, … ,4 (9) 
donde i es el número de canal. Posteriormente, cada canal es amplificado por su factor α i correspondiente, obteniendo una normalización en amplitud con un valor máximo absoluto de 1 V en todos los canales. Con este proceso el ruido inherente en los canales es amplificado, intencionalmente, con el fin de identificar sus características.

La segunda normalización es distinta, primero se toma un segmento de la señal con una ventana cuadrada de 150 ms y dentro de ésta se identifica el elemento máximo absoluto de cada señal, de manera simultánea, para los cuatro canales,

á = á ( ) ( ) ( ) ( ) ∀ ( , + 150 ) (10) 
seguido del cálculo del factor , que es inversamente proporcional a á . = á [START_REF] Loren | Functional Electromyography[END_REF] Cada canal se amplificó veces, manteniendo la proporción original de la señal y con un valor máximo absoluto de 1 V. 

D. Transformación de Hilbert-Huang

El proceso de normalización de la señal sEMG responde a la necesidad de reducir el número de muestras para la aplicación del algoritmo de Hilbert-Huang, desarrollado en Matlab™, y cuyo diagrama de operación se describió en la Fig. 1. En la Fig. 5 se muestra el proceso de Descomposición en Modo Empírico (DME) de las señales para obtener las correspondientes Funciones de Modo Intrínseco (FMIs); para su obtención se establecieron las condiciones de resolución y de energía residual [START_REF] Munoz | Implantable electrode for chronic recording from skeletal muscle[END_REF]: resolución: 45 dB entre la señal y la energía de bias y energía residual: 45 dB entre la señal y el residuo. Enseguida, a cada una de las FMIs obtenidas le fue calculada su Transformada de Hilbert, para obtener las frecuencias instantáneas (IF) que caracterizan a las componentes de la señal original como se muestra en la Fig. 6. Figura 6. Frecuencia Instantánea (superior) de la Función de Modo Intrínseco 2 (inferior) para la señal del canal 3. Se observan cambios drásticos de la frecuencia instánea respecto al cambio de forma de onda de la señal base.

III. RESULTADOS Y DISCUSIÓN

En la primera normalización se obtuvieron las descomposiciones de cada señal que fueron entre 8 y 19 FMIs por canal. En este caso, las frecuencias instantáneas calculadas fueron registradas y se observó que los datos variaban drásticamente en todos los canales, con valores de frecuencia entre 105 Hz a 310 Hz, sin embargo, al ser graficadas, se intuye con certeza de que indican el cambio de estado de los músculos de reposo a activo y viceversa. Principalmente estos cambios se aprecian en alguna de las primeras cinco FMIs de cada canal y así mismo aparecen simultáneamente en los cuatro canales. Estos resultados determinaron la creación de una segunda normalización que tuviera las condiciones necesarias para reducir la cantidad de muestras y simplificar el proceso.

En la segunda normalización se aplicó el mismo proceso de descomposición en modo empírico y con iguales condiciones se obtuvieron entre 5 y 11 FMIs por señal.

Para cada una de las FMIs, después de la transformación de Hilbert, se obtuvieron sus respectivas frecuencias instantáneas que fueron de entre 105 Hz y 310 Hz, igual que con la primera normalización.

La frecuencia instantánea obtenida sólo fue empleada para identificar cambios significativos en las señales, aunque tendrán mayor uso en otras aplicaciones como tiempos de respuesta y activación de las motoneuronas, entre otros.

Las FMIs obtenidas reconstruyen hasta en un 98% la señal original. Sumando las tres primeras FMIs se reconstruye hasta un 92% de la señal original.

Las principales componentes de las FMIs resultantes de los dos procesos tienen frecuencias del orden de los 200 Hz +/-20 Hz, detectadas dentro de las primeras FMIs; por otro lado, las frecuencias más bajas, detectadas en las últimas tres FMIs, fueron de 12 Hz, 8 Hz y 6 Hz.

Las frecuencias de mayor energía detectadas con la Transformada de Hilbert fueron grupos de señales de tipo AM/FM con frecuencias promedio de 83.3 Hz (73.57 Hz -85.9 Hz), 96.7Hz (94.35 Hz -99.82 Hz), 59 Hz (58.5 Hz -61.3 Hz) y 113.3 Hz (111 Hz -117.04 Hz). Las frecuencias fueron aproximadas con series de Fourier de entre 1 y 8 términos, con de 0.98 y 0.99, entre los intervalos en los que se registraron cambios en las frecuencias instantáneas de la señal.

En las FMIs del 87% de las señales analizadas se identificaron 2 patrones, uno correspondiente al periodo de las MUAPs y otro al intervalo entre ellas. En cada movimiento voluntario se manifiestan las MUAPs en un par de oscilaciones bien definidas en frecuencia, principalmente de 83.3Hz, 96.7 Hz o 113.3 Hz y de duración de 24.5 ms en promedio en cada una. Entre el final de la primera oscilación y el inicio de la segunda se identifica un intervalo de 30 ms en promedio. La primera y la segunda oscilación tiene una relación 2:1 en amplitud. Estos patrones indican los tiempos de duración de las señales de activación muscular, así como sus frecuencias.

Un resultado intrínseco se obtuvo del mapeo de la intensidad muscular en los cuatro canales por usuario, donde los niveles de intensidad fueron registrados y comparados contra los cinco movimientos. Se establecieron tres niveles de intensidad, de 0 V a 0.3 V para valor nulo, de 0.35 V a 0.65 V para valor medio y de 0.7 V a 1 V para valor alto. La Fig. 7 muestra el mapeo de intensidades para un usuario. Cada usuario presenta un mapa distinto de intensidad versus movimiento, se tiene el indicio de que es una característica particular y no un patrón en general. Figura 7. Intensidad de contracción muscular del sujeto 1 para cuatro canales en relación a seis movimientos de los dedos. El mapa muestra la intensidad presente en los canales cuando un movimiento es realizado: las estrellas representan 0.7 V a 1 V, los puntos 0.35 V a 0.65 V y los círculos de 0 V a 0.3 V. Cada ícono representa una de nueve repeticiones.

IV. CONCLUSIONES

El filtrado de las señales mioeléctricas es un proceso no indispensable si las condiciones de adquisición en los electrodos son mejoradas, así mismo se reduce el tiempo de cómputo. El ruido de las señales mioeléctricas superficiales es, en su mayoría, de músculos y tejidos aledaños al músculo en cuestión. Con la configuración de electrodos propuesta se logró una reducción de hasta 43.5% del ruido en los registros de las señales mioeléctricas superficiales, comparado con otros registros hechos con el mismo sistema de adquisición, los mismos electrodos y en los mismos sujetos, pero con una configuración tradicional como la reportada por León y otros. Para el algoritmo de Hilbert-Huang, las señales obtenidas fueron separadas en componentes intrínsecas de baja y alta frecuencia, algunas de ellas asociadas a ruido por artefactos y a ruido de sistemas electromagnéticos.

El proceso de normalización es importante para la aplicación de cualquier técnica de procesamiento de señales, un buen pretratamiento de los datos ayuda a cualquier técnica aplicada. La normalización no es un proceso generalizado que se defina para todos los procedimientos, sino que es adaptativo.

Para la transformación de Hilbert-Huang se realizaron dos distintas normalizaciones. Al amplificar todas las señales a un máximo absoluto de 1 V, es posible identificar la mayor cantidad de frecuencias o formas de onda dentro de la señal y sin alterar las condiciones programadas en el algoritmo. Para reducir los tiempos de cómputo, así como los niveles de ruido, en Hilbert-Huang no es necesario establecer que todas las señales tengan un máximo absoluto de 1 V, pero sí se recomienda reducir la ventana de muestras, pues el algoritmo es adaptativo y no requiere de modificaciones en las condiciones de descomposición ni en el cálculo de la transformada de Hilbert.

De acuerdo a los resultados del análisis, se obtuvo por medio de aproximación con series de Fourier un patrón de tres frecuencias de 83.3 Hz, 96.7 Hz y 113.3 Hz que se asocian a la activación y desactivación muscular, es decir son señales de control muscular, con una duración promedio de 24.5 ms. Estas señales se manifiestan en pares y tienen una separación de 30 ms entre cada una. Con base en estos resultados es posible proponer una escala en tiempo mínima de la ventana de muestra para las señales EMG de al menos 30 ms, que es el tiempo de duración y de transición identificado las FMIs. Este tiempo puede ser menor, sí y sólo sí, se utilizara un sistema de predicción que detecte los patrones y haga la predicción del comportamiento esperado. Los patrones de tiempo y frecuencia se identificaron en el 86% de las señales analizadas, en el restante 14% de las señales no fue posible identificar algún patrón, debido principalmente a que eran señales con errores en el registro, tenían una intensidad muy baja o nula o el algoritmo de descomposición no pudo convertir en funciones intrínsecas.

La frecuencia de 59 Hz, detectada en al menos el 81% de las señales, es certeramente el ruido de línea eléctrica comercial.

Las frecuencias identificadas con la técnica de Hilbert-Huang provienen de una descomposición simétrica que se adapta a la señal analizada sin aportar datos ajenos a ésta y con una aproximación sinusoidal más justa.

El procesamiento de señales mioeléctricas, no estacionarias y no lineales, requiere de la aplicación de algoritmos que se adapten a las distintas formas de onda presentes en estas señales. En otros análisis, usando wavelets, se depende directamente de la escala y la traslación para analizar una señal y, por otro lado, con la transformación de Hilbert-Huang el análisis sólo depende de la señal de entrada.

Un método de identificación rápido de los movimientos realizados por el individuo, sin usar clasificadores de alto nivel, resultó del registro de la intensidad muscular en los cuatro canales de adquisición. Cada movimiento de los dedos tiene distintas intensidades por músculo; incrementando el número de individuos en prueba se podría determinar un sistema mínimo de canales de adquisición de señale EMG superficial, para poder identificar más movimientos y de igual manera, identificar los patrones en otros músculos del mismo antebrazo, brazo y hombro. 
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 2 Figura 2. Movimientos de los dedos. A) flexión del dedo II, B) flexión del dedo III, C) flexión de los dedos IV & V, D) flexión del dedo I, E) flexión de todos los dedos y F) extensión de todos los dedos.
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 3 Figura 3. Diagrama de la configuración de los electrodos de adquisición con la distribución foco-vértice para los canales 2 y 4, asociados tanto al músculo flexor digitorium superficialis como al músculo flexor carpo ulnaris respectivamente. Cada canal se colocó sobre cinco músculos, anteriores y posteriores, del antebrazo. Los músculos seleccionados son superficiales y tienen relación directa a los dedos: 1) Pollicis brevis, 2) Flexor digitorium superficialis, 3) Pollicis Longus, 4) Flexor Carpi Ulnaris y 5) Extensor digitorium. Sobre estos músculos, de forma no invasiva, se colocaron los electrodos de los cuatro canales de adquisición de la siguiente forma: Canal 1 -Músculos 1 & 3, Canal 2 -músculo 2, Canal 3 -músculo 5 y Canal 4 -músculo 4.

Figura 4 .

 4 Figura 4. Normalización para el análisis con Hilbert-Huang. A) y C) son las señales originales de los cuatro canales. B) son las señales amplificadas por los factores . D) muestra los cuatro canales en una ventana de 150 ms, como se observa en la figura C, han sido amplificadas por el factor .
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 5 Figura 5. Señal sEMG y sus FMIs, correspondientes al canal 3, para el movimiento de flexión y extensión de todos los dedos de la mano. Se muestran 6 niveles de descomposición; en la FMI 2 se observan dos formas presumiblemente MUAPs en los tiempos posteriores a 50 ms y 100 ms aproximadamente.
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