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GROMOV (NON-)HYPERBOLICITY OF CERTAIN
DOMAINS IN Cn

NIKOLAI NIKOLOV, PASCAL J. THOMAS, AND MARIA TRYBU LA

Abstract. We prove the Gromov non-hyperbolicity with respect
to the Kobayashi distance for C1,1-smooth convex domains in C2

which contain an analytic disc in the boundary or have a point
of infinite type with rotation symmetry. The same is shown for
“generic” product spaces, as well as for the symmetrized polydisc
and the tetrablock. On the other hand, examples of smooth, non-
pseudoconvex, Gromov hyperbolic domains in Cn are given.

1. Introduction and statements

In [10], Gromov introduced the notion of almost hyperbolic space. He
discovered that “negatively curved” space equipped with some distance
share many properties with the prototype, even though the distance
does not come from a Riemannian metric. This gave the impulse to
intensive research to find new interesting classes of spaces which are
hyperbolic in that sense. In this paper we are mainly interested in
investigating this concept with respect to the Kobayashi distance of
convex domains. One may suspect that it is a restriction to consider
only the Kobayashi metric. Actually, because the Kobayashi distance
of a (C-)convex domain containing no complex lines, as well as of a
bounded strictly pseudoconvex domain, is bilipschitz equivalent to the
(inner) Carathéodory and Bergman distances (see [15, Theorem 12]
and [13, Proposition 4]), it does not matter which one we choose (see
below). Recall that a set E in Cn is called C-convex if any intersection
of E with a complex line l and its complement in l are both connected
in l (cf. [2]).
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The notion of a bilipschitz equivalence has the following generaliza-
tion.

Definition 1. Let (X1, d1) and (X2, d2) be two metric spaces. Then a
map ϕ : X1 → X2 is said to be a quasi-isometry if there are constants
c1, c2 > 0 such that for any x, y ∈ X1,

c−1
1 d1(x, y)− c2 ≤ d2 (ϕ(x), ϕ(y)) ≤ c1d1(x, y) + c2.

Two distances d1, d2 on a set X are said to be quasi-isometrically equiv-
alent if the identity map is a quasi-isometry from (X, d1) to (X, d2).

Gromov hyperbolicity is well-known to be invariant under bijective
quasi-isometries of path metric spaces (cf. [18, Theorems 3.18, 3.20]).

Definition 2. Let (D, d) be a metric space. Given points x, y, z ∈ D,
the Gromov product is

(x, y)z = d(x, z) + d(z, y)− d(x, y).

Let
Sd(p, q, x, w) = min{(p, x)w, (x, q)w} − (p, q)w.

(D, d) is Gromov hyperbolic if

sup
p,q,x,w∈D

Sd(p, q, x, w) <∞.

If Sd(p, q, x, w) ≤ 2δ, then (D, d) is called δ-hyperbolic.

We refer to [18] for other characterizations of Gromov hyperbolicity,
especially for path metric spaces. We chose this one because it does
not use geodesics explicitly.

Definition 3. (D, d) is a path metric space if, for any two points
x, y ∈ D and any number ε > 0, there exists a rectifiable path joining
x and y with length at most d(x, y) + ε. Then the distance d is called
intrinsic.

From now on, let D be a domain in C
n.

Denote by cD and lD the Carathéodory distance and the Lempert
function of D:

cD(z, w) = sup{tanh−1 |f(w)| : f ∈ O(D,D), f(z) = 0},

lD(z, w) = inf{tanh−1 |α| : ∃ϕ ∈ O(D, D) with ϕ(0) = z, ϕ(α) = w},

where D is the unit disc. The Kobayashi distance kD is the largest
pseudodistance not exceeding lD. The inner Carathéodory distance ciD
is the inner pseudodistance associated to cD. So, cD ≤ ciD ≤ kD ≤
lD. By Lempert’s seminal paper [12], we have equalities above if D is
convex (or bounded, C2-smooth and C-convex).
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An important property of kD is that it is the integrated form of the
Kobayashi metric κD of D, i.e.

kD(z, w) = inf{

∫ 1

0

κD(γ(t); γ
′(t))dt :

γ : [0, 1] → D is a smooth curve with γ(0) = z and γ(1) = w},

where

κD(z;X) = inf{|α| : ∃ϕ ∈ O(D, D) with ϕ(0) = z, αϕ′(0) = X},

z, w ∈ D, X ∈ Cn.
We refer to [11] for basic properties of the invariants defined here

and of the Bergman distance bD.
We shall say that D is Gromov s-hyperbolic if (D, sD) is Gromov

hyperbolic with respect to the distance s (this should not be confused
with δ-hyperbolicity for some constant δ > 0).
The first result concerning Gromov k-hyperbolicity for domains in

Cn was given by Balogh and Bonk [4] who gave both positive and neg-
ative examples. They proved that any bounded strictly pseudoconvex
domain is Gromov k-hyperbolic [4, Theorem 1.4]. They also showed
that the Cartesian product of bounded strictly pseudoconvex domains
is not Gromov k-hyperbolic [4, Proposition 5.6] which is a special case
of a general situation mentioned in many places, but without proof (cf.
[9]).

Proposition 1. Assume that (X1, d1) is a path metric space with d1
unbounded and (X2, d2) a metric space with unbounded d2. Let d =
max{d1, d2}. Then (X1 ×X2, d) is not Gromov hyperbolic.

The next proposition is more general than the previous one. However
its proof uses Proposition 1.

Proposition 2. Let (X1, d1) and (X2, d2) be metric spaces, such that
one of them is a path metric space. Let d = max{d1, d2}. Then (X1 ×
X2, d) is Gromov hyperbolic if and only if one of the factors is Gromov
hyperbolic and the metric of the second one is bounded (in particular,
it is also Gromov hyperbolic).

Moreover, the proof of Proposition 1 and Remark 1 (following this
proof) show that the path property in Proposition 2 can be replaced
the following.

Definition 4. A metric space (Y, d) admits the weak midpoints prop-
erty if either d is bounded or there exist sequences (xk), (yk), (zk) ⊂ Y
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such that d(xk, yk) → ∞ and

(1)
d(xk, zk)

d(xk, yk)
→

1

2
,
d(yk, zk)

d(xk, yk)
→

1

2
.

Corollary 1. Let D1 and D2 be Kobayashi hyperbolic domains (i.e.
kD1

and kD2
are distances) admitting non-constant bounded holomor-

phic functions (for example, bounded domains). Then D1 ×D2 is not
Gromov k-hyperbolic.

To see this, it is enough to observe that if a domain G in Cn admits a
non-constant bounded holomorphic function f and |f(zj)| → supG |f |,
then kG(z, zj) ≥ cG(z, zj) → ∞.

Note also that Proposition 1 implies that if D1 and D2 are planar
domains with complements containing more than one point (i.e. they
are Kobayashi hyperbolic), then D1 ×D2 is not Gromov k-hyperbolic
(use that kDk

(z, zj) → ∞ as zj → ∂Dk, k = 1, 2).

As an immediate consequence we obtain that the polydisc is not
Gromov k-hyperbolic. Moreover, even its “symmetrized” counterpart
is not.

Proposition 3. Gn is not Gromov c- nor k-hyperbolic for n ≥ 2.

For the convenience of the reader, recall that the symmetrized poly-
disc Gn, which is of great relevance due to its properties and role (cf.
[3], [6]), is the image of the holomorphic map

π : Dn → C
n, π = (π1, . . . , πn),

πk(z1, . . . , zn) =
∑

1≤j1<...<jk≤n
zj1 . . . zjk , z1, . . . , zn ∈ D, 1 ≤ k ≤ n,

which is proper from Dn to Gn.
Another interesting domain, the tetrablock (cf. [1]), fails to be Gro-

mov k-hyperbolic, too. Let

ϕ : RII → C
3, ϕ(z11, z22, z) = (z11, z22, z11z22 − z2),

where RII denotes the classical Cartan domain of the second type (in
C3), i.e.

RII = {z̃ ∈ M2×2(C) : z̃ = z̃t, ‖z̃‖ < 1},

where ‖·‖ is the operator norm and M2×2(C) denotes the space of 2×2
complex matrices (we identify a point (z11, z22, z) ∈ C3 with a 2 × 2

symmetric matrix

(
z11 z
z z22

)
). Then ϕ is a proper holomorphic map

and ϕ(RII) = E is a domain, called the tetrablock.

Proposition 4. E is not Gromov k-hyperbolic.
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Since G2 and E are bounded C-convex domains (see [14, Theorem
1 (i)] and [19, Corollary 4.2]), it follows that they are not Gromov ci-
nor b-hyperbolic either.
Buckley in [5], claimed that it is because of the flatness of the bound-

ary rather than the lack of smoothness that Gromov hyperbolicity fails.
Recently, Gaussier and Seshadri have provided a proof of that conjec-
ture. More precisely, their main result in [9, Theorem 1.1] states that
any bounded convex domain in Cn whose boundary is C∞-smooth and
contains an analytic disc, is not Gromov k-hyperbolic. Lemma 5.4 in
their proof used the C∞ assumption in an essential way. Our aim is to
prove this result in a shorter way in C2, assuming only C1,1-smoothness.
Moreover, the proofs of the facts we use are more elementary.

Theorem 1. Let D be a convex domain in C2 containing no complex
lines.1 Assume that ∂D is C1,1-smooth and contains an analytic disc.
Then D is not Gromov k-hyperbolic.

Besides, we give a partial answer to the question raised in [4].

Theorem 2. Let D be a C1,1-smooth convex bounded domain in C2

admitting a defining function of the form ̺(z) = −Re z1+ψ(|z2|) near
the origin, where ψ is a C1,1-smooth nonnegative convex function near
0 satisfying ψ(0) = 0, and

(2) lim sup
x→0

logψ(|x|)

log |x|
= ∞.2

Then D is not Gromov k-hyperbolic.

Finally, note that there is no connection between Gromov hyperbol-
icity and pseudoconvexity. Indeed, take any strictly pseudoconvex do-
main G. As we have already mentioned, G is Gromov k-hyperbolic, and
kG and cG are bilipschitz equivalent. Hence G is Gromov c-hyperbolic,
too. Assume that, respectively, A ⋐ G and B is a relatively closed
subset of G such that G \ A is a domain and that B is negligible with
respect to the (2n− 2)-dimensional Hausdorff measure. Then G \A is
Gromov c-hyperbolic and G \B is Gromov k-hyperbolic, since

cG\A = cG|(G\A)×(G\A)

(by the Hartogs extension theorem) and

kG\B = kG|(G\B)×(G\B)

(cf. [11, Theorem 3.4.2]).

1Then D is biholomorphic to a bounded domain (cf. [11, Theorem 7.1.8]).
2If ψ is C∞, then 0 is of infinite type if and only if condition (2) holds.
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However, the example with G\B does not have a smooth boundary.
The next proposition yields, in particular, a family of non-pseudoconvex
domains with smooth boundaries which are Gromov k-hyperbolic.

Proposition 5. Let G be a bounded domain in Cn (n ≥ 2). Assume
that D ⋐ G is a C2-smooth domain in Cn and its Levi form has at least
one positive eigenvalue at each boundary point. Then G\D is a domain
such that kG\D is quasi-isometrically equivalent to kG|(G\D)×(G\D).

3

In particular, if G is Gromov k-hyperbolic, then so is G \D.

Corollary 2. If D ⋐ G are strictly pseudoconvex domains in Cn, then
G \D is a Gromov k-hyperbolic domain.

The estimates that we use in the proof of Proposition 5 do not hold
for the planar annulus Ar = {z ∈ C : r−1 < |z| < r} (r > 1). However,
any finitely connected proper planar domain is Gromov k-hyperbolic
(cf. [17, Proposition 3.2]).

Proposition 6. Let G be a bounded domain in Cn (n ≥ 2). Assume
that K is compact subset of G such that through any point z ∈ Cn \K
passes a complex line disjoint from K. Then G \ D is a domain such
that kG\D is quasi-isometrically equivalent to kG|(G\D)×(G\D).

4

In particular, if G is Gromov k-hyperbolic, then so is G \K.

Note that we may take K to be any compact (C-)convex set, since
any compact or open C-convex set E in Cn is linearly convex, i.e.
through any point in Cn \ E passes a complex line disjoint from E
(cf. [2, Theorem 2.3.9]).
Throughout the paper dD denotes the (Euclidean) distance to ∂D.

A point z ∈ Cn we write as (z1, . . . , zn), zj ∈ C.
An appendix at the end of the paper includes some of the estimates

for the Kobayashi distance and metric used in the proofs.

2. Proofs

Proof of Proposition 1. Assume that (X, d) is δ
2
-hyperbolic. Put k =

3 + δ. Then there are points y1, y2 ∈ X2 such that d2(y1, y2) = 2s ≥
2k. Choose points x1, x

∗
2 ∈ X1 with d1(x1, x

∗
2) ≥ 2s. By the path

property of X1, there is a d1-continuous curve γ : [0, 1] → X1 joining
the points x1 and x∗2 such that Ld1(γ) < d1(x1, x

∗
2) + 1. Note that

t → d1(x1, γ(t)) is continuous. Hence there is a smallest number t0
such that d1(x1, γ(t0)) = 2s. Set x2 = γ(t0).

3One can show that these distances are not bilipschitz equivalent.
4One can show that these distances are not bilipschitz equivalent if, for example,

K is a closed polydisc.
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Now L(γ|[0,t0]) ≥ d1(x1, x2) = 2s, and

L(γ|[0,t0]) = L(γ)−L(γ|[t0,1]) ≤ d1(x1, x
∗
2)+1−d1(x2, x

∗
2) ≤ d1(x1, x2)+1.

Let t1 be the smallest number in [0, t0] such that d1(x1, γ(t1)) = s. Set
x3 = γ(t1). Then

d1(x2, x3) ≥ d1(x1, x2)− d1(x1, x3) = s, and

d1(x2, x3) = L(γ|[0,t1]) = L(γ|[0,t0])−L(γ|[t1,t0]) ≤ 2s+1−d1(x1, x2) = s+1.

Hence, s = d1(x1, x3) ≤ d1(x3, x2) < s+ 1.
Now define the following points in X1×X2: x = (x1, y1), y = (x2, y1),

w = (x3, y1), and z = (x3, y2). Then d(z, w) = d(z, x) = d(z, y) = 2s
and (x, y)w ≤ 1, (x, z)w = d(x, w) = s, (y, z)w = d(y, w) ≥ s − 1. By
the assumption of δ

2
-hyperbolicity we reach the inequalities

1 ≥ (x, y)w ≥ min{(y, z)w, (x, z)w} − δ ≥ s− 1− δ ≥ 2

which is a contradiction.

Remark 1. An essential ingredient in the proof of Proposition 1 is
the existence of points x1, x2, x3 such the triangle inequality is a near-
equality, namely (x1, x2)x3 ≤ 1. The condition (1) is equivalent to
(x1, x2)x3 = o(d(x1, x2)), and |d(x1, x3)− d(x2, x3)| = o(d(x1, x2)).
Using this weaker hypothesis and following the steps of the above

proof, setting 2s = d(x1, x2) as before, we find

o(s) ≥ (x, y)w ≥ s− o(s)− δ,

leading to a contradiction when s → ∞. Similar changes can be made
in the proof below.

Proof of Proposition 2. Let first (X1, d1) be 2δ-hyperbolic and d2 ≤ 2c.
Since d ≤ d1 + 2c, it follows that

(x1, y1)w1
− 2c ≤ (x, y)w ≤ (x1, y1)w1

+ 4c

and then (X, d) is (δ + 3c)-hyperbolic.
Assume now that (X, d) is δ-hyperbolic. Following the proof of Pro-

position 1, we deduce that one of the distances is bounded, say d2 ≤ 2c.
Then we get as above that (X1, d1) is (δ + 3c)-hyperbolic.

Proof of Proposition 3. Let a ∈ D, pa = π(a, . . . , a), qa = π(a, . . . , a,−a)
and ma = π(a, . . . , a, 0). We shall show that

ScGn
(pa, qa, ma, 0) → ∞ as |a| → 1.

It follows exactly in the same way that SkGn
(pa, qa, ma, 0) → ∞ as |a| →

1. So, Gn is not Gromov c- nor k-hyperbolic for n ≥ 2.
The holomorphic contractibility implies that

cGn
(pa, qa) ≥ cD(a

n,−an) = 2cD(a
n, 0),
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max{cGn
(pa, 0), cGn

(qa, 0), cGn
(pa, ma), cGn

(qa, ma)} ≤ cD(a
n, 0).

Thus

ScGn
(pa, qa, ma, 0) ≥ cGn

(ma, 0) + 2cD(a
n, 0)− 2cD(a, 0).

Since

2cD(a, 0)− 2cD(a, 0) → logn as |a| → 1,

it remains to see that cGn
(ma, 0) → ∞ as |a| → 1. This follows by

the fact that any point b ∈ Gn is a weak peak point, i.e. there exists
fb ∈ O(Gn,D) such that |fb(z)| → 1 as z → b (a consequence of [6,
Corollary 3.2]).

Proof of Proposition 4. Let a ∈ (0, 1), and put Pa = ϕ(diag(a, a)), Qa =
ϕ(diag(a,−a)). Recall that Φa(Z) = (Z−aI)(I−aZ)−1 is an automor-
phism of RII . Direct computations show that

ϕ ◦ Φa(

(
z11 z
z z22

)
) = ϕ ◦ Φa(

(
z11 −z
−z z22

)
),

whenever

(
z11 z
z z22

)
∈ RII . Thus, Φa induces an automorphism Φ̃a

of E. It follows from this and [1, Corollary 3.7] that

kE(0, (a, b, p)) = tanh−1max
{ |a− bp|+ |ab− p|

1− |b|2
,
|b− ap|+ |ab− p|

1− |a|2

}
,

(a, b, p) ∈ E,

2kE(Pa, 0), 2kE(Qa, 0), kE(Pa, Qa) = − log dD(a) + O(1).

Observe that if f(λ) = (0, λ, 0),, then ga = Φ̃−a◦f is a complex geodesic
for kE with Pa = ga(0), Qa = g

(
− 2a

1+a2

)
. Note that the Kobayashi

middle point Ra of ga|[− 2a

1+a2
,0] tends to the boundary; more precisely,

Ra = ga(−a) → diag(1, 0) as a→ 1.

Consequently, SkE(Pa, Qa, Ra, 0) is comparable with kE(Ra, 0). By Pro-
position A1(b) (see Appendix), kE(Ra, 0) → ∞ as a→ 1, which finishes
the proof.

Proof of Theorem 1. Since ∂D contains an analytic disc, it is well known
that it contains an affine disc (cf. [15, Proposition 7]). We assume that
this disc has center 0 and lies in {z1 = 0}, and that D ⊂ {Re z1 > 0}.

Lemma 1. We can find an r > 0 such that for any δ > 0 small enough
there exist two discs ∆(p̃δ, r) and ∆(q̃δ, r) in Dδ = D ∩ {z1 = δ} which
touch ∂D at two points p̂δ and q̂δ with ‖p̂δ − q̂δ‖ > 5r.
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Proof. We identify ∂D∩{z1 = 0} with a closed, bounded, convex subset
of C, which is the closure of its interior. Call this interior D0.
There exists ζ0 ∈ D0 such that dD0

(ζ0) = maxζ∈D0
dD0

(ζ). Then

M =

{
p ∈ ∂D0 : |p− ζ0| = min

ξ∈∂D0

|ξ − ζ0|

}

is a not empty set which cannot be contained in any half plane

Hθ = {ζ : Re[(ζ − ζ0)e
−iθ] < 0} :

if it were, one could find ε > 0 such that dD0
(ζ0 + εeiθ) > dD0

(ζ0). So
there are p̂ 6= q̂ ∈ M such that arg((p̂ − ζ0)(q̂ − ζ0)

−1) ≥ 2π/3. Take

r ∈ (0,
√
3

5+
√
3
|p̂ − ζ0|), p̃ = ζ0 + (1 − r|p̂ − ζ0|

−1)(p̂ − ζ0), and q̃ chosen

likewise. Then the discs ∆(p̃, r) ⊂ D0 and ∆(q̃, r) ⊂ D0 are tangent to
∂D0 at p̂ and q̂.
Now we want to move these discs inside D. By C1,1-smoothness of

D, we can move them (in C
2) along the vector (1, 0) inside D, i.e.

∆(p̃, r), ∆(q̃, r) ⊂ D ∩ {z1 = δ} = Dδ, for 0 < δ < δ0. If they do
not touch ∂Dδ, then shift them (separately at every sublevel set) to
the boundary but leaving their centers on the real line passing through
p̃+ (δ, 0) and q̃ + (δ, 0). Denote new discs by ∆(p̃δ, r), ∆(q̃δ, r), and by
p̂δ, q̂δ points of contact of those discs with ∂Dδ. �

Choose now a point a = (δ0, 0) ∈ D (δ0 > 0) and consider the cone
with vertex at a and base ∂D∩{z1 = 0}. Denote by Gδ the intersection
of this cone and {z1 = δ}. For any δ > 0 small enough the line segment
with ends at p̃δ and p̂δ intersects ∂Gδ, say at pδ. Define qδ in a similar
way.
Set s̃δ =

p̃δ+q̃δ
2
. We shall show that SkD(pδ, qδ, s̃δ, a) → ∞ as δ → 0.

For this we will see that (pδ, s̃δ)a − (pδ, qδ)a → ∞ as δ → 0. It will
follow in the same way that (qδ, s̃δ)a − (pδ, qδ)a → ∞.
It is enough to prove that

(3) kD(qδ, a)− kD(s̃δ, a) < c1

and

(4) kD(pδ, qδ)− kD(pδ, s̃δ) → ∞.

Here and below c1, c2, . . . denote some positive constants which are
independent of δ.
For (3), observe that, by Propositions A1(a) and A2 (see Appendix),

(5) kD(s̃δ, a) ≥
1

2
log

dD(a)

dD(s̃δ)
and 2kD(qδ, a) ≤ − log dD(qδ) + c2.

It remains to use that dD(s̃δ) = dD(qδ) for any δ > 0 small enough.
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To prove (4), denote by Fδ the convex hull of ∆(p̃δ, r) and ∆(s̃δ, r).
Then by inclusion kD(pδ, s̃δ) ≤ kFδ

(pδ, s̃δ).

Lemma 2. kFδ
(pδ, s̃δ) < −1

2
log d′D(pδ) + c3, where d

′
D is the distance

to ∂D in the z2-direction.

Proof. For δ > 0 small enough we have that

d′D(pδ) = dDδ
(pδ) = dFδ

(pδ) = d∆(p̃δ,r)(pδ)

because the closest point on ∂Dδ belongs to ∂∆(p̃δ, r). Now kFδ
(pδ, s̃δ) ≤

kFδ
(pδ, p̃δ) + kFδ

(p̃δ, s̃δ).
Since ∆(p̃δ, r) ⊂ Fδ,

kFδ
(pδ, p̃δ) ≤ k∆(p̃δ,r)(pδ, p̃δ) =

1

2
log

1 + |pδ−p̃δ|
r

1− |pδ−p̃δ|
r

≤ −
1

2
log d∆(p̃δ,r)(pδ) +

1

2
log(2r) = −

1

2
log d′D(pδ) +

1

2
log(2r).

On the other hand, by using a finite chain of discs of radius r with
centers on the line segment from p̃δ to s̃δ, we obtain that

kFδ
(p̃δ, s̃δ) ≤ 4

|p̃δ − s̃δ|

r
≤ C(r). �

Now, we shall show that

(6) 2kD(pδ, qδ) > − log d′D(pδ)− log d′D(qδ)− c4,

which implies (4), because d′D(qδ) → 0 as δ → 0.
Since the Kobayashi distance is intrinsic, we may find a pointmδ ∈ D

such that

‖pδ −mδ‖ = ‖qδ −mδ‖ ≥
‖pδ − qδ‖

2
,

kD(pδ, qδ) > kD(pδ, mδ) + kD(mδ, qδ)− 1.

Let p̌δ ∈ ∂D be the closest point to pδ in the direction of the complex
line through pδ and mδ.
Recall that d′D is the distance to ∂D in the z2-direction and dD(pδ)

is attained in z1-direction for any δ > 0 small enough. This means that
the standard basis is adapted to the local geometry of ∂D near pδ, and
more precisely, if X = (X1, X2) ∈ C2 is a unit vector, [15, (4)] states
in this case that there exists a constant C such that

1

dD(pδ, X)
≤

|X1|

dD(pδ)
+

|X2|

d′D(pδ)
≤

C

dD(pδ, X)
,
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where dD(·;X) is the distance to ∂D in direction X. Since d′D ≥ dD,
we obtain

dD(pδ;X) ≤ c5d
′
D(pδ).

Let X = mδ−pδ
‖mδ−pδ‖ . Then ‖pδ − p̌δ‖ = dX(pδ) and thus

(7) ‖pδ − p̌δ‖ < c5d
′
D(pδ).

By convexity, D is on the one of the sides, say Hδ, of the real tangent

plane to ∂D at p̌δ. Since
‖mδ−p̌δ‖
dHδ

(mδ)
= ‖pδ−p̌δ‖

dHδ
(pδ)

, it follows by (5) that

(8) 2kD(pδ, mδ) ≥ 2kHδ
(pδ, mδ) ≥ log

dHδ
(mδ)

dHδ
(pδ)

= log
‖mδ − p̌δ‖

‖pδ − p̌δ‖
.

Applying the triangle inequality and (7), we get that

log
‖mδ − p̌δ‖

‖pδ − p̌δ‖
≥ log

‖mδ − pδ‖ − ‖pδ − p̌δ‖

‖pδ − p̌δ‖
≥

log

(
r

2‖pδ − p̌δ‖
− 1

)
≥ log

r

2c5d′(pδ)
− 1,

for any δ > 0 small enough. So 2kD(pδ, mδ) > − log d′D(pδ)− c6. Simi-
larly, 2kD(qδ, mδ) > − log d′D(qδ)−c6, which implies (6), and completes
the proof.

Remark 2. All the above arguments hold in Cn, n ≥ 3, except (7).

Proof of Theorem 2. Since the case when ψ(z0) = 0 for some z0 6= 0,
is covered by Proposition 1, we may assume that ψ−1{0} = {0}. Also
assume p = (1, 0) ∈ D.
Let α(x), small enough, an increasing function such that for any

x > 0, ψ′(x) ≥ ψ′((1−α(x))x) ≥ 1
2
ψ′(x). We choose, for x > 0, q(x) =

(ψ(x), 0), r(x) = (ψ(x),−(1− α(x))x), s(x) = (ψ(x), (1− α(x))x).
We claim that for x small enough:

(I) dD(q) = ψ(x),

(II) α(x)
4
xψ′(x) ≤ dD(s), dD(r) ≤ α(x)xψ′(x),

(III) the functions kD(s, q)+
1
2
logα(x) and kD(r, q)+

1
2
logα(x) are

bounded,
(IV) the function kD(r, s) + logα(x) is bounded.

Before we proceed to prove the claims we make some general obser-
vation about infinite order of vanishing.

Lemma 3. For any ε > 0 and A > 0, there exists x ∈ (0, ε) such that
xψ′(x)
ψ(x)

> A.
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Proof. Suppose instead that there exist ε > 0 and A > 0 such that
xψ′(x)
ψ(x)

≤ A for 0 < x ≤ ε. Then

d

dx
(logψ(x)) ≤

A

x
, 0 < x ≤ ε,

so log(ψ(ε))− log(ψ(x)) ≤ A (log ε− log x), i.e.

ψ(x) ≥
ψ(ε)

εA
xA, 0 < x ≤ ε,

which means that at the point 0 there is finite order of contact with
the tangent hyperplane, a contradiction. �

Assume the claims for a while, and observe that for any x verifying
the conclusion of Lemma 3 we have

(r, p)q − (r, s)q, (p, s)q − (r, s)q ≥ −
1

2
log

ψ(x)

xψ′(x)
+ C1.

Since the above quantity can be made arbitrarily large, it finishes the
proof.
It remains to prove (I)-(IV).
(I) is clear. Next, since (ψ((1− α(x))x), (1− α(x))x) ∈ D, dD(s) ≤

ψ(x)− ψ((1 − α(x))x)) ≤ α(x)xψ′(x) by convexity. Let L be the real
line through (ψ((1 − α(x))x), (1 − α(x))x) and (ψ(x), x). Its slope is
less than ψ′(x), so dD(s) ≥ dist (s, L′), where L′ is the line through
(ψ((1− α(x))x), (1− α(x))x) with slope ψ′(x), so

dD(s) ≥
ψ(x)− ψ((1− α(x))x)√

1 + ψ′(x)2

≥
1

2
α(x)× ψ′((1− α(x))x) ≥

1

4
α(x)× ψ′(x).

Thus, α(x)
4
xψ′(x) ≤ dD(s) ≤ α(x)xψ′(x). Analogous estimates hold for

r, which gives (II).
The analytic disc ζ 7→ (ψ(x), xζ) provides immediate upper esti-

mates in (III) and (IV).
To get lower estimate for kD(s, q), we map D to a domain in C by the

complex affine projection πs to {z1 = ψ(x)}, parallel to the complex
tangent space to ∂D at the point (ψ(x), x). Then πs(D) = {ψ(x)}×Ds,
where Ds is a convex domain in C, containing the disc {|z2| < x},
and its tangent line at the point x is the real line {Re z2 = x}. The
projection is given by the explicit formula

πs(z1, z2) =
(
ψ(x), z2 +

ψ(x)− z1
ψ′(x)

)
.
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We renormalize by setting f+(z) = 1 − 1
x
[πs(z)]2. Therefore f+(D) ⊂

H = {z ∈ C : Re z > 0}, so

(9) kD(s, q) ≥ kH(f+(s), f+(q)) = kH(α(x), 0) ≥ −
1

2
logα(x) + C2,

where C2 > 0 does not depend on x.
The estimate for kD(r, q) proceeds along the same lines, but we use

the projection πr to {z1 = ψ(x)} along the complex tangent space to
∂D at (ψ(x), x), given by

πr =
(
ψ(x), z2 −

ψ(x)− z1
ψ′(x)

)
.

Note that choosing f−(z) = 1+ 1
x
[πr(z)]2, we have f−(D) ⊂ {Re z > 0}.

Now we tackle the lower estimates for kD(r, s). Let γ be any piecewise
C1 curve such that γ(0) = s, γ(1) = r. Let c0 <

1
2
. We claim that there

exists t0 ∈ (0, 1) such that if we set u = γ(t0), then |f+(u)|, |f−(u)| ≥ c0.

For this write γ = (γ1, γ2). Set ζ1 = 1 − ψ(x)− γ1(t0)
xψ′(x)

. By the explicit

form of πs, the condition |f+(u)| ≥ c0 reads |ζ1 −
γ2(t0)
x

| ≥ c0, and

the condition |f−(u)| ≥ c0 reads |ζ1 +
γ2(t0)
x

| ≥ c0. We claim that the

discs D(ζ1, c0) and D(−ζ1, c0) are disjoint for any t. Indeed, they would
intersect if and only if 0 ∈ D(ζ1, c0), which implies

Re
( γ1(t0)
xψ′(x)

)
≤ −1 + c0 +

ψ(x)

xψ′(x)
≤ −

1

3

for any x such that ψ(x)
xψ′(x)

≤ 1
6
, which we may assume by Lemma 3.

In particular Re γ1(t0) < 0, which is excluded for any γ(t) ∈ D. Now

let t1 = max{t : γ2(t)
x

∈ D(ζ1, c0)}. Then
γ2(t1)
x

/∈ D(−ζ1, c0), and by

continuity there is η > 0 such that γ2(t1+η)
x

/∈ D(−ζ1, c0), and of course
γ2(t1+η)

x
/∈ D(ζ1, c0) by maximality of t1, so t0 = t1 + η will provide a

point satisfying the claim.
Consequently, taking a curve γ such that

kD(r, s) + 1 >

∫ 1

0

κD(γ(t); γ
′(t))dt,

∫ 1

0

κD(γ(t); γ
′(t))dt ≥

∫ t0

0

κD(γ(t); γ
′(t))dt+

∫ 1

t0

κD(γ(t); γ
′(t))dt

≥ kD(r, u) + kD(u, s).

We end the proof by estimating kD(r, u) in the same way as we did
kD(r, q) above, and kD(u, s) as as we did kD(s, q) above, using the maps
f+, f− and estimates about the Kobayashi distance in a half plane.



14 NIKOLAI NIKOLOV, PASCAL J. THOMAS, AND MARIA TRYBU LA

Proof of Proposition 5. Set G′ = G \D.
Assume first that G′ is not a domain. Let G′′ be a bounded connected

component of G′. Consider a farthest point a ∈ ∂G′′ from the origin.
Then a is a concave boundary point of D which a contradiction.
Choose now a smooth domain E such that D ⋐ E ⋐ G. By smooth-

ness and compactness, there is a constant C > 0 such that any two
points in G′ ∩ E may be jointed by a path in G′ ∩ E of length (at
most) C. By Propositions A3 (after integration) and A4, we may find
a constant c > 0 such that

kG′(z, w) ≤ c||z − w||1/4 ≤ c2, z, w ∈ G′ ∩ E,

kG′ ≤ ckG, z, w ∈ G \ E.

So there are constants c1, c2 such that

kG ≤ kG′ ≤ c1kG + c2, z, w ∈ G \ E or z, w ∈ G′ ∩ E.

Finally, let z ∈ G \E and w ∈ G′ ∩E. Since the Kobayashi distance
is intrinsic and ∂E is compact, we may find a point u ∈ ∂E such that

kG(z, w) = kG(z, u) + kG(u, w).

It follows that

kG(z, w) ≥ ckG′(z, u) + ckG′(u, w) ≥ ckG′(z, w).

Proof of Proposition 6. It clear that G′ = G\K is a domain. Following
the previous proof, let E be a domain such that K ⊂ E ⋐ G. All the
arguments in the previous proof work except the estimate on G′ ∩ E.
We need to find a constant c > 0 such that

kG′(z, w) ≤ c, z, w ∈ G′ ∩ E.

Take a complex line L through z which is disjoint from K. Then
the disc in L with center of z and radius dG∩L(z) lies in G

′. Choose a
common point z′ of this disc and ∂E such that ||z − z′|| = dE∩L(z).
Then

tanh lG′(z, z′) ≤
||z − z′||

dG∩L(z)
≤ 1−

r

dG∩L(z)
≤ 1−

2r

s
,

where r = dist(E, ∂G) and s = diam G.
Choosing w′ for w in the same way, it follows that

kG′(z, w) ≤ kG′(z, z′) + kG′(z′, w′) + kG′(w′, w) ≤ 2c′ + c′′

where c′ = tanh−1(1− 2r/s) and c′′ = max kG′|∂E×∂E.
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3. Appendix

Proposition A1. (cf. [16, Proposition 2])
(a) Let D be proper convex domain in Cn. Then

cD(z, w) ≥
1

2

∣∣∣∣log
dD(z)

dD(w)

∣∣∣∣ , z, w ∈ D.

(b) Let D be proper C-convex domain in C
n. Then

cD(z, w) ≥
1

4

∣∣∣∣log
dD(z)

dD(w)

∣∣∣∣ , z, w ∈ D.

Proposition A2. (see the proof of [11, Proposition 10.2.3]) Let b be a
C1,1-smooth boundary point of a domain D is Cn and let K ⋐ D. Then
there exist a neighborhood U of b and a constant C > 0 such that

2kD(z, w) ≤ − log dD(z) + C, z ∈ D ∩ U, w ∈ K.

Proposition A3. (cf. [7, Theorem 1]) Let b is a C2-smooth non-pseu-
doconvex boundary point of a domain D in C2. Then there exist a neigh-
borhood U of b and a constant c > 0 such that

cκD(z;X) ≤
|〈∇dD(z), X〉|

(dD(z))3/4
+ |X|, z ∈ D ∩ U, X ∈ C

n.

Proposition A4. Let D be a bounded domain in C
n. Let U and V be

neighborhoods of ∂D with V ⋐ U. Then there exists a constant c > 0
such that for any connected component D′ of D ∩ U one has that

ckD′(z, w) ≤ kD(z, w), z, w ∈ D′ ∩ V.

Proof. Let ε > 0. Take a smooth curve γ : [0, 1] → D such that
γ(0) = z, γ(1) = w and

kD(z, w, ε) := kD(z, w) + ε >

∫ 1

0

κD(γ(t); γ
′(t))dt.

Let s = sup{t ∈ (0, 1) : γ(0, t) ⊂ D′∩V } and r = inf{t ≥ s : γ([t, 1]) ⊂
D′ ∩ V }. Set z′ = γ(s) and w′ = γ(r). The localization property of
the Kobayashi metric (cf. [11, Proposition 7.2.9]) provides a constant
c′ > 0 such that

c′κD′(u;X) ≤ κD(u;X), z ∈ D′ ∩ V, X ∈ C
n.

It follows that

kD(z, w, ε) > c′kD′(z, z′) + kD(z
′, w′) + c′kD′(w′, w)

≥ c′kD′(z, w) + kD(z
′, w′)− c′kD′(z′, w′).
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If z′ 6= w′, then z′, w′ ∈ D′ ∩ ∂V ⋐ D′. Then there exists a constant
c1 > 0 such that

kD′(u, v) ≤ c1||u− v||, u, v ∈ D′ ∩ ∂V.

On the other hand, since D is bounded, we may find a constant c2 > 0
such that

kD(u, v) ≥ c2||u− v||, u, v ∈ D′ ∩ ∂V.

Then

kD(z, w, ε) > c′kD′(z, w) + (c2 − c′c1)||z
′ − w′||.

Since
kD(z, w, ε) > kD(z

′, w′) ≥ c2||z
′ − w′||,

we get that

kD(z, w, ε) > c′kD′(z, w)− (c′c1/c2 − 1)+kD(z, w, ε).

The last inequality also holds if z′ = w′. Letting ε → 0, we obtain
that

kD(z, w) ≥ min{c′, c2/c1}kD′(z, w).
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