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Abstract: This paper deals with control of parallel robots, 

where different controllers are proposed and compared. It 

demonstrates the strength of model-based controllers over 

the non-model-based ones when dealing with parallel 

kinematic manipulators known with their high nonlinearity, 

time-varying parameters and uncertainties.  More precisely, 

adaptive model-based algorithms are the preferred control 

solutions for such kind of manipulators, thanks to their 

adjustable-parameters feature which is more adequate to 

the varying and non-accurate nature of parallel kinematic 

manipulators. These facts are fulfilled here by numerical 

simulations and real-time experiments on a four-degree-of-

freedom parallel robot named VELOCE.             
Keywords: PKM, dynamic model, model-based, non-model-based, 

adaptive control, feedforward, PID, Nonlinear PD, Augmented PD.  

 

 

I. Introduction  

Parallel kinematic manipulators (PKMs) are defined in 

[1] as follows: “A generalized parallel manipulator is a 

closed-loop kinematic chain mechanism whose end-

effector is linked to the base by several independent 

kinematic chains”. 

PKMs were extensively used in robotized industries in 

the last few decades since it surpasses their counterpart’s 

serial structures, particularly,  in terms of high rigidity, 

better tracking performance, good precision,  high payload-

to-weight ratio and great dynamic [2], [3]. A very wide 

range of applications take benefit of PKMs. Stewart 

proposed in 1965 a platform that is used as a flight 

simulator [4]. Delta robot prototype of 3 DOFs proposed 

initially in 1985 [5] is the leader in pick-and-place 

operations [1], used in packaging industry, laser cutting [6], 

medical applications [7] and haptic devices in which they 

allow the human-computer interaction [8]. Another parallel 

structures are used in machining tasks [9]. 

However, some problems associated with such kind of 

structures still open and are not solved satisfactory. The 

drawbacks of PKMs are listed as limited range of motion 

especially the rotational motion [10], small work space, 

low dexterity, complex forward kinematic solutions [11]. 

Singularities’ behavior is more complicated than of serial 

[12], it can occur both inside and on the border of the work 

space [11].  

 In the literature, a wide range of control schemes have 

been proposed aiming to drive PKMs in accurate mode and 

high precision. The proposed control strategies can be  
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classified in two classes, Model-Based and Non-Model-

Based. The non-model-based strategies do not need a priori 

knowledge about the dynamics of the manipulator except 

the states (position and velocity). The Proportional-

Integral-Derivative (PID) controller [13] is the most used 

in industrial applications mainly due to its simplicity and 

easy implementation as well as its acceptable control 

performance. However, PKMs known by their nonlinear 

dynamics, and highly increasing non-linearity at high 

speeds which may even lead to instability. The need for 

nonlinear controllers arises, knowing that PID lacks to 

robustness. Nonlinear PD (NPD) controller [14] is more 

adequate to the nature of PKMs, which can insure stability 

and disturbances rejection and performs with better 

robustness towards error variation. Successful application 

of non-model-based fuzzy controller applied on Stewart 

platform in [15], shows that this controller can drive the 

six-degree motion platform accurately, smoothly and in a 

stable way. On the other hand, researchers developed 

several model-based controllers depending on the fact that 

the closed-loop algorithms, rich enough with knowledge 

about the system dynamics, can compensate their 

nonlinearities. PD with gravity compensation or with 

desired gravity compensation were applied intending to 

achieve better performance than simple PD since it 

surpasses the effect of gravity [16], [17]. Computed torque 

(CT) control exploits the full knowledge about the 

nonlinear system dynamics, leading to a linear closed-loop 

system in terms of tracking error [18]. Also the Augmented 

PD (APD) is a model-based strategy, where the dynamic 

part of the controller is computed from both the desired and 

measured states improving the global performance of the 

control mission [19]. Nevertheless, PKMs are featured 

with time-varying parameters (e.g. payload mass), 

uncertainties and difficulty to get accurate   model values, 

then the design of adaptive controllers is very significant. 

Adaptive model-based controllers recompense the possible 

variation of parameters and react against the disturbances 

by dynamical calibration in an online algorithm, such as 

the adaptive feedforward PD controller (AFFPD) [20]. 

The control performances of some classical non-model-

based controllers, as PD, PID, NPD, and model-based 

controllers, as APD, AFFPD, are studied and compared in 

this paper. The main objective is to show that a controller 

fed with a good dynamic knowledge about the robot will 

be very powerful and more precise. Moreover, the time-

varying PKM environment requires adaptive dynamic 

knowledge to manage robustness and accuracy, as it was 

proved with real-time experimental tests. 

The paper organization is as follow: Section II describes 

the structure of VELOCE parallel robot, as well as its 

kinematic and dynamic modeling. Section III is dedicated   
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to the synthesis of the proposed control solutions. 

Simulation and experimental results are presented and 

discussed in section IV. Section V concludes the paper and 

states the future work. 

 

 

II. Description and Modeling of VELOCE PKM 

In this section, a full description of the whole mechanical 

structure of VELOCE PKM is presented, then a brief 

explanation of its kinematic and dynamic models is 

introduced.  

 

A. Structure of VELOCE PKM   

VELOCE robot (see Fig. 1) is a 4-DOF parallel 

manipulator designed and fabricated in LIRMM 

(Laboratoire d’Informatique, de Robotique et de 

Microélectronique de Montpellier). It is mainly designed 

for pick-and-place applications. It consists of four 

kinematic chains and four degrees-of-freedom, three 

independent translational degrees in the three dimensions 

and one rotational degree around the vertical axis. It is note 

that VELOCE is a fully parallel manipulator [1]. Each 

kinematic chain is composed, in a serial manner, of an 

actuator, a rear arm fixed to the actuator’s rotor, a forearm 

including two links forming a parallelogram and connected 

through ball joints to the rear arm and to the traveling plate 

(see Fig. 2). The traveling plate is made of two essential 

parts, upper and lower. Both parts are mounted on a single 

screw, and the movement of one part with respect to the 

other generates the rotational action. 

  

B. Kinematic modeling of VELOCE PKM 

The Cartesian coordinates of the traveling plate can be 

presented with respect to the fixed-base frame in four-

dimensional space vector 𝒙 = [𝑥, 𝑦, 𝑧, 𝛼]𝑇 such that 𝑥, 𝑦, 𝑧 

are the translational coordinates and 𝛼  is the rotational 

angle around z-axis. The orientation and position of the 

traveling plate are specified by the angular positions of the 

four actuators, since VELOCE is a fully PKM, represented 

in another four-dimensional space vector 𝒒 =
 [𝑞1, 𝑞2, 𝑞3, 𝑞4]𝑇. The relation between 𝒒 and 𝒙 is obtained 

by a geometrical study for the constraints of the closed-

loop formed of kinematic chains and traveling plate. The 

study leads to the following kinematic models, “Forward 

kinematic ( 𝐹𝑘 )” and “Inverse kinematic ( 𝐼𝑘 )” 

respectively: 𝒙 = 𝐹𝑘 (𝒒);  𝒒 = 𝐼𝑘 (𝒙) . Applying the 

equiprojectivity principle explained in [3], the inverse  
 

 
 

Fig. 1. VELOCE PKM. (a): CAD view, (b): The manufactured robot. 

Jacobian matrix can be computed and thus a relation 

between the joints’ velocities and Cartesian velocity of 

traveling plate is formulated as follows: 
 

�̇� = 𝑱𝒎�̇�     (1) 
 

where 𝑱𝒎 𝜖 ℝ4×4 is the inverse Jacobian Matrix. Note that 

𝑱𝒎  is square and invertible for the fully PKMs (as 

VELOCE), and if the chosen trajectory is away from 

singularities. By differentiating equation (1) with respect to 

time, we obtain the relation of accelerations between 

Cartesian space and joint space as follows: 
 

�̈� = 𝑱𝒎�̈� + �̇�𝒎�̇�    (2) 

 

C. Dynamic modeling of VELOCE PKM 

According to [21], the dynamic model can be obtained by 

analyzing the dynamics in the joint space and in the 

traveling-plate space separately, then summing up the two 

equations of motion. Nonetheless, some assumptions are 

taken to simplify the complexity of the rigid body of such 

robots. Standing on the light weight of the forearm, its 

rotational inertia is neglected and its mass is split-up into 

two parts, one part conjoined to the rear arm and one part 

to the traveling plate mass. Also the dry and viscous friction 

in the passive and active joints are ignored, and the effect 

of gravity can be omitted at high speeds. Regarding the 

traveling plate, there are three kind of forces acting on it: 

the gravity forces, the inertial forces and the forces of the 

load. These forces are transformed into contributions in 

actuators’ torques using the Jacobian matrices.  From the 

joints side, the gravity of the rear arms with the half-masses 

of forearms and the arms inertia are also expressed in the 

actuators’ torques. Then, the total actuators’ torques vector 

is computed by summing up the contributions of all forces. 

One can formulate the total inverse dynamic equation to be 

in the standard joint space form, so we get:  

 

𝑴(𝒒)�̈� + 𝑪(𝒒, �̇�)�̇� + 𝑮(𝒒) +  𝜞𝑭𝒍𝒐𝒂𝒅
= 𝜞  (3) 

 

with  𝑴(𝒒) 𝜖 ℝ4×4  being the inertia matrix,  

𝑪(𝒒, �̇�) 𝜖 ℝ4×4 is the Coriolis and centrifugal forces matrix, 

𝑮(𝒒) 𝜖 ℝ4  be the gravitational forces vector and 

𝜞𝑭𝒍𝒐𝒂𝒅
 𝜖 ℝ4  be the payload forces vector. A fundamental 

property of PKMs is very essential for model-based 

adaptive controllers consists of linearity of the dynamics 

with respect to the parameters, such as inertia and masses 

[22]. So the reformulation of the dynamics in the linear 

form is expressed as following:  
 

𝒀(𝒒, �̇�, �̈�)𝜱 = 𝜞    (4) 
 

where 𝒀(. ) 𝜖 ℝ4×𝑛  is the regression matrix which is 

nonlinear function in terms of  𝒒, �̇� and �̈�, and 𝜱  𝜖 ℝ𝑛 is 

the robot parameters vector to be estimated. 

 

 

III. Proposed Control Solutions 

In this section, a design for the proposed control 

solutions is clarified. The controllers designed are non-

model-based controllers: PD, PID and NPD, and model-

based controllers:  APD and AFFC. Note that the 

available measurements are directly the joint angles of 

the actuators, so all controllers are developed in joint  
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Fig. 2. An ith kinematic chain of VELOCE PKM 
 

 

space. 
 

A. Proportional-Derivative Controller 

PD control scheme is composed of two parts, proportional 

and derivative parts. The general expression of the control 

input is: 
 

𝜞 = 𝑲𝒑𝒆 + 𝑲𝒅�̇�    (5) 
  

where 𝒆 =  𝒒𝒅 − 𝒒 is the joint position error between the 

desired angles and the actual measured ones. 

𝑲𝒑, 𝑲𝒅 𝜖 ℝ4×4  are diagonal positive definite matrices 

which means that no coupling between the joints is 

considered, and the controller is called a linear single-axis 

controller [2], knowing that the same gain is used for all 

joints. The PD control law is asymptotically stable as was 

addressed in [22]. It is the simplest control law but it has 

several drawbacks briefed as weak disturbance rejection, 

no compensation for the nonlinearity and variation nature, 

and even may leads to instability at high accelerations. 

 

B. Proportional-Integral-Derivative Controller       

It is the same demonstration of the aforementioned PD 

controller just adding the integral term which is the 

multiplication of the integral of position error with a 

positive constant feedback. The control law equation is 

then:  
 

𝜞 = 𝑲𝒑𝒆 + 𝑲𝒊 ∫ 𝒆 𝒅𝒕 + 𝑲𝒅�̇�   (6) 
  

where 𝑲𝒊 𝜖 ℝ4×4  is a diagonal positive definite matrix. 

Same specifications and draw backs of the PD control, but 

better global performance related to the tracking error 

thanks to the contribution of integral term in eliminating 

the residual errors in the steady state response produced by 

the proportional term. 

 

C. Nonlinear Proportional-Derivative Controller 

This controller have the same structure of classical PD 

controller with the time-varying feedback gains instead of 

being constant. The feedback gains are nonlinear functions 

in terms of the system states, inputs, and other variables. 

As For the classical PD, the control law equation can be 

written as following with the nonlinear gains functions [3]: 
 

𝜞 = 𝑲𝒑 𝒇(𝒆, 𝛼1, 𝛿1) 𝒆 + 𝑲𝒅 𝒇(�̇�, 𝛼2, 𝛿2) �̇�  (7) 
 

Where 𝒇(𝒙, 𝛼, 𝛿) = {
|𝒙|𝛼−1,      |𝒙| > 𝛿

𝛿𝛼−1,         |𝒙| ≤ 𝛿
  (8) 

 

with 𝛼1 and 𝛼2 can be chosen within the interval [0.5, 1] 

and [1, 1.5] respectively. 𝛿1  and 𝛿2  are positive constant 

numbers. From the above nonlinear structure, the feedback 

gains are adjusted online depending on the value of the 

error. For small position error, a large gain is produced, and 

for large position error, a small gain is obtained. On the 

other hand, large gains for large error rate and small gains 

for small error rate. This behavior results with rapid 

transition of the system and favorable damping. NPD is a 

robust controller against the nonlinearities of PKMs, 

parametric uncertainties and time delays. 

 

D. Augmented Proportional Derivative Controller 

APD, known also as PD+, is one of the conventional 

model-based controllers composed of two main parts, 

feedback part and dynamic model part. The feedback part 

is a simple PD controller that guarantees the stability and 

the dynamical part represents the nonlinear dynamics of the 

system that compensates its effects and enhances the 

control performance. The control law form of APD looks 

as follows [19]: 
 

𝜞 =  𝑴(𝒒)�̈�𝒅 + 𝑪(𝒒, �̇�)�̇�𝒅 + 𝑮(𝒒) 

+ 𝜞𝑭𝒍𝒐𝒂𝒅
+ 𝑲𝒑𝒆 + 𝑲𝒅�̇�   (9) 

 

As shown in equation (9), the dynamical term is computed 

from the desired and actual trajectories. However, such 

kind of controllers relying mostly on the dynamics of the 

robot needs to have an accurate model information, and it 

cannot compensate the effect of time-varying parameters 

and uncertainties of PKMs. 

 

E. Adaptive Feedforward with PD Controller 

The AFFPD controller is quietly similar to the APD in the 

general form, meaning that it is divided into two parts, one 

part a simple PD feedback to conserve the stability and the 

other part is the adaptive feedforward dynamics of the 

PKM to reduce the influence of variation in parameters and 

uncertainties. Thanks to the property of linearizing the 

dynamic model, the adaptive term is the multiplication of 

the regression matrix with the estimated vector of 

parameters [20]. The control law equation is as follows: 
 

  𝜞 =  𝒀(𝒒𝒅, 𝒒�̇�, �̈�𝒅)�̂� + 𝑲𝒑𝒆 + 𝑲𝒅�̇�  (10) 
 

All the parameters ( �̂� 𝜖 ℝ6 ) need to be estimated and 

adapted depending on the error. The controller relies on the 

desired trajectories instead of the measured ones which can 

improve the efficiency. The estimating algorithm is in 

function of the measured error as follows: 
 

 �̇̂� = 𝑲 𝒀(. )𝑻𝝉𝑭𝑩    (11) 
 

where 𝑲 𝜖 ℝ6×6 is a positive definite matrix that need to be 

chosen for a good estimation and tracking error stability. 

𝝉𝑭𝑩 is the torque computed from the feedback part. After 
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linearizing the inverse dynamic equation (3) considering all 

the PKM parameters need to be estimated, the following 

vector of parameters is obtained: Φ =
[𝑀𝑇𝑃  𝑀𝑈𝑇𝑃  𝑀𝑠  𝐼𝑎   𝑚𝑎𝑟𝑎   𝑚𝑙𝑜𝑎𝑑]𝑻 such that MTP is the 

total mass of the traveling plate including the contribution 

of the forearms, MUTP is the mass of the upper traveling 

plate including the contribution of the forearms, Ms is mass 

of upper traveling plate with the equivalent mass to rotate 

the screw. According to [23], the used adaptive control 

scheme achieve a global asymptotic stability respecting the 

necessary and sufficient conditions for adaptive control 

[24], in which the reference trajectory should be chosen 

rich enough with frequencies to converge the parameters 

estimation’s error to zero, with a suitable initial values of 

the parameters.  

 

 

IV. Numerical Simulations and Experiments 

VELOCE has four direct-drive motors TMB0140-

100-3RBS ETEL, they can provide maximum torque of 

127 Nm and reach up a speed of 550 rpm. All actuators are 

supplied with non-contact incremental optical encoders of 

5000 pulses per revolution. The global structure can hold 

as maximum payload of 10 Kg, achieve a peak velocity of 

10m/s and peak acceleration of 200m/s2. 

  

A. Simulation results 

Simulations were done in Matlab/Simulink environment 

implementing the controllers in discrete-time schemes 

similar to real robots control. A fixed-step solver was 

chosen of sample-time equal to 0.1 ms. The chosen desired 

trajectory is a sequence of point-to-point motions with a 

duration of each motion T= 0.5s. A nominal scenario of 

motion is used to compare the performances of the 

controllers such that no payload is considered in the 

simulations. The evaluation criteria proposed to monitor 

the performances is the computation of the Root Mean 

Square Error over the Translational (RMSET) and 

Rotational (RMSER) degrees-of-freedom as follow: 

𝑅𝑀𝑆𝐸𝑇 = (
1

𝑁
∑ (𝑒𝑥

2(𝑖)  + 𝑒𝑦
2(𝑖) + 𝑒𝑧

2(𝑖))𝑁
𝑖=1 )

1

2
 (23) 

 

𝑅𝑀𝑆𝐸𝑅 = (
1

𝑁
∑ (𝑒𝛼

2(𝑖))𝑁
𝑖=1 )

1

2
   (24) 

 

where N is the number of the time-samples, 𝑒𝑥 ,  𝑒𝑦 , 𝑒𝑧 

represent the tracking errors along the axes x, y and z, 𝑒𝛼  

 

 
 

Fig. 3. Evolution of the Cartesian tracking error in numerical simulation 

  PD / APD PID NPD AFFPD 

𝑘𝑝 = 4000 

𝑘𝑑 = 6 

𝑘𝑝 = 4000 

𝑘𝑑 = 6 

𝑘𝑖 = 500 

𝑘𝑝 = 2800 

𝛼1 = 0.5 

𝛿1 = 0.0062 

𝑘𝑑 = 10 

𝛼2 = 1.5 

𝛿2 = 2.4131 

𝑘𝑝 = 8000 

𝑘𝑑 = 100 

𝐾
= 𝑑𝑖𝑎𝑔([100 100 5
∗ 104 0.5 0.5 1]) 

 

Table 1. Control design gains in numerical simulation 

 

 

denotes the tracking error along the rotational angle. The 

gains for each controller in these simulations are specified 

by the trial and error technique and shown in table 1. The 

comparison between the three non-model-based 

controllers, in fig. 3, shows that a NPD performs better than 

the linear controllers (PD, PID). Thanks to its adjustable 

gains with the error state, as discussed before, that grants it 

more robustness and rejection for nonlinearity. For clarity, 

a zoom in from 4 to 6 sec is done in the plot of the Cartesian 

error in fig. 3, and the control input signals for the three 

controllers are depicted in fig. 4. It is obvious that the 

control input signals are within the allowable range that can 

be handled by the real actuators. Similarly, the comparison 

of the moving platform’s tracking error for the two model-

based controllers is presented in fig. 5. Apparently, the 

benefit of parameters’ adaptation in the closed-loop of a 

controller (AFFPD) is very significant in improving the 

precision and accuracy, unlike the non-adaptive model-

based controller (APD) which is limited in rejecting the 

uncertainties and parameters variation. Both control signals 

are still under saturation and proper with the real actuators 

limits (see Fig. 6). A good parameters’ estimation 

convergence of the AFFPD controller is shown in fig. 7 

reducing more the moving platform’s tracking error, 

knowing that we initialize the parameters with much closed 

values to the optimal numbers. The quantifications of the 

errors all over the trajectory are shown in table 2 with the 

improvements of each controller. It is notable to say that 

the simulated model-based controllers are more accurate 

than the non-model-based, as the calculation of the 

percentages shows high improvements. 

 

B. Experimental results 

Due to its interesting specifications, AFFPD controller is 

applied in real-time experiments on VELOCE robot, and 

compared to the PD controller. The control architecture of 

the VELOCE robot is implemented using Simulink from  
 

  
 

Fig. 4. Evolution of the control input signals in numerical simulation
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 PD PID 
Improvement 

on PD 
NPD 

Improvement 
on PID 

APD 
Improvement 

on NPD 
AFFPD 

Improvement 
on APD 

RMSET 

[cm] 
0.0094 0.0078 17.02 % 0.0011 85.9 % 2.1018*10-5 98.09 % 1.0862*10-5 48.32 % 

RMSER 

[deg] 
0.1309 0.0983 24.90 % 0.0147 85.04 % 1.6907*10-4 98.85 % 5.309*10-5 68.6 % 

Table 2. Performance evaluation of the controllers in numerical simulation 
 

 

 
 

Fig. 5. Evolution of the Cartesian tracking error in numerical simulation 

 
 

Fig. 6. Evolution of the control input signals in numerical simulation 

 
 

Fig. 7. Parameters estimation in numerical simulation of AFFPD  
 

 

Mathworks Inc.  and compiled using XPC Target (an 

industrial computer of frequency 10 KHz i.e. the sample 

time is 0.1 ms) and the Real-Time toolboxes. Same 

 

 

 
 

Fig. 8. Evolution of the Cartesian tracking error in real-time experiments 

 
 

Fig. 9. Evolution of the control input signals in real-time experiments 

 
 

Fig. 10. Parameters estimation in real-time experiments of AFFPD 

 

 

evaluation criteria used in simulations is considered in the 

experiments. Retuning the gains of control design is needed 

for experiments, and the obtained gains for AFFPD are: 
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 PD AFFPD Improvements 

RMSET [cm] 0.0156 0.0092 41.03 % 

RMSER [deg] 1.077 0.7596 29.47 % 
 

Table 3. Performance evaluation of PD and AFFPD controllers in real-

time experiments 

 

 

𝑘𝑝 = 4000,  𝑘𝑑 = 6, and    𝐾 = 𝑑𝑖𝑎𝑔([2.5 ×

10−3  0.125 0.1 10−5 10−5 10−3]) . The plot of the 

tracking error in Cartesian space for both controllers is 

represented in fig. 8, showing the better and improved 

global performance of AFFPD controller with respect to 

PD controller. The evaluations and improvements in the 

tracking error are computed and shown in table 3 validating 

our pretend that model-based controllers are more powerful 

than non-model-based controllers in real-time experiments. 

More precisely, control schemes that include adaptive 

dynamics provide robustness against parameters variation 

and uncertainties. The control input signals of both 

controllers are under saturation and in the safe range (see 

Fig. 9). Figure 10 visualize a good convergence for the 

estimated parameters in the AFFPD controller, which 

contributes in minimizing the tracking error as possible. 

One can notice the degradation of such root mean squares 

of Cartesian tracking error of the two controllers from 

numerical simulations to real-time experiments, and that is 

normal because of the inaccurate model of PKMs exist in 

the literature, in which they simplify friction, actuators’ 

dynamics, transmission system,…etc. 

 

 

V. Conclusion and Future Work 

In this paper, a comparison between the performances 

of model-based (Augmented PD, Adaptive Feedforward 

with PD) and non-model-based (PD, PID, Nonlinear PD) 

controllers was done by numerical simulation sketching 

and interpreting. We show the importance of including the 

dynamic model of the PKMs in the closed-loop control, and 

its main role in enhancing the performance of the 

controller, especially when adapting the dynamical 

parameters of the PKMs. Real-time experiments of PD and 

AFFPD controllers were conducted on a 4-DOF parallel 

robot to verify the validation of simulation results in the 

real applications of parallel robots.  

As a future perspective, one can look for more 

accurate models of PKM involve the full dynamics such as 

articulations’ friction, actuators’ dynamics, motor drivers, 

and transmission system. Corporate these models in 

adaptive closed-loop algorithms to improve the 

performance of parallel robots, in terms of precision, 

motion speed and robustness. 
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