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Abstract 

Objectives: To determine the best method and combination of methods among global 

positioning system (GPS), accelerometry, and heart rate (HR) for estimating energy 

expenditure (EE) during level and graded outdoor walking. 

Design: Thirty adults completed 6-min outdoor walks at speeds of 2.0, 3.5, and 5.0 km·h-1 

during three randomized outdoor walking sessions: one level walking session and two 

graded (uphill and downhill) walking sessions on a 3.4% and a 10.4% grade. EE was 

measured using a portable metabolic system (K4b2). Participants wore a GlobalSat® DG100 

GPS receiver, an ActiGraphTM wGT3X+ accelerometer, and a Polar® HR monitor. Linear 

mixed models (LMMs) were tested for EE predictions based on GPS speed and grade, 

accelerometer counts or HR-related parameters (alone and combined). Root-mean-square 

error (RMSE) was used to determine the accuracy of the models. Published speed/grade-, 

count-, and HR-based equations were also cross-validated. 

Results: According to the LMMs, GPS was as accurate as accelerometry (RMSE = 0.89–

0.90 kcal·min-1) and more accurate than HR (RMSE = 1.20 kcal·min-1) for estimating EE 

during level walking; GPS was the most accurate method for estimating EE during both level 

and uphill (RMSE = 1.34 kcal·min-1) / downhill (RMSE = 0.84 kcal·min-1) walking; combining 

mailto:alexis.lefaucheur@ens-rennes.fr
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methods did not increase the accuracy reached using GPS (or accelerometry for level 

walking). The cross-validation results were in accordance with the LMMs, except for downhill 

walking. 

Conclusions: Our study provides useful information regarding the best method(s) for 

estimating EE with appropriate equations during level and graded outdoor walking. 

 

Keywords: global positioning system, accelerometer, exercise, energy metabolism, public 

health, methods. 

 

Introduction 

Walking, the most popular physical activity (PA), has a substantial impact on public health 

and is a leading therapeutic modality.1 An accurate assessment of walking-related energy 

expenditure (EE) is crucial to determine its overall biological impact on the human body2 and 

appropriately study its effects on health. From this perspective, accurately estimating walking 

EE in outdoor settings is of primary interest. Indeed, it has been shown that i) walkers prefer 

neighborhood streets and parks for walking;3 ii) accumulating walking trips at a sufficient 

intensity (≥3 metabolic equivalents of task (METs)) and of sufficient duration (≥10 min) to 

meet PA recommendations4 may be easier outdoors; and iii) outdoor walking sessions are of 

interest in clinical populations for both walking capacity assessment and rehabilitation 

purposes.5 

Because the direct measurement of EE in real-life settings is challenging, wearable 

devices have been validated and used for years in field-based research to track walking EE.6 

Historically, wearable devices relied on a single objective method for estimating EE. 

Accelerometry or heart rate (HR) monitoring have been among the most frequently used 

objective methods.6 However, accelerometry has several well-known drawbacks, including 

the inability to accurately assess EE during graded walking.7 HR monitoring is of particular 

interest when measuring walking EE because the method relies on the measurement of the 

physiological response of a given individual.8 Unfortunately, a number of factors are 
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responsible for the biological variability of HR, which lowers the accuracy of this method 

when the intensity of PA (including walking) is low.8 Interestingly, we recently showed that 

the use of speed and grade data obtained using a low-cost global positioning system (GPS) 

receiver allowed highly accurate estimations of EE during level and uphill outdoor walking 

compared to the use of actual speed and grade.9 Although that study supported the 

feasibility of using GPS alone for estimating EE during level and graded outdoor walking, it is 

unknown how GPS compares with classical methods, such as accelerometry or HR 

monitoring, for this purpose. 

Beyond determining the best single method for estimating outdoor walking EE, it would be 

helpful to identify the best combination of methods for this purpose. Technological 

development has allowed the measurement of PA and EE by various sensors embedded into 

either several small devices (e.g., an accelerometer and an HR monitor10, 11) or a single 

device, such as the SenseWear Mini Armand12 or the Actiheart13. Moreover, ubiquitous 

consumer technologies, such as smartphones and watches, are now likely to embed several 

sensors (including GPS chipsets, accelerometers, and HR sensors), which has opened new 

perspectives in the field of mobile health.14  

Several studies have investigated whether combining accelerometry with other methods 

could close the gap between actual and estimated EE values during graded walking 

classically observed when using accelerometry alone.12, 15, 16 Some of these studies have 

assessed the benefits of combining accelerometry and measurements of altitude change 

(using barometry15, 16 or GPS15) to improve the accuracy of EE estimates during outdoor 

uphill and downhill walking. The value of combining accelerometry and HR monitoring for 

estimating walking EE has also been assessed, but only on motorized treadmills, and studies 

have produced conflicting results: some authors found no improvement in the accuracy of EE 

estimates,11 while others reported an improvement10, 17. Of note, accurately estimating EE 

when subjects are walking uphill or downhill seems to remain a challenge when combining 

accelerometry and physiological parameters.12, 13  
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To our knowledge, no study has compared the accuracy of using different combinations of 

parameters, including GPS speed and grade, accelerometer counts, and HR parameters, for 

estimating outdoor walking EE. Therefore, we still do not know the optimal combination to be 

implemented by researchers and users to study outdoor walking EE when several methods 

are simultaneously available. Furthermore, it seems relevant to assess whether using 

several combined methods for estimating EE is worthwhile because increasing the number of 

methods and wearable devices would probably increase the burden perceived by subjects, 

limiting acceptability and compliance.  

Thus, the purposes of the present study were the following: i) to determine which method 

among GPS, accelerometry, and HR monitoring is the most accurate for estimating EE 

during level, uphill and downhill outdoor walking; and ii) to determine the extent to which a 

combination of these methods increases the accuracy of EE estimates. 

Methods 

This cross-sectional study was part of the “Acti-GPS” project (NCT01805219), which was 

approved by the local Institutional Ethics Committee (CPP OUEST II, Angers). A total of 30 

healthy participants were recruited for the present study, as recommended for criterion-

related validity studies.18 Most of participants (26/30) were recruited from the Department of 

Sports Sciences and Physical Education of the University of Angers and the University of 

Rennes. The participants were between 20 and 30 years of age, with equal numbers of men 

and women. Each participant signed an informed consent form and underwent an inclusion 

visit, a resting metabolic rate measurement, a peak oxygen uptake (V̇O2peak) measurement 

during an incremental field-running test, and three outdoor walking sessions. The 

incremental running test and the outdoor walking sessions were separated by at least 24 h. 

In addition, the three outdoor walking sessions, which corresponded to three different levels 

of grade (0.0%, 3.4% and 10.4% mean grades), were performed on 2 or 3 different days, 

with at least one and a half hours between two sessions. The sequential order of the outdoor 

walking sessions for each participant was counterbalanced according to the number of grade 
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conditions (n = 3). The methods of the Acti-GPS project have been extensively described 

elsewhere.9  

 

During the inclusion visit, the participants provided their medical histories and underwent 

a physical examination. Weight, height, and body fat percentage using the skin fold method 

were measured, as previously reported.9  

The resting metabolic rate was measured early in the morning (between 07:00 and 10:30) 

in the supine position and in a noise-free and thermoneutral (22  1°C) room. Participants 

were asked to fast for at least 12 h, to refrain from vigorous PA and alcohol for 24 h, and to 

sleep for 8 h or more prior to testing. After a 20-min adaptation period, gas exchange was 

recorded over a 30-min period. Resting HR and gas exchange were measured with a 

portable metabolic system (K4b2, Cosmed®, Rome, Italy). The V̇O2peak value was determined 

using the K4b2 during an outdoor maximal incremental field-running test performed on a 400-

m athletic track.9 

On 2 or 3 other and different days, each participant completed six-minute walking periods 

at speeds of 2.0, 3.5 and 5.0 kmh-1 during each of the three outdoor walking sessions (0.0%, 

3.4% and 10.4% mean grades for the three sessions, respectively). During the outdoor 

walking sessions on the 3.4% and 10.4% mean grades, each walking speed was tested 

uphill and downhill (Supplemental Material (SM) #1). Thus, each participant completed 15 

walking periods through the study: 3 on the level; 6 on the 3.4% mean grade (3 uphill and 3 

downhill); and 6 on the 10.4% mean grade (3 uphill and 3 downhill). The sequence of walking 

speeds within each walking session was randomized for each participant. The actual walking 

speed was calculated for each walking period by dividing the total distance walked 

(measured with an odometer) by the time (measured with a chronometer). At each location, 

the actual grade of the walking courses was measured every 25 m along the courses by a 

certified surveyor using a Trimble S6 Total Station (Trimble, Sunnyvale, CA) and a Trimble 

R8 Global Navigation Satellite System. All the locations were free of motorized vehicles, 
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buildings and dense vegetation. For only one of the two hiking trails, there were trees at one 

extremity of the pathway. 

 

The K4b2 was calibrated according to the manufacturer’s guidelines before each test, and 

reliability data have been previously published.9 During all walking sessions, participants 

were equipped with a low-cost DG100 GPS receiver (GlobalSat® Inc., Taipei, Taiwan; 

~AUD80) that recorded at a 1-Hz sampling rate, as previously described.9 Participants also 

wore a wGT3X+ set at a 90-Hz sampling rate on the iliac crest of the hip (ActiGraphTM, LLC, 

Pensacola, FL; ~AUD295; firmware 2.2.1). The HR was recorded using the K4b2 Polar® belt. 

All devices were initialized approximately 10 min prior to each walking session. 

Synchronization between the different data files was ensured by simultaneously performing a 

time mark on the K4b2 unit and reporting the current Coordinated Universal Time 

(www.timeanddate.com/worldclock). At the end of each walking session, data were 

downloaded from all devices to a personal computer using the manufacturers’ software. For 

each walking period, the mean values of weather parameters (temperature (°C), relative 

humidity (RH in %), wind speed (kmh-1), and barometric pressure (hPa)) were also recorded 

using information provided by French weather stations. 

 

For data analysis, all data were exported to Excel® (Redmond, WA, version 2010) 

spreadsheets. The absolute resting V̇O2 was recorded as the mean V̇O2 value over the 30-

min measurement period. The relative resting V̇O2 was obtained by dividing the absolute 

resting V̇O2 by the participant’s body mass. The V̇O2peak was the highest 30-s average V̇O2 

value measured during the maximal incremental field-running test. Participants were required 

to have a peak respiratory exchange ratio ≥1.10 and a peak HR ≥95% of the age-predicted 

maximum HR19 to ensure that the test value was maximal and to validate the obtained 

V̇O2peak value. The absolute gross V̇O2 values obtained from the different walking sessions 

were averaged over the last three minutes of each walking period to reflect steady-state 

exercise. Values were adjusted using terrain coefficients for energy cost prediction,20 as 

http://www.timeanddate.com/worldclock
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previously described.9 EE was calculated as kcalmin-1 = [15.913 × V̇O2 (Lmin-1) + 5.207 × 

V̇CO2 (Lmin-1)] / 4.186.21  

For each walking period, the GPS speed data were averaged over the last three minutes 

to match the average EE data.9 The corresponding mean uncorrected and corrected GPS 

grades were obtained using raw and corrected altitude data, respectively, according to our 

previously published procedure.9 The raw data recorded by the wGT3X+ accelerometer were 

accumulated into 1-s epoch data (i.e., into counts·s-1) using the normal filter to compute the 

counts per second on the vertical axis (VA) and the vector magnitude (VM). Counts per 

second for both VA and VM were averaged over the last three minutes of each walking 

period. The average over the last three minutes of each walking period was calculated for the 

following HR-related parameters: i) the raw HR recorded during the walking periods (HR(raw), 

in beats per minute (bpm)); ii) the HR above the resting HR value (HR(aR), in bpm = HR(raw)–

the average HR recorded during the resting metabolic rate measurement (HR(rest)); and iii) 

the HR reserve (HR(res), in %). These HR parameters have previously been used alone (SM 

#2) or in combination with other parameters (e.g., accelerometer counts10, 17) to estimate EE; 

however, to our knowledge, they have never been tested and compared for the study of 

outdoor walking. 

 

The first step of our statistical analysis was to test linear mixed models (LMMs).22 In that 

way, we developed equations to predict EE that used GPS speed and grade (uncorrected or 

corrected), accelerometer counts (VA or VM), HR-related parameters (HR(raw), HR(aR), or 

HR(res)), or a combination of two (e.g., VA counts and HR(raw)) or three (e.g., GPS speed and 

corrected grade, VA counts, and HR(raw)) of these parameters. Separate equations were 

developed using i) the level walking periods, ii) both the level and uphill walking periods, or 

iii) both the level and downhill walking periods. We developed separate equations because 

the relationship between the energy cost of walking and the gradient differs according to the 

gradient condition (uphill vs. downhill).23 The use of both the level and graded walking 

periods to develop a single equation is in accordance with previous works and the 
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components of commonly used equations.4, 24 Of note, the models that used GPS speed and 

grade were also compared to the models that used the actual speed and grade. The addition 

of the following covariates into the models was also tested: mass, gender, body fat 

percentage, and discomfort index (forward stepwise selection procedure). The discomfort 

index (thermohygrometric index25) was calculated as follows: t–(0.55–0.0055∙RH)(t–14.5), 

with air temperature (t) measured in °C and RH in %. The coefficient of determination (R2), 

standard error of the estimate (SEE) and Akaike information criterion (AIC) were reported for 

each model. The higher the R2 and the lower the SEE, the better the predictive model. The 

lower the AIC value, the better the quality of the model. The AIC value reflects both the 

goodness of fit and the “efficiency” (parsimony) of a model for a given number of predictor 

variables included in the model. An efficient or parsimonious model accomplishes a desired 

level of prediction with as few predictor variables as possible. The accuracy of the LMMs was 

tested using the leave-one-out (LOO) procedure26 and was reported as the average root-

mean-square error (RMSE): the lower the RMSE, the higher the accuracy. Statistical 

modeling was performed using R software (R Foundation for Statistical Computing, Vienna, 

Austria, version 3.2.4). 

The second step of our statistical analysis was to cross-validate available published 

equations for EE (kcal·min-1) and MET on our own EE (kcal·min-1) and MET data, 

respectively. These commonly used speed/grade-based, accelerometry-based, and HR-

based equations are shown in SM #2. The cross-validation procedure was performed to 

quantify any potential “equation effect”, that is, a change in the accuracy of the EE estimate 

according to the prediction equation used. MET values were computed by dividing the 

absolute gross V̇O2 by the body mass plus equipment mass and then by 3.5. The cross-

validation procedure was performed separately for the level, uphill, and downhill outdoor 

walking periods, as appropriate. RMSE, bias (95% confidence interval), limits of agreement 

and standard deviation of the differences (SDdiff) were computed. The prediction equations 

were ranked according to the RMSE. 
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Results 

Descriptive statistics 

The participant characteristics are shown in Table 1. The medians [interquartile ranges 

(IQRs) = 25th–75th percentiles] of the weather parameters during outdoor walking periods 

were 17.5°C [9.1–20.0], 54.0% [34.0–65.4], 11 kmh-1 [2.0–16.0], and 1019.3 hPa [999.3–

1023.9] for temperature, RH, wind speed, and barometric pressure, respectively. 

All GPS data were correctly recorded, except for the data collected for one participant 

during the graded outdoor walking session on a 3.4% mean grade (due to loss of the GPS 

satellite signal). Regarding the HR data, 10% (9/90), 7% (13/180), and 13% (24/180) of the 

values were lost during the level, uphill, and downhill walking periods, respectively, due to a 

malfunction of the HR sensor. Therefore, 8% (22/270) and 12% (33/270) of the HR values 

were missing from tests of the level/uphill models and the level/downhill models that used HR 

data, respectively. All wGT3X+ data were correctly recorded. 

The medians [IQR] for the EE, accelerometer counts, and HR-related parameters 

measured during the last three minutes of the walking periods are shown in SM #3. 

Throughout the range of tested grades, the EE and HR parameters increased exponentially, 

whereas the accelerometer counts followed a U-shape curve. 

 

Linear mixed models 

All the tested models and their related equations and statistical outcomes are shown in 

SM #4. Summaries of the results obtained for the LMMs using the level walking periods, both 

the level and uphill walking periods, or both the level and downhill walking periods are shown 

in SM #5, Table 2, and Table 3, respectively. Except for the models using GPS data only (for 

which both of the models based on uncorrected and corrected grades are shown), these 

tables show only the models that reached the lowest RMSE in their respective categories, as 

defined by both the number of methods combined (1, 2, or 3) and the type of parameters 

used (GPS-, accelerometry-, and HR-related parameters). 
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Level outdoor walking EE. When each of the methods was used alone without covariates, 

higher R2 values were obtained from the GPS models (SM #5, R2 = 0.75–0.76), although the 

error in EE estimation was quite similar when using either GPS speed and grade (RMSE = 

0.90–0.91 kcal·min-1) or accelerometer VA counts (RMSE = 0.89 kcal·min-1) during level 

walking. When covariates were added to the single method-based models, the RMSE for 

accelerometry was slightly lower than for GPS, but the RMSE values for both of these 

models remained in a narrow range (0.63-0.71 kcal·min-1). When HR monitoring was used, 

the RMSE was clearly increased compared to that with GPS or accelerometry, regardless of 

which HR-related parameter was used (RMSE ≥1.20 kcal·min-1 without covariates and ≥0.99 

kcal·min-1 with covariates). Compared with GPS and accelerometry alone, no combination of 

methods produced a lower RMSE. 

Level and graded outdoor walking EE. Table 2 shows the results for the LMMs tested 

using both the level and uphill outdoor walking periods. First, when the single method-based 

models (“No combination”) were tested without covariates, the lowest RMSE was achieved 

using the actual speed and grade. The RMSE for the GPS-based models was lower than for 

the accelerometry-based models (by at least 0.40 kcal·min-1 using corrected GPS grade) and 

HR-based models (by at least 0.55 kcal·min-1 using corrected GPS grade). The RMSE for the 

GPS-based models was close to that obtained using the actual speed and grade. A slightly 

lower RMSE was achieved when using the corrected GPS grade than when using the 

uncorrected GPS grade (decrease of 0.19 kcal·min-1 without covariates). Second, although 

combining GPS and HR, or combining the three tested methods, produced slightly higher R2 

coefficients and lower AIC than GPS alone, no combination of methods reduced the RMSE 

achieved by the most accurate single GPS-based model. Combining accelerometry and HR 

produced a lower RMSE than accelerometry or HR alone (RMSE decreased by 0.10 and 

0.25 kcal·min-1 for accelerometry and HR, respectively, without covariates).  

Table 3 shows the results obtained for the LMMs tested using both the level and downhill 

outdoor walking periods. Overall, the ranking of the models was similar to that using both the 

level and uphill outdoor walking periods. Of note, both the RMSE values and the variance 
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explained were reduced (e.g., all R2 <0.75) when models were tested using the downhill 

(Table 3) compared to the uphill walking periods (Table 2). 

Effects of covariates. Mass was a significant covariate for most models. Height, gender 

and the discomfort index were also significant covariates in several models. As shown in SM 

#5, Table 2, and Table 3, the addition of significant covariates improved nearly all the models 

(increased R2 and decreased AIC and RMSE), regardless of i) the walking periods used 

(level, level/uphill, or level/downhill), ii) the type of parameters used (GPS, accelerometry, or 

HR), and iii) the number of methods combined (1, 2, or 3). However, the addition of a 

covariate did not markedly change the ranking of the models presented above.  

 

Cross-validation of published equations 

Level outdoor walking EE and METs. The results obtained from the cross-validation of 

other EE and MET prediction equations for level walking are presented in SM #6. Regarding 

the EE predictions, the unique GPS-based equation tested (Pandolf et al., 1977; SM #2) was 

less accurate than the best accelerometry-based equation (Brooks et al., 2005; SM #2), with 

an RMSE of 1.23 kcal.min-1 using uncorrected GPS grade (vs. RMSE = 1.00 kcal.min-1 for 

the Brooks et al. equation, SM #2). Regarding MET predictions, the best GPS-based 

equation (Ludlow and Weyand, 2016; SM #2) and the best accelerometry-based equation 

(Leenders et al., 2003; SM #2) produced similar RMSE values (0.50 and 0.52 MET, 

respectively). The equation by Rue and Kramer (SM #2) led to the highest error in the 

estimation of MET (RMSE = 1.95 MET using corrected GPS grade) among the available 

GPS-based equations. Previously published HR-based equations were associated with 

higher RMSEs both for EE (RMSE ≥1.80 kcal.min-1) and METs (RMSE ≥1.39 METs) than for 

most of the GPS-based or accelerometry-based equations. 

Graded outdoor walking EE and METs. Regarding uphill outdoor walking (SM #7), the 

GPS-based equations clearly allowed more accurate estimations of EE (RMSE range = 

1.60–2.04 kcal·min-1) and MET (RMSE range = 1.18–2.78 METs) than the accelerometry- 

(RMSE range = 2.34–3.74 kcal·min-1 for EE and 2.12–3.05 for METs) or HR-based equations 
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(RMSE range = 1.62–2.88 kcal·min-1 for EE and 1.38–2.53 for METs). Compared to the best 

accelerometry-based equations, the estimation of EE and METs was more accurate with 

some of the available HR-based equations (SM #7). The trend obtained for downhill outdoor 

walking (SM #8) was quite different: the highest accuracy for estimating EE (RMSE = 1.31 

kcal·min-1) or METs (RMSE = 1.22 METs) was achieved using the accelerometry-based 

equations by Brooks et al. (SM #2), whereas the unique tested GPS-based equation by Rue 

and Kramer (SM #2) led to lower accuracy (RMSE = 1.74 kcal·min-1 and 1.57 METS, using 

corrected GPS grade) than the best HR-based equations (RMSE = 1.63 kcal·min-1 for EE 

and 1.23 for METs). 

 

Discussion 

The present study aimed to determine the best method and the most valuable combination of 

methods among GPS, accelerometry, and HR monitoring for estimating EE during outdoor 

walking. Our analyses led to different conclusions for studies of outdoor walking involving i) 

level walking only or ii) both level walking and walking under various grade conditions. 

 

What is the best combination of method(s) for estimating level outdoor walking EE? 

The LMMs and cross-validation results showed that GPS is as valuable as accelerometry 

and more valuable than HR monitoring for estimating EE during level outdoor walking. 

Interestingly, as shown by the LMMs, no combination of methods increased the accuracy of 

the EE estimates obtained for GPS or accelerometry alone. 

Our finding of equivalence between GPS and accelerometry for estimating level walking 

EE challenges the use of accelerometry as the preferred method for measuring PA and EE. 

It has been claimed that from a theoretical point of view, acceleration is more directly 

reflective of the energy cost than speed.27 However, this point of view is not supported by the 

literature on walking. Indeed, several studies have shown that speed is an important 

predictor of EE during walking,9 and only the study by Brooks et al.21 compared the use of 

speed and acceleration for estimating walking EE in the same sample of subjects. Of note, 
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the authors21 reported that walking speed was a better predictor of EE (prediction equations 

with higher R2 coefficients) than accelerometer counts (VA) during level outdoor walking.  

The differences between the conclusions drawn by Brooks et al.21 (superiority of speed on 

acceleration) and our findings (equivalence between GPS and accelerometry) are likely to be 

due to the statistical procedures implemented. Brooks et al.21 used the R2 coefficient and did 

not cross-validate their equations using the LOO procedure, as we did in the present study. 

As shown in SM #5, although higher R2 coefficient could be obtained for the GPS-based 

models vs. the accelerometry-based models, the same errors (RMSE) in EE estimation were 

finally obtained for both models following the LOO cross-validation. 

The error found for HR monitoring seems consistent with reports that showed that HR fails 

to have a linear relationship with EE at low intensities.8 Because of methodological 

considerations, the walking speeds tested in the present study were in the lower range of 

human level walking speeds (2-5 km·h-1). Since cardiorespiratory fitness influences the 

relationship between HR and EE,28 the HR-EE relationship obtained across the range of 

walking speeds and grades tested in the present study may have been even more flattened 

for the fittest subjects. As there were different levels of V̇O2 peak among the study’s 

participants, it could be assumed that adding V̇O2 peak as covariate in the HR-based models 

would have increase their accuracy for predicting walking EE. It was indeed the case, but the 

accuracy remained inferior to that obtained with the other parameters (data not shown). 

Importantly, HR is also influenced by factors other than PA intensity.8 In this way, the 

significant effect of the discomfort index on EE observed in the present study underlines a 

possible detrimental influence of environmental conditions on the prediction of EE when 

using HR. Of note, contrary to the results of most of laboratory studies,10, 17 the accuracy of 

EE estimates during level outdoor walking was not increased by combining HR and 

accelerometry compared to using accelerometry alone. 

The cross-validation results (SM #6) underline the major impact of the equations used to 

estimate EE and METs, and they highlight the most suitable equations to estimate outdoor 
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level walking EE/METs. Future studies should, however, cross-validate our LMM-derived 

equations in other samples and compare them to these available published equations. 

 

What is the best combination of method(s) for estimating level and graded outdoor 

walking EE? 

The LMMs clearly show that GPS offers more accurate estimates of EE for both level and 

graded (uphill and downhill) outdoor walking than accelerometry or HR monitoring. Further, it 

appears that no combination of methods provides a better estimation of EE than GPS alone. 

To the best of our knowledge, this finding is unique and confirms the value of very popular 

equations4, 24 developed in studies demonstrating the importance of speed and grade as two 

powerful predictors of walking EE (see SM #2 and de Müllenheim et al.9). The previously 

mentioned drawbacks of accelerometry during graded walking explain the lower accuracy 

obtained in the prediction of EE.7 However, as suggested by our LMMs, if the GPS method is 

not available, combining HR and accelerometer counts could be better than using either 

method alone (except for both level and downhill walking). This last conclusion is in 

accordance with previous laboratory studies that combined HR and accelerometry during 

treadmill walking.13 

When testing models using GPS data, the use of corrected grades from map projection 

software was particularly valuable for increasing the accuracy of the prediction of walking EE, 

particularly for both the level and uphill conditions (Table 2), which is consistent with a 

previous study.9 Although the prediction of walking EE using GPS for both level and downhill 

conditions was not affected by the use of uncorrected grades (Table 3), based on previous 

data,29 the use of corrected grades, if possible, is preferable. 

Again, the cross-validation results (SM #7, SM #8) highlight the major impact of the 

equation used for the prediction of EE and METs. For instance, when using the GPS method 

to estimate METs during outdoor uphill walking, the ACSM equation4 seems to be the most 

suitable (lowest prediction error). In contrast, the equation provided by Rue and Kramer (SM 

#2) was highly inaccurate. The use of this last equation could explain why the GPS method 
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did not provide a better EE prediction than accelerometry when considering the downhill 

walking periods for the cross-validation.  

 

Effects of covariates and statistical considerations 

The finding that mass (mostly) and gender were significant covariates for several models 

is in accordance with previous studies.21 However, to our knowledge, the present study is the 

first to show that the discomfort index could be a significant covariate in several models when 

estimating outdoor walking EE. This finding is of importance because outdoor walking can 

occur under very different atmospheric conditions on a day-to-day basis. However, the 

discomfort index does not take into account wind speed, and the possibility that high wind 

speed values might impact walking EE cannot be excluded.30 In the present study, adding 

wind speed as a covariate to the models had no effect on the prediction of walking EE (data 

not shown). 

The R2 coefficients obtained for the models tested using the downhill walking periods were 

lower than those obtained for the models tested using the uphill walking periods. This result 

may be partly explained by i) the loss of linearity between the EE of walking and the grade 

when the grade is below 0.0%23 and ii) the lower range of measured (actual) EE values 

during downhill walking than during uphill walking (SM #3).  

Although the RMSE values were decreased when testing the “level/downhill” models (Table 

3) compared to those when testing the “level/uphill” models (Table 2), the median value of 

the actual EE data used for testing the “level/downhill” models was also decreased. Thus, 

when the RMSE values were normalized to the median of our EE data, the RMSE values for 

both conditions were within the same range (data not shown). 

 

Limitations 

Our results regarding the GPS method might not extend to environments that have higher 

levels of obstruction than those encountered in the present study. However, finding the same 

experimental conditions as the present study in locations with high levels of obstruction 
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would be almost impossible. Environmental obstruction should have only a moderate impact 

on the final estimation of EE during outdoor walking if the GPS altitude is corrected via map 

projection software, as proposed here. This issue, however, deserves additional research, 

particularly in view of free-living and prolonged measurements of walking EE. 

The accelerometry-based equations that were cross-validated in the present study were 

originally validated using count data obtained from an older ActiGraphTM accelerometer (SM 

#2), which may have influenced the EE estimation. Furthermore, equations developed using 

accelerometer counts remain dependent on the monitor used because activity counts cannot 

be directly compared across monitors. 

Finally, additional studies should be conducted to develop population-specific equations, 

which was not the aim of the present study. Furthermore, our equations developed herein 

should be cross-validated in other samples, particularly for level/downhill outdoor walking 

conditions since prediction equations for EE are lacking. 

 

Conclusions 

This study is the first to determine the best method among GPS, accelerometry and HR 

for estimating walking EE during level and graded (uphill and downhill) outdoor walking. This 

work involved testing LMMs using data obtained from participants who walked on both 

positive and negative grades at different walking speeds. Moreover, for the first time, both 

speed/grade (GPS)-, accelerometry-, and HR-based published equations were cross-

validated under these conditions. 

 

Practical implications 

 When the estimation of outdoor level walking EE is planned during a session, i) either 

GPS or accelerometry can be used with similar accuracy; ii) using HR monitoring 

alone is not recommended; and iii) combining two or three methods adds no value. 

 When the estimation of outdoor walking EE is planned during a session of both level 

walking and various grades, i) GPS should be preferred; ii) the corrected GPS grade 
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obtained from map software should be used, if available; iii) combining two or three 

methods adds no value; and iv) if no GPS receiver is available to the user, combining 

accelerometry and HR monitoring should be preferred. 

 Regardless of the methods used, for either level walking or both level and graded 

walking, the prediction of EE is greatly influenced by the prediction equation used.  
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Tables 

Table 1. Participants’ characteristics 

Variable Women (n = 15) Men (n = 15) All (n = 30) 

Age, yr 22.2 ± 1.3 21.9 ± 1.6 22.0 ± 1.4 

Height, cm 169 ± 5 176 ± 5 172 ± 6 

Body mass, kg 62.2 ± 8.0 71.9 ± 8.1 67.1 ± 9.3 

BMI, kg·m-2 21.9 ± 2.2 23.2 ± 2.6 22.5 ± 2.4 

Body fat, % 17.8 ± 3.0 10.1 ± 4.5 14.0 ± 5.4 

RMR, ml·min-1·kg-1 4.1 ± 0.5 3.8 ± 0.9 3.9 ± 0.7 

V̇O2peak, ml·min-1·kg-1 48.1 ± 5.0 56.4  7.7 52.1 ± 7.6 

Note: Values are the means  standard deviation. All participants were Caucasian. 

BMI, body mass index; n, number of participants; RMR, resting metabolic rate;
 

V̇O2peak, peak oxygen uptake. 

  



25 

Table 2. Best models for predicting energy expenditure (kcal·min-1) during both level and 

uphill outdoor walking 

Model R2 AIC SEE RMSE 

Without covariates     

No combination     

Actual(speed & grade) 0.91 586.74 1.22 1.25 

GPS(corrected) 0.87 735.96 1.31 1.34 

GPS(uncorrected) 0.73 867.18 1.49 1.53 

ACC(VM) 0.58 989.67 1.71 1.74 

HR(aR) 0.59 855.62 1.84 1.89 

Combination of 2 methods     

GPS(corrected) + ACC(VM) 0.87 740.14 1.30 1.34 

GPS(corrected) + HR(aR) 0.90 637.67 1.35 1.40 

ACC(VM) + HR(aR) 0.65 814.38 1.58 1.64 

Combination of 3 methods     

GPS(corrected) + ACC(VM) + HR(aR) 0.90 644.49 1.34 1.40 

     

With covariates     

No combination     

Actual(speed & grade) + DI + M 0.93 560.11 0.98 1.02 

GPS(corrected) + M 0.87 723.13 1.04 1.08 

GPS(uncorrected) + M 0.80 848.00 1.24 1.27 

ACC(VM) + M 0.67 974.69 1.50 1.53 

HR(res) + Gen 0.67 840.28 1.52 1.58 

Combination of 2 methods     

GPS(corrected) + ACC(VM) + M 0.87 727.87 1.04 1.07 

GPS(corrected) + HR(aR) + DI + Ht 0.90 630.44 1.20 1.27 

ACC(VM)+ HR(res) + Gen + M 0.76 795.08 1.25 1.32 

Combination of 3 methods     

GPS(corrected) + ACC(VA) + HR(aR) + DI + Ht 0.89 637.15 1.18 1.26 

Notes: The models shown were the most accurate models (i.e., with the lowest RMSE) 

obtained in their respective categories, which were defined by both the number of 

parameters combined and the type of parameters used (GPS, ACC, or HR). Covariates 

appear in italics. The models were ranked according to the RMSE value. Actual(speed & grade), 

model using the actual speed and grade; ACC(VA), model using accelerometry and the 

vertical axis; ACC(VM), model using accelerometry and the vector magnitude; AIC, Akaike 

information criterion; DI, discomfort index; Gen, gender; GPS(corrected), model using both the 

GPS speed and corrected grade, with the grade calculated using GPS altitude data and 

corrected with map projection software; GPS(uncorrected), model using both the GPS speed and 

uncorrected grade; HR(aR), heart rate above the resting heart rate; HR(res), heart rate reserve; 

Ht, height; M, body mass plus equipment mass; R2, R-squared for linear mixed model; 

RMSE, average root-mean-square error obtained with the leave-one-out methodology; SEE, 

standard error of estimate. All equations are available in SM #4. 
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Table 3. Best models for predicting energy expenditure (kcal·min-1) during both level and downhill 

outdoor walking 

Model R2 AIC SEE RMSE 

Without covariates     

No combination     

Actual(speed & grade) 0.68 304.87 0.81 0.84 

GPS(uncorrected) 0.67 352.31 0.82 0.84 

GPS(corrected) 0.67 315.78 0.82 0.85 

ACC(VM) 0.16 686.09 1.00 1.02 

HR(aR) 0.29 577.83 1.07 1.09 

Combination of 2 methods     

GPS(corrected) + ACC(VM) 0.68 324.58 0.82 0.84 

GPS(corrected) + HR(raw) 0.71 292.16 0.83 0.86 

ACC(VM) + HR(aR) 0.29 573.93 1.01 1.04 

Combination of 3 methods     

GPS(corrected) + ACC(VM) + HR(raw) 0.71 300.40 0.82 0.85 

     

With covariates     

No combination     

GPS(uncorrected) + DI + M 0.71 325.55 0.66 0.68 

Actual(speed & grade) + DI + M 0.74 280.39 0.66 0.69 

GPS(corrected) + DI + M 0.72 281.66 0.68 0.71 

ACC(VM) + M 0.38 670.97 0.86 0.88 

HR(aR) + Ht + M 0.49 568.56 0.87 0.93 

Combination of 2 methods     

GPS(uncorrected) + ACC(VA) + DI + M 0.71 322.07 0.67 0.69 

GPS(uncorrected) + HR(raw) + DI + M 0.71 307.45 0.67 0.71 

ACC(VM) + HR(aR) + M + Ht 0.51 562.41 0.82 0.87 

Combination of 3 methods     

GPS(uncorrected) + ACC(VA) + HR(raw) + DI + M 0.71 306.16 0.68 0.72 

Note: The models shown were the most accurate models (i.e., with the lowest RMSE) obtained in 

their respective categories, which were defined by both the number of parameters combined and 

the type of parameters used (GPS, ACC, or HR). Covariates appear in italics. The models were 

ranked according to the RMSE value. Actual(speed & grade), model using the actual speed and grade; 

ACC(VA), model using accelerometry and the vertical axis; ACC(VM), model using accelerometry and 

the vector magnitude; AIC, Akaike information criterion; DI, discomfort index; GPS(corrected), model 

using both the GPS speed and corrected grade, with the grade calculated using GPS altitude data 

and corrected with map projection software; GPS(uncorrected), model using both the GPS speed and 

uncorrected grade; Ht, height; HR(raw), raw heart rate; HR(aR), heart rate above the resting heart 

rate; M, body mass plus equipment mass; R2, R-squared for linear mixed model; RMSE, average 

root-mean-square error obtained with the leave-one-out methodology; SEE, standard error of 

estimate. All equations are available in SM #4. 

 


