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The Exact Unification Type of Commutative Theories

The exact unification type of an equational theory is based on a new preorder on substitutions, called the exactness preorder, which is tailored towards transferring decidability results for unification to disunification. We show that two important results regarding the unification type of commutative theories hold not only for the usual instantiation preorder, but also for the exactness preorder: w.r.t. elementary unification, commutative theories are of type unary or nullary, and the theory ACUIh of Abelian idempotent monoids with a homomorphism is nullary.

Introduction

It is well-known that deciding solvability of a disunification problem modulo an equational theory E [START_REF] Wray | On solving equations and disequations[END_REF][START_REF] Comon | Disunification: A survey[END_REF] can be reduced to E-unification in case the theory E is effectively finitary, i.e., for every E-unification problem a finite complete set of E-unifiers always exists and can be effectively computed. Given a disunification problem Γ, one first computes a finite complete set of E-unifiers for the equations in Γ, and then checks whether this set contains a substitution that also satisfies all the disequations of Γ.

In order to extend this approach to non-finitary equational theories, Cabrer and Metcalfe [START_REF] Cabrer | From admissibility to a new hierarchy of unification types[END_REF] introduced a new preorder on substitutions that contains, but is usually larger than, the instantiation preorder:

σ X E τ iff σ(s) = E σ(t) ⇒ τ (s) = E τ (t) for all terms s, t built using only variables from X.

Using this preorder in place of the instantiation preorder (where X is the set of variables occurring in the unification problem), one can now define (minimal) complete sets of unifiers, and thus obtain a new classification of equational theories w.r.t. their type, which we call exact unification type. The definition of the exactness preorder is tailored towards ensuring that the above reduction from disunification to unification still works. The advantage of using the exactness preorder rather than the instantiation preorder is that the former is larger, and thus it may be the case that a theory that is non-finitary w.r.t. the instantiation preorder is finitary w.r.t. the exactness preorder. For instance the theories of Idempotent Semigroups and of Distributive Lattices are nullary w.r.t. the instantiation preorder, yet their exact types are respectively finitary and unitary (see [START_REF] Cabrer | From admissibility to a new hierarchy of unification types[END_REF] for these and more examples). In the following, we will denote the instantiation preorder as ≤ E and the exactness preorder as E , where the set of variables X on which the substitutions are compared is always assumed to be the set of variables occurring in the unification problem under consideration.

Commutative theories were introduced in [Baa89] in order to generalize approaches and results for unification in the theories axiomatizing Abelian Monoids (ACU), idempotent Abelian Monoids (ACUI), and Abelian groups (AG). One important result in [START_REF] Baader | Unification in commutative theories[END_REF] is the fact that, w.r.t. elementary unification, commutative theories are of unification type either unitary or nullary. Recall that a unification problem is elementary if it does not contain free constant or function symbols. The three theories mentioned above are all unitary. To provide an example for a non-unitary (and thus nullary) equational theory, it is shown in [START_REF] Baader | Unification in commutative theories[END_REF] that the theory ACUIh of idempotent Abelian monoids with a homomorphism is nullary:

ACUIh := {x + 0 = x, x + (y + z) = (x + y) + z, x + y = y + x, x + x = x, h(x + y) = h(x) + h(y), h(0) = 0}
The mentioned results use the instantiation preorder to compare substitutions. We will show below that these results also hold if the exactness preorder is used in place of the instantiation preorder.

The Dichotomy Result for Exact Types

The class of commutative theories is defined in [START_REF] Baader | Unification in commutative theories[END_REF] using the category of finitely generated free algebras.1 To be more precise, let E be an equational theory and V a denumerable set (of variables). Then the category C(E) is defined as follows:

• The objects of C(E) are the algebras F E (X) for finite subsets X of V , where F E (X) is the free algebra generated by X in the variety defined by E.

• The morphisms of C(E) are the homomorphisms between these objects, where the composition of morphisms is the usual composition of mappings.

An equational theory E is commutative if the associated category C(E) is semiadditive. The exact definition of semiadditive categories can be found in [START_REF] Herrlich | Category Theory[END_REF][START_REF] Baader | Unification in commutative theories[END_REF]. For the purpose of this paper it is sufficient to know that in such a category the coproduct is also a product. In [START_REF] Baader | Unification in commutative theories[END_REF] there is also a more algebraic characterization of commutative theories, which shows that the theories ACU, ACUI, AG, and ACUIh are commutative.

The following theorem generalizes Theorem 6.3 in [START_REF] Baader | Unification in commutative theories[END_REF] from the instantiation preorder to all preorders extending the instantiation preorder. It thus applies to the exactness preorder, but also to the preorder on substitutions introduced in [START_REF] Hoche | Essential unifiers[END_REF].

Theorem 1. For elementary unification, commutative theories are either unitary or nullary w.r.t. any preorder containing the instantiation preorder.

Proof. A theory is either at most finitary or at least infinitary. In the first case, use the first lemma below to show that it is actually unitary. In the second case, the condition of the second lemma is satisfied, which shows that the theory is actually nullary.

For the remainder of this section, we assume that is a preorder that contains the instantiation preorder. To align our proofs of the two lemmata with the corresponding ones given in [START_REF] Baader | Unification in commutative theories[END_REF] for the instantiation preorder, we use the categorical formulation of unification introduced there. To obtain this formulation, a unification problem

s i = t i | 1 ≤ i ≤ n is translated into a pair of morphisms σ = τ , where Dom(σ) = Dom(τ ) = I = {x 1 , . . . , x n } and σ(x i ) = s i ∧ τ (x i ) = t i for all i, 1 ≤ i ≤ n.
In this setting, a unifier is a morphism γ such that σγ = τ γ.

Lemma 1. Let E be a commutative theory and Γ = σ = τ be an elementary E-unification problem, and let {γ 1 , . . . , γ n } be a finite complete set of E-unifiers of Γ w.r.t. . Then there exists a E-unifier γ of Γ s.t. the singleton set {γ} is a complete set of E-unifiers of Γ w.r.t. . Proof. Let σ, τ : F E (I) → F E (X) and γ i :

F E (X) → F E (Y i ). Let Y = Y 1 • • • Y n is the disjoint union of the generating sets Y i .
Then F E (Y ) is the coproduct and the product of the objects F E (Y i ). Let p 1 , . . . , p n be the projections for the product. Then there exists a unique morphism γ : F E (X) → F E (Y ) such that γp i = γ i for all i, 1 ≤ i ≤ n. Consequently, γ ≤ E γ i and thus also γ γ i . The morphism γ is an E-unifier of Γ since σγp i = σγ i = τ γ i = τ γp i for i = 1, . . . , n implies σγ = τ γ (by the definition of product).

It remains to show that {γ} is complete w.r.t. . Thus, let δ be an E-unifier of Γ. Since {γ 1 , . . . , γ n } is complete w.r.t. , there is an index i such that γ i δ. But now transitivity of the preorder yields γ δ, which shows that {γ} is indeed complete.

Lemma 2. Let E be a commutative theory and Γ = σ = τ be an elementary E-unification problem, and let {γ 1 , γ 2 , γ 3 , . . . } be an infinite set of E-unifiers of Γ such that there is no Eunifier α of Γ with α γ i for all i ≥ 1. Then there does not exist a minimal complete set of E-unifiers of Γ.

Proof. Let σ, τ : F E (I) → F E (X) and γ n : F E (X) → F E (Y n ), and let U E (Γ) denote the set of E-unifiers of Γ.
The morphisms δ n are inductively defined as follows: δ 1 is just γ 1 . Assuming that δ n :

F E (X) → F E (Z n ) is already defined, we consider the product F E (Z n+1 ) with the projections p 1 , p 2 of F E (Y n+1 ) and F E (Z n ). Then δ n+1 : F E (X) → F E (Z n+1
) is defined to be the unique morphism such that δ n+1 p 1 = γ n+1 and δ n+1 p 2 = δ n .

As in the proof of the previous lemma, it is easy to see that the morphisms δ n are E-unifiers of Γ, and that δ n+1 ≤ E δ n and thus δ n+1 δ n . The condition imposed on {γ 1 , γ 2 , γ 3 , . . . } implies that the decreasing chain δ 1 δ 2 δ 3 . . . has no lower bound in U E (Γ). As a matter of fact, if such a bound α existed, then we would have for all n ≥ 1 that α δ n γ n , which contradicts our assumption regarding the set {γ 1 , γ 2 , γ 3 , . . . }.

We now assume that there exists a minimal complete set M of E-unifiers of Γ w.r.t. ≺. Since M is complete, there is θ ∈ M such that θ δ 1 . The fact that δ 1 δ 2 δ 3 . . . has no lower bound in U E (Γ) yields an n ≥ 1 satisfying θ δ n , but θ δ n+1 . Let θ : F E (X) → F E (Y ), and let F E (Z) with the projections q 1 , q 2 be the product of F E (Z n+1 ) and F E (Y ). The morphism θ : F E (X) → F E (Z) is defined to be the unique morphism such that θq 1 = δ n+1 and θq 2 = θ.

Again, it is easy to see that θ is an E-unifier of Γ, θ δ n+1 , and θ θ. Since M is complete there is θ ∈ M such that θ θ. Now θ θ for θ, θ ∈ M yields θ = θ by minimality of M . But then θ = θ θ δ n+1 is a contradiction to our choice of n.

A Commutative Theory whose Exact Type is Nullary

The following unification problem was used in [START_REF] Baader | Unification in commutative theories[END_REF] to show that the theory ACUIh is nullary (w.r.t. the instantiation preorder):

Γ = h(x 1 ) + h(x 2 ) = x 2 + h 2 (x 3 )
In [START_REF] Baader | Combination problems for commutative/monoidal theories or how algebra can help in equational unification[END_REF] the same problem was used to extend this result to a large subclass of the class of commutative theories. The proofs use the fact that for all n ≥ 0 the substitution

θ n := {x 1 → y, x 2 → h(y) + h 2 (y) + • • • + h n+1 (y), x 3 → h n (y)}
is a unifier of Γ. Below, we use the same problem and the same sequence of unifiers to show that an appropriate variant of Lemma 8.1 in [START_REF] Baader | Unification in commutative theories[END_REF] also holds if the instantiation preorder is replaced by the exactness preorder. However, the proof is a bit more involved.

Lemma 3. Let γ be an ACUIh-unifier of Γ such that γ ACUIh θ n . Then there is a variable z and a number k ≥ n such that x 3 γ contains h k (z) as a summand.

Proof. For simplicity, we denote ACUIh as E in this proof. First, note that x 1 γ = E 0γ = 0 since γ E θ n and x 1 θ n = y = E 0 = 0θ n . Consequently, x 1 γ is of the form x 1 γ = p i=1 h ni (y i ) where p ≥ 1 and n i ≥ 0 and y i is a variable (possibly, but not necessarily, distinct from the variables x 1 , x 2 , x 3 ) for all 1 ≤ i ≤ p. Now, assume that h m (α) is a summand of (h(x 1 ) + h(x 2 ))γ, where α is a variable. Since (h(x 1 ) + h(x 2 ))γ is finite, there is a nonnegative integer k s.t.

• h m+k (α) is a summand of (h(x 1 ) + h(x 2 ))γ, but

• h m+k+1 (α) is not a summand of (h(x 1 ) + h(x 2 ))γ.
Consequently, h m+k (α) must be a summand of h 2 (x 3 )γ, which implies that m + k ≥ 2 and h m+k-2 (α) is a summand of x 3 γ.

Because the terms h ni+1 (y i ) are all summands of (h(x 1 ) + h(x 2 ))γ, we obtain nonnegative integers k 1 , . . . , k p s.t. h ni+ki-1 (y i ) is a summand of x 3 γ for all i, 1 ≤ i ≤ n. Without loss of generality we can assume that

k 1 ≥ k 2 ≥ • • • ≥ k p . Now, consider t = h k1-1 (x 1 ) + x 3 + p i=2 h k1-ki (x 3 ) and u = x 3 + p i=2 h k1-ki (x 3 ). A simple calculation shows that (h k1-1 (x 1 ))γ = h n1+k1-1 (y 1 ) + p i=2 h ni+k1-1 (y i ) = h n1+k1-1 (y 1 ) + p i=2 h k1-ki (h ni+ki-1 (y i )).
Given what we know about the summands of x 3 γ, this implies tγ = E uγ, which in turn yields tθ n = E uθ n , i.e.,

h k1-1 (y) + h n (y) + p i=2 h n+k1-ki (y) = E h n (y) + p i=2 h n+k1-ki (y). Thus, k 1 -1 = n or there is an i, 1 ≤ i ≤ n, with k 1 -1 = n + k 1 -k i .
In the first case, h n1+n (y 1 ) is a summand of x 3 γ, and in the second, h n1+n (y i ) is a summand of x 3 γ.

Obviously, this lemma implies that the E-unification problem Γ satisfies the prerequisite of Lemma 2 for = E . Thus, Γ does not have a minimal complete set of E-unifiers for E = ACUIh.

Theorem 2. For elementary unification, ACUIh is nullary w.r.t. the exactness preorder.

Conclusion

The theory ACUIh actually axiomatizes equivalence in the Description Logic FL 0 [START_REF] Baader | Unification of concept terms in description logics[END_REF], and thus ACUIh-unification corresponds to unification in FL 0 . As shown in [START_REF] Baader | Unification of concept terms in description logics[END_REF], deciding solvability of such unification problems is ExpTime-complete (for unification with constants). Since ACUIh is of exact type nullary, disunification in FL 0 (modulo ACUIh) cannot be reduced to unification using the method outlined in the introduction. Nevertheless, solvability of disunification problems (with constants) was shown to be decidable (more precisely, ExpTime-complete) in [START_REF] Baader | Solving language equations and disequations with applications to disunification in description logics and monadic set constraints[END_REF] using an extension of the automata-based decision procedure for FL 0 -unification.

Another Description Logic for which unification has been investigated in detail is the Description Logic EL. Equivalence in this logic can be axiomatized by the equational theory SLMO of semilattices with monotone operator, which is not a commutative theory. As shown in [START_REF] Baader | Unification in the description logic EL[END_REF], deciding solvability of EL-unification problems is NP-complete and the unification type (w.r.t. the instantiation preorder) is again nullary. Whether EL (and thus SLMO) also has exact unification type nullary is still an open problem.

See[START_REF] Nutt | Unification in monoidal theories[END_REF] for an algebraic definition of the closely related class of monoidal theories.