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     Over the last decade, single-molecule optical microscopy has become the gold-standard 

approach to decipher complex molecular processes in cellular environments.[1-3] Single-

molecule fluorescence microscopy has several advantages such as ease of application, high 

sensitivity, low invasiveness and versatility due the large number of available fluorescent 

probes. It bears however some drawbacks related to the poor photostability of organic dye 

molecules[4] and auto-fluorescent proteins[5-7] and and to the relatively large size of 

semiconductor nanoparticles in the context of live cell applications.[4,8,9] The overall size of 

the functional biomarkers is a general issue for any imaging approach because of steric 

hindrance effects in confined cell regions. Small red-shifted nano-emitters that are highly 

photostable are not currently available, while they would combine the best physical and 

optical penetration properties in biological tissues. Although single-molecule absorption 

microscopy was early used to detect single-molecules[10] at cryogenic temperatures, it is only 

with the advent of photothermal microscopy[11,12] that practical applications of absorption 

microscopy were developed in single-molecule research. Photothermal imaging (PhI) 
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microscopy can indeed reach unprecedented sensitivities for detecting tiny absorbers with 

absorption cross-section as small as a few 10-16 cm2.[12-14] 

     Several types of nano-objects ranging from gold nanoparticles,[15-19] carbon nanotubes[20,21] 

to quantum dots[22] are detected at the single-particle level leading to refined spectroscopic 

studies and ultra sensitive imaging applications. PhI displays extremely stable signals and is 

therefore appealing for biological applications. Furthermore photothermal microscopies are 

totally insensitive to non-absorbing scatterers, even when large objects with strong refractive 

index contrasts are present within the surroundings of the imaged nanoparticles, as is often the 

case in biological samples.[23] Several live cell application of PhI involve the detection of 

small gold nanospheres in order to perform long term single molecule tracking.[9,24,25] A 

limitation however arises due to background signal from endogenous cellular components, 

since these nanoparticles have to be excited at their plasmon resonance, which lies around 530 

nm. Although one can also take advantage of this intrinsic absorption to achieve label-free 

imaging,[26] very small red-shifted absorbing nanoparticles would represent better probes for 

PhI since near-infrared is a region where the absorption of cell organelles is negligible. The 

use of gold nanorods as small probes absorbing in the near infra-red, is a promising strategy 

as they would combine good subcellular accessibility,[9] low contribution from intrinsic 

cellular signals and perfect photostability. 

     Gold nanorods are elongated nanoparticles, which display additional red-shifted plasmon 

resonance as compared to their spherical counterparts.[27] More precisely, transverse or 

longitudinal plasmon resonances result from the electron cloud oscillations excited by light 

polarized along their short-axis (diameter) or long-axis (length) respectively. Interestingly, the 

short axis plasmon resonance is basically independent on nanorods dimensions, while the 

long-axis plasmon resonance can be tuned over a wide spectral range (from 620 nm to 1100 

nm) based on their aspect ratio. Although large diameter nanorods (> 8 nm) have been 

extensively used in different biological applications, such as bioimaging, delivery, sensing 
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and therapy,[18,28,29] the synthesis of nanorods with smaller diameter is more delicate and are 

more recent.[30] Here, we report the synthesis, sorting and characterization of mono-disperse 

gold nanorods. These nanorods display tunable red-shifted plasmon resonance as compared to 

their spherical counterparts. A dual color PhI microscope was developed to image them down 

to the single nanorod level and to demonstrate that nanorods are promising basic building 

blocks for the realization of cellular imaging biomarkers in the near infrared. 

     Nanorods were synthesized using a modified pH-prompted seedless protocol (see 

experimental section).[30] The as-prepared solution was first characterized using UV/Vis 

absorption spectroscopy from 400 nm to 1000 nm (Figure 1A). The absorption spectrum 

shows the characteristic splitting of the surface Plasmon resonance (SPR) into two modes in 

case of gold nanorods (transverse at 516 nm and longitudinal ~ 680 nm).[31-33] Nanorod 

morphologies were then characterized by transmission electron microscopy (TEM). All 

obtained nanorods had lengths smaller than 50 nm and diameters smaller than 7 nm (Figure 

1B). More precisely, the distributions of nanorod lengths, diameters and aspect ratios were 

constructed (Figure 1C-E) revealing that the as-prepared solution was poly-disperse in length, 

and rather mono-disperse in diameter (6± 1nm).  

     In order to improve nanorods mono-dispersity with tunable longitudinal plasmon 

resonance, we performed length sorting by density gradient ultracentrifugation[34,35] (see 

experimental section). Upon centrifugation of the initial solution, distinct colored bands were 

visible (Figure 2A).  Different fractions were collected and analyzed. Figure 2B displays 

UV/Vis absorption spectra of the 6 first collected fractions corresponding to the shortest 

nanorods. A manifold of narrower longitudinal SPR peaks is found as compared to the parent 

solution while the transverse SPR peaks are almost identical. This indicates that efficient 

sorting based on nanorod lengths was obtained which results in monodisperse nanorods 

solutions with tunable plasmon resonance peaks. In the following, we concentrated on the 

solutions containing the smallest nanorods. Figure 2C and D show TEM images of fractions 
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with peak SPR at 618 nm and 642 nm respectively (image of a fraction containing longer 

nanorods is shown in Figure S1). From such images we constructed the histograms of 

nanorod lengths and aspect ratios (Figure 2E-H). We obtained average lengths of 10±1 nm 

(Figure 2E) and 13±1 (Figure 2G) and aspect ratios of 1.8±0.7 and 2.2±0.7 (Figure 2F and 

2H) respectively. The latest are consistent with position of the SPR peaks measured in Figure 

2B. 

     We next characterized by PhI microscopy the nanorod sorted samples at the single-particle 

level. PhI microscopy is indeed a sensitive imaging modality, which enables detection of 

nanometer-sized objects solely based on their absorption. It involves the detection of 

refractive index variations that are induced by photothermal effect in the local environment of 

an absorbing nanoparticle.[12,36-38] Gold nanoparticles of a few nanometers are efficiently 

detected by this imaging modality, thanks to their fast relaxation times (ps range) and large 

absorption sections around their plasmon resonance. In order to excite nanorods either at their 

transverse or at their longitudinal plasmon resonances, a PhI microscope was built with two-

color excitation beams and a probe beam in the near infrared. The setup uses a low amplitude 

noise single frequency laser diode at 785 nm acting as probe beam (Innovative Photonic 

Solutions, TO-56) and a 640 nm laser (Coherent OBIS-FP) to excite nanorods at their 

longitudinal resonance or a 532 nm laser (Coherent Sapphire) to excite the nanorods at their 

transverse resonance (Figure 3). The intensities of the absorption beams were modulated at 

450 kHz. The three beams were overlaid and focused onto the sample using a high NA 

objective (60x, NA=1.49). Absorption beams were circularly polarized to ensure that 

nanorods are equally excited regardless of their orientation in the sample plane. Upon light 

absorption by a nanorod, temperature elevation induces time-modulated variations of the 

refraction index in its close environment. The interaction of the probe beam with this index 

profile produces a scattered field with sidebands at the modulation frequency. The scattered 

field was then detected through its beat note with the probe field transmitted through the 
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sample, which plays the role of a local oscillator and is extracted by lock-in detection. 

Samples were mounted on a piezo-scanner stage that allowed scanning the sample to acquire 

2D images of nanorods. All data where acquired with integration times of 5 ms/pixel using a 

resolution of 100 nm/pixel. The setup also included white light trans-illumination and a CCD 

camera for bright-field imaging of the biological samples. 

     Samples were first prepared by spin coating a mixture of (1:1 ratio) CTAB stabilized 

nanorods and polyvinyl alcohol (PVA, 1.5%) on the surface of plasma cleaned glass slides. A 

drop of silicon oil was then added on the sample to ensure homogenous heat diffusion. PhI 

images of nanorod fraction with a SPR peak at 642 nm were acquired using laser excitation at 

532 nm (Figure 3B) and 640 nm (Figure 3C) with the same intensities at the imaging plane. 

One to one correlation is found in the two images indicating that identical objects are detected 

at the two excitations wavelengths. The signal intensities originating from ~100 single 

nanorods excited at the two wavelengths were compared as shown in the histograms of 

Figure 3D-E. Several observations indicate that that single nanorods are detected at the two 

wavelengths. First, both distributions are narrow which also indicates that the dispersions of 

nanorod dimensions (both diameter and lengths) are very small within such length-sorted 

fractions. Second, signal dispersion at 640nm excitation also includes a tail towards the small 

signals attributed to a contribution from the out-of polarization-plane orientation of the rods. 

Indeed, for individual nanorods, absorption at 532 nm under circularly polarized excitation is 

weakly dependent on nanorod orientations[39] since the transverse mode is always excited 

(Figure 3D) while absorption at 640 nm circularly polarized excitation is dependent on 

nanorod orientation since the longitudinal mode of nanorods with long axis normal to the 

polarization plane are not excited. To further support that single nanorods are detected in 

Figure 3B-C, we also collected images with at 640 nm excitation beam having four different 

linear polarization orientations. As expected from single rod detection PhI signals strongly 

depend on the beam polarization Figure 3G-I. Noteworthy, nanorods oriented 
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perpendicularly to the polarization axis display no PhI signal (see examples shown by 

arrowheads on Figure 3G-I. 

We also note that a three fold higher intensity is observed under 640 nm excitation compared 

to 532 nm excitation at the peak of the histograms. This was expected for nanorods where the 

longitudinal SPR is more intense than the transverse one.  Noteworthy in ensemble spectra 

presented in Figure 2B, the longitudinal SPR absorption peak is less than three times the 

transverse one due to orientation averaging of nanorods in solutions. PhI images and 

corresponding intensity histograms of other fractions are given in the supporting information 

(Figure S2). All of these fractions show similar trend in their intensity histograms, 

confirming that the synthesis protocol and DGU sorting leads to narrow size dispersion of 

nanorod solutions. 

For bioimaging applications requiring very small nano-labels to access restricted cellular 

areas or complex tissue organizations, the signal to cellular background ratio at which small 

nanolabels can be detected is commonly the limiting factor. The smaller the nano-labels, the 

more difficult is the task due to the increasing weakness of detectable signal originating from 

the labels.  In the case of PhI, intrinsic signal due to residual absorption of green light by cell 

mitochondria, lead to background signals that can reach that PhI signals of 5 nm gold 

nanoparticles excited at their plasmon resonance, i.e. around 532 nm. nanorods which we can 

detect with high signal to noise ratio at 640 nm while maintaining a small size, should thus 

represent a promising strategy in the context of cellular imaging with photothermal 

microscopy. In the following, we imaged nanorods in cellular environments. Fixed COS-7 

cells were chosen because these cells were previously shown to display intense intrinsic PhI 

signals originating from mitochondrial light absorption. After fixation COS-7 cells were 

incubated with 5 nM solution of nanorods in PBS containing 3% bovine serum albumin 

followed by extensive rinsing steps to remove non-immobilized nanorods. Figure 4 displays 

white light images of the cells and the corresponding PhI images recorded using 532 nm and 
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640 nm excitation. Accordingly to Figure 3, punctual signals originating from individual 

immobile nanorods can be identified on the cells in the two images. Importantly cellular 

(mitochondrial) structures are clearly visible under 532 nm excitation (Figure S3), which 

complicate the identification of nanorods around the mitochondria (arrow) at this excitation 

wavelength. In contrast, background signals originating from mitochondria are notably 

reduced under 640 nm excitation (Figure S4). In addition, individual nanorods display 

notably higher PhI signals 640 nm excitation as compared to 532 nm excitation, facilitating 

their detection of in cellular environments. The combination of these two effects thus 

participated to a clear enhancement of signal to cellular background ratio of detection of 

nanorods in cells.   

     In conclusion, we developed a novel strategy for photothermal imaging based on gold 

nanorods, which present strong optical absorption tunable from the red to the near IR. For 

biological applications, the use of these nanorods minimizes background signal from the cell 

organelles. We anticipate that they will constitute the next generation photothermal probe to 

study complex molecular dynamics in biological systems owing to their small size, tunable 

NIR-absorption, absolute photostability and chemical suitability for surface functionalization 

and bioconjugation.   

Experimental Section  

Nanorod synthesis: Briefly, HAuCl4.3H2O (90 mL, 1 mM) was added to 270 mL 

cetyltrimethyl ammonium bromide (CTAB; 0.2 M) followed by AgNO3 (9 mL, 4 mM). The 

solution was gently shaken. HCl (405 µL, 37%) was then added to adjust the pH to ~1. 

During this step, the color of the solution evolves from dark yellow to orange. Subsequently, 

1260 µL of L-ascorbic acid (AA; 78.8 mM) was injected and gently shaken until colorless. 

Immediately, ice-cold NaBH4 (540 µL, 10 mM) was slowly added and the solution was kept 

overnight at constant temperature (~30 °C). Appearance of dark blue color indicates the 
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formation of nanorods. Excess CTAB was removed by centrifuging the parent solution at 20k 

rpm for 1.5h. The pellet was collected and re-dispersed in 10 mM CTAB (4 mL) solution.  

TEM imaging: Monolayers of positively charged nanorods (due to CTAB encapsulating layer) 

were deposited and dried under ambient conditions on carbon coated Cu grids (200 mesh) that 

were negatively charged using a glow discharge technique (K950X Turbo evaporator with a 

350X glow discharge head; Emitech, France). 

Nanorods length sorting by density gradient ultrahigh-centrifugation (DGU): The density-

gradient consisted of 4 layers of decreasing concentration of ethylene glycol (EG) from 

bottom to top (volume ratios, 80%, 70%, 60%, 50%) in 10mM CTAB, cooled at 4 °C before 

use.  A 4 mL volume of nanorod solution was drop-casted on the top of cooled density 

gradient tube and centrifuged at a speed of 10k rpm for 3.5 h at 15 °C (Beckman Coulter 

ultrahigh centrifuge). 

Cell culture and fixation: COS7 cells were cultured plated on #1 glass slides up to 60% 

confluence in DMEM medium supplemented with streptomycin (100 µg/ml), penicillin (100 

U/ml), and 10 % bovine serum in a humidified atmosphere (95 %) at 5 % CO2 and 37 oC. 

Cells were used for 12-14 passages and were transferred every 4 days. Before imaging, the 

cells were fixed in methanol at -30 ºC, washed with phosphate buffered saline (PBS) and 

stored in PBS at 4ºC until incubated with nanorods.  

Supporting Information 
Supporting Information is available from the Wiley Online Library or from the author. 
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Figure 1. UV/Vis absorption spectrum (A), TEM image (B) and corresponding length (C), 

diameter (D) and aspect ratio (E) histograms of as prepared nanorods. Here, ~200 nanorods 

are used to construct the histograms.  

 



     

11 
 

 
Figure 2. (A) Photographs of DGU tube before and after centrifugation. (B) UV/Vis 

absorption spectra of six fractions collected after DGU. (C-D) TEM images of two fractions 

(618 nm and 642 nm peak absorption). The corresponding length and aspect ratio histograms 

are presented in (E-H). They show average lengths of 10±1 nm (E) and 13±1 nm (G) with 

average aspect ratios of 1.8 (F) and 2.2 (H), respectively. Here, ~200 nanorods are used to 

construct histogram.  
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Figure 3. (A) Schematics of the two-color PhI microscope with excitations at 532 nm or 640 

nm and a probe at 785 nm, (B and C) PhI images of nanorods (fraction with 642 nm peak 

absorption) excited with circularly polarized  (B) 532 nm and (C) 640 nm beams. (D and E): 

Corresponding PhI signal histograms.  (F-I) Same as (B°) but with linearly polarized 640nm 

excitation beams with orientations as indicated on the figures. Scale bars: 2µm. Arrowheads 

indicate the likely orientations of the in-plane projection of single nanorods long axis.  
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Figure 4. (A) White light and (B and C) PhI images of COS 7 cells incubated with nanorods 

under (B) 532 and (C) 640 nm excitation. PhI images recorded under red excitation show very 

weak mitochondrial background signals compared to that acquired under green excitation. 
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