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An efficient algorithm to satisfy l1 and l2 constraints

Introduction

We consider the non-convex set X = x ∈ R p | x 2 = 1 and x 1 ≤ τ with τ ∈ R * + and a ∈ R p . The optimization problem that is considered is :

argmin x∈X x -a 2 2 = argmin x∈X x 2 2 + a 2 2 -2a x = argmax x∈X a x (1) 
According to [START_REF] Witten | A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis[END_REF], the solution of the optimization problem (1) satisfies u = S(a, λ)/ S(a, λ) 2 ; where S is a softh-thresholding operator defined by S(a, λ) = max(0, |a| -λ) applied componentwise. The parameter λ = 0 if u 1 ≤ τ and λ is chosen such that u 1 = τ otherwise. λ is usually determined by binary search or by Projection On Convex Set algorithm (POCS), also known as alternating projection method (Boyd & 1 Dattorro, 2003). In this paper, we proposed a new algorithm similar to the one for projecting a point onto the 1 -ball which was described in (van den [START_REF] Van Den Berg | Group Sparsity Via Linear-Time Projection[END_REF]. This approach is summarized in the next section.

Efficient projection onto the 1 -ball

Let ã be the absolute value of a with its elements sorted in decreasing order. Further, we define the function ϕ(λ) = S(a, λ) 1 which is continuous, piecewise linear and decreasing from ϕ(0) = ã 1 to ϕ(ã 1 ) = 0. Therefore, if a 1 ≥ τ , as ϕ is continuous, it exists λ such that ϕ(λ) = τ . Hence, this projection algorithm onto the 1 -ball reduces to 4 steps :

1. Take the absolute value of a and sort its elements in decreasing order to get ã.

Find

i such that ϕ(ã i ) ≤ τ < ϕ(ã i+1 ). 3. Find δ such that ϕ(ã i -δ) = τ . As ϕ(ã i -δ) = i j=1 ãj -i(ã i -δ) = ϕ(ã i ) + iδ then δ = τ -ϕ(ã i ) i . 4. Compute S(a, λ) = sign(a) max(|a| -λ, 0) with λ = ãi -δ.
Similar algorithm was proposed by [START_REF] Candès | Signal recovery from random projections[END_REF], [START_REF] Daubechies | Accelerated projected gradient method for linear inverse problems with sparsity constraints[END_REF] and [START_REF] Duchi | Efficient projections onto the L1 -ball for learning in high dimensions[END_REF].

Main contribution

The novelty of this paper is to extend the algorithm described previously to the function ψ(λ) = S(ã, λ) 1 / S(ã, λ) 2 in order to solve optimization problem [START_REF] Boyd | Alternating Projections[END_REF].

Proposition 1. For λ ∈ [0; ã1 [, ψ(λ) = S(ã, λ) 1 S(ã, λ) 2
verifies the 3 following properties:

(i) ψ is continuous and decreasing.

(ii) Let n max be the number of element equal to ã1 , the maximum of ã.

For τ ∈ [ √ n max ; √ p] it exists i ∈ 1; p and δ ∈ [0; ãi -ãi+1 [ such that ψ(ã i -δ) = τ . (iii) δ is solution of a second degree polynomial equation.
Proof. (i). The numerator and denominator of ψ are continuous as composition of continuous functions. Moreover, for λ ∈ [0; ã1 [, S(ã, λ) 2 = 0. Therefore, ψ is continuous as quotient of 2 non-null continuous functions. Assuming ãp+1 = 0, for λ ∈ [0; ã1 [ it exists k ∈ 1; p such that ãk+1 ≤ λ < ãk . For this specific λ, we have:

S(ã, λ) 1 = k j=1 ãj -kλ (2) k j=1 (ã j -λ) 2 = k j=1 ã2 j -2λ k j=1 ãj + kλ 2 (3) 
From equations ( 2) and ( 3), the derivate of ψ is :

ψ (λ) = 1 S(ã, λ) 2 2 S(ã, λ) 2 1 S(ã, λ) 2 -k S(ã, λ) 2 = 1 S(ã, λ) 2 (ψ(λ) 2 -k) (4) 
Moreover, the number of non-null elements of S(ã, λ) is equal to k. Therefore, from Cauchy-Schwarz, the inequality S(ã, λ)

1 ≤ √ k S(ã, λ) 2 holds, implying ψ (λ) ≤ 0. (ii). For ν ∈ [ã 2 ; ã1 [, ψ(ν) = nmax(ã 1 -ν) √ nmax(ã 1 -ν) = √ n max . Thus, ψ is decreasing from ψ(0) = a 1 / a 2 ≤ √ p (Cauchy-Schwarz) to ψ(ν) = √ n max . It implies that for τ ∈ [ √ n max ; √ p], it exists i ∈ 1; p such that ψ(ã i ) ≤ τ < ψ(ã i+1 ). Finally, as ψ is continuous, it exists δ ∈ [0; ãi -ãi+1 [ such that ψ(ã i -δ) = τ .
(iii). Using the notations l 1 = S(ã, ãi ) 1 and l 2 = S(ã, ãi ) 2 :

S(ã, ãi -δ) 1 = i j=1 [ã j -(ã i -δ)] = i j=1 [ã j -ãi ] + iδ = S(ã, ãi ) 1 + iδ = l 1 + iδ (5) S(ã, ãi -δ) 2 2 = i j=1 [ã j -(ã i -δ)] 2 = i j=1 [(ã j -ãi ) 2 +2δ(ã j -ãi )+δ 2 ] = l 2 2 +2δl 1 +iδ 2 (6)
Moreover, as ψ(ã i -δ) = τ = S(ã, ãi -δ) 1 / S(ã, ãi -δ) 2 , the following equality holds:

S(ã, ãi -δ) 2 1 = τ 2 S(ã, ãi -δ) 2 2 (7) 
Incorporating ( 5) and ( 6) in [START_REF] Thom | Efficient Sparseness-Enforcing Projections[END_REF] gives:

δ 2 [i 2 -iτ 2 ] + 2δl 1 [i -τ 2 ] + l 2 1 -τ 2 l 2 2 = 0 ( 8 
)
The goal is now to find the positive root of this second degree polynomial equation. The discriminant ∆ is equal to 4τ

2 [τ 2 -i][l 2 1 -il 2 2 ]
. It remains to show that ∆ is positive. First, the number of non-null elements of S(ã, ãi+1 ) is equal to i and the Cauchy-Schwartz

inequality yields S(ã, ãi+1 ) 1 ≤ √ i S(ã, ãi+1 ) 2 . Second, ψ(ã i+1 ) = S(ã, ãi+1 ) 1 S(ã, ãi+1 ) 2 > τ so S(ã, ãi+1 ) 1 > τ S(ã, ãi+1 ) 2 .
Combining the two previous inequalities yields (i -τ 2 ) S(ã, ãi+1 ) 1 > 0 which implies that i -τ 2 > 0. Third, from ψ(ã i ) = l 1 /l 2 ≤ τ < √ i, we deduce that l 2 1 -il 2 2 ≤ 0 which ensures that ∆ is positive. To conclude, the sign of l 2 1 -τ 2 l 2 2 i 2 -iτ 2 corresponds to the sign of the product of the 2 roots. As this term is negative, the 2 roots have opposite signs. The single solution of ψ(ã i -δ) = τ is:

δ = -2l 1 (i -τ 2 ) + √ ∆ 2i(i -τ 2 ) = -2l 1 (i -τ 2 ) + 2τ [τ 2 -i][l 2 1 -il 2 2 ] 2i(i -τ 2 ) = - l 1 i + τ i il 2 2 -l 2 1 i -τ 2 .
Using the fact that ψ(ã i ) = l 1 /l 2 , the previous equation can be simplified as

δ = S(ã, ãi ) 2 i τ i -ψ(ã i ) 2 i -τ 2 -ψ(ã i ) . (9) 
Remark. τ < √ i implies that if you know the number of non-null elements you want to keep, then τ is in [

√ n max ; √ i].
The proposed algorithm reduces to 4 steps:

1. Take the absolute value of a and sort its elements in decreasing order to get ã.

2. Find i such that ψ(ã i ) ≤ τ < ψ(ã i+1 ). This algorithm is freely available within the RGCCA package (Tenenhaus & Guillemot, 2017).

3. δ = S(ã, ãi ) 2 i τ i -ψ(ã i ) 2 i -τ 2 -ψ(ã i ) .

Applications

Runtime. The runtime performances of the proposed algorithm (Proj l1 l2) are compared to the binary search (Binary) algorithm, POCS algorithm and the projection onto the 1 -ball (Proj l1) algorithm. SGCCA. This work was motivated by its application to Sparse Generalized Canonical Correlation Analysis (SGCCA), a multiblock component method. This method, fully described in [START_REF] Tenenhaus | Variable selection for generalized canonical correlation analysis[END_REF], is based on block relaxation to maximize a specific cost function. At each block relaxation substep, an optimization problem similar to (1) needs to be solved. Our algorithm (Proj l1 l2) has been embedded within the SGCCA algorithm and has been compared to the original implementation with binary search. For this experiment, we applied SGCCA to a 3-block dataset which combine gene expression (p 1 = 15702), comparative genomic hybridization (p 2 = 1229), and a qualitative phenotype (p 3 = 3) measured on a set of 53 children with glioma. The Glioma dataset is freely available at http://biodev.cea.fr/sgcca/. For each of these two algorithms SGCCA was run 20 times and converged in average at 10.48 (resp. 7.62s) with a standard deviation of 0.60s (resp. 0.29s) for binary search (resp. Proj l1 l2) on midrange laptop computer. We mention that the two implementations of the SGCCA algorithm converged to the same solution.

Conclusion

We proposed a computationally efficient alternative to binary search and POCS algorithm to solve optimization problem (1). This algorithm was then applied in the frame of SGCCA.
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 4 Compute S(a, λ) = sign(a) max(|a| -λ, 0) with λ = ãi -δ.Remark. Sorting the elements in step 1 implies that the time complexity is at least in O(p ln p) with p the dimension of a. In[START_REF] Thom | Efficient Sparseness-Enforcing Projections[END_REF]) a similar algorithm is proposed where they avoid the sorting step which reduces the time complexity to O(p).

Figure 1 (

 1 a) shows that Proj l1 l2 is almost 10 times faster than Binary and POCS and performs similarly to Proj l1. Moreover, Figure1(b) reports the runtime of the four methods as a function of the dimension p.
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 1 Figure 1: (a): Violin plots of the runtime of POCS, Binary, Proj l1 l2 and Proj l1 throughout 100 runs for a vector of length p =10.000. (b): Log-log plot of the runtime average over 20 runs for POCS, Binary, Proj l1 l2 and Proj l1 for different value of p. For all the experiments, the vector was drawn from a standardized normal distribution and τ was set to 2.3.