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The response of the free liquid surface in a Hele-Shaw cell subjected to a horizontal
oscillation is investigated. We study the low-oscillation-amplitude regime and we show,
by varying the fluid viscosity, ν, and the forcing frequency, ω, that the ratio between the
Stokes viscous length,

√
2ν/ω, and the cell thickness greatly affects the amplitude and

phase lag of the gravity waves. In particular, the sloshing system undergoes an under-
damped/overdamped transition for sufficiently large viscosities. A consistent theoretical
model, based on a modification of Darcy’s law to include unsteadiness, is then introduced
to rationalize the experimental observations. Contrary to traditional sloshing wave theory,
the viscous flow dissipation comes at leading order in the analysis, rather than as a higher
order asymptotic correction to the inviscid sloshing dynamics. The analytical expression
for the resonance curves agrees well with experimental results without tunable parameter.

1. Introduction

The motion of the free liquid surface in a closed basin is encountered in many industrial
applications and can have a detrimental effect on the stability of liquid carriers and
aerospace vehicles (Ibrahim et al. 2001; Ibrahim 2005; Veldman et al. 2007; Faltinsen
& Timokha 2009). In the case of a harmonic forcing imposed to the container, the
wave amplitude increases significantly at resonance. If the amplitude of sloshing motion
becomes large enough, geyser formation, wave overturning (Royon-Lebeaud et al. 2007)
and spilling (Mayer & Krechetnikov 2012) can occur, thus potentially affecting safety
and operational efficiency. With the purpose of reducing sloshing motion at resonance,
tanks have been designed in such a way to change the system’s natural frequencies with
respect to the ones of possible excitations, or to increase viscous dissipation. Dissipation
devices such as rigid lids and elastic membranes at the free surface or baffles placed in
the container, are widely used. Another option consists in designing fuel tanks filled with
a porous medium or Hele-Shaw cells as proposed for tanks of aerospace vehicles (Dweyer
& Erickson 1969). This last solution consists in a narrow container where the separation
between two plates is small compared to the other two dimensions. In this way viscous
friction is enhanced and viscous forces dominate over inertial ones. Interestingly, due to
the strong confinement, the transversal velocity is negligible with respect to the in-plane
components and the resulting motion is nearly two-dimensional.

More generally, Hele-Shaw cells have been adopted over the years to study two-
phase flows, providing useful insight into viscously driven instability phenomena. A
paradigmatic example is the viscous fingering formation, also called Saffman-Taylor
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Figure 1. a) Sketch of the experimental setup. b) Raw image of the air/liquid interface, taken
from the experiment without added glycerol and forcing frequency of 3.5 Hz. (c) Binarised image
obtained after thresholding.

instability, that occurs when a less viscous fluid is injected into a Hele-Shaw cell, filled
with a different immiscible and more viscous fluid. The interface between the fluids
develops an instability leading to the formation of finger-like patterns (Saffman & Taylor
1958; Bensimon et al. 1986).

The mathematical description of the flow in a Hele-Shaw cell is based on the parabolic
flow profile approximation in the narrow direction. The in-plane mean velocity 〈u〉 is thus
proportional to the pressure gradient, with the proportionality constant scaling inversely
with the viscosity, µ, and with the cell gap square, ζ2

〈u〉 = − ζ2

12µ
∇p. (1.1)

This is nothing more than the Darcy equation that governs flows in porous media, which
are widely studied in geophysics, for instance in the context of oil recovery. Darcy’s law,
however, is not valid in cases where inertia, through the advection of momentum, plays
a relevant role, such as waves (Kalogirou et al. 2016) and Kelvin-Helmholtz instability in
a Hele-Shaw cell where the instability threshold was found by Gondret & Rabaud (1997)
to be governed by inertial effects. It is not mathematically straightforward to consistently
reintroduce convective terms in the depth averaged Hele-Shaw equations (see Ruyer-Quil
(2001); Plouraboué & Hinch (2002)).

In this work, we consider the case of inertial effects in a Hele-Shaw cell flow limited
to the unsteady term in the Navier-Stokes equations. This scenario corresponds to a
pulsatile flow where the fluid’s motion reduces to a two-dimensional oscillating Poiseuille
flow (similarly to the Womersley flow in arteries (Womersley 1955)) and it is well suited
to investigate sloshing waves in narrow containers, which is the main aim of this work.
Our approach is to perform experiments in a narrow cell of fixed gap exposed to a lateral
harmonic forcing of angular frequency, ω. The boundary layer to cell’s gap ratio, δ′/ζ,
is varied by filling the cell with liquids of different viscosities, ν, up to the point the
thickness of the oscillating boundary layers, δ′ =

√
2ν/ω, becomes comparable to the

cell gap, ζ, and, as a result, the dissipation is intense in the whole fluid volume, in contrast
to the case of large containers. The amplitude and phase of the free surface shape are
monitored. The experimental results are then rationalized through a generalized Darcy’s
law for oscillating flows, and the analytical model is then compared to the experimental
data.
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Solution Composition
kinematic viscosity

[mm2/s]
density
[g/cm3]

temperature
[°C]

1 base fluid (95% ethanol+5% isopropanol) 1.7934 0.8047 21.0
2 base fluid + 5% glycerol 2.2783 0.8305 20.0
3 base fluid + 20% glycerol 3.7069 0.8807 20.5
4 base fluid + 25% glycerol 6.4688 0.9294 20.0
5 base fluid + 30% glycerol 11.853 0.9786 20.0
6 base fluid + 40% glycerol 15.319 0.9997 20.5
7 base fluid + 45% glycerol 21.388 1.0225 20.0
8 base fluid + 55% glycerol 40.594 1.0697 20.5
9 base fluid + 62% glycerol 63.428 1.0987 20.5

Table 1. Physical properties of the solutions used at the temperature of the experiments.

2. Experimental methods

The experimental set-up used to generate the sloshing waves in the narrow container
and to measure the free-surface displacement is shown in figure 1(a). A Plexiglas cell of
height H = 15 cm, length ` = 10 cm and width ζ = 0.3 cm is fixed to a single axis linear
motion actuator (Aerotech PRO 165). The container is partially filled from the top with a
column of liquid of height h0 = 10 cm, that is of the same order of the container’s length,
h0 ≈ `, in order to limit viscous dissipation at the bottom of the container. Indeed, the
effect of a finite depth h0/` enters the eigenfrequency of the fundamental mode, which is
the most sensitive to finite-depth effects, through a factor

√
tanh (πh0/`) which equals

the infinite-depth limit within less than 1% for h0 = ` (Ibrahim 2005). We use different
solutions of 95% ethanol plus 5% isopropanol that is mixed with glycerol (0%, 5%, 25%,
40%, 45%, 55% and 62% in volume of glycerol). The properties of the different solutions
are measured with an Anton Paar viscosimeter (SVM 3000) and summarized in Table 1.

Sloshing is generated by imposing a lateral harmonic motion of angular frequency
ω = 2πf , and amplitude a. The actuation is set and controlled by the Aerotech Soloist
CP software and spanning in sequence the frequency range from f = 0.1 Hz to f = 4.5 Hz
with step 0.1 Hz. The oscillation amplitude imposed to the cell is set equal to a = 6 mm,
which was seen to generate sloshing waves in the linear regime (see Sec. 4 for further
details). To ensure that the steady regime is reached, the free-surface dynamics is recorded
only after a certain number of cycles, typically 15, through a Blaser camera coupled with a
Nikon 18−108/2.5 lens. The acquisition frequency is adapted to the excitation frequency:
5 frames per second (fps) for f 6 0.4 Hz, 25 fps for 0.5 Hz < f < 0.9 Hz, and 50 fps
for f > 1 Hz. Lighting is provided by a LED panel (25 cm × 15 cm) placed behind the
cell. Due to the dependence of viscosity on temperature and high volatility of ethanol,
experiments are performed within short time scales, typically less than 30 minutes, thus
avoiding in this way fluid evaporation, and the room temperature is recorded for each
experiment. The liquid level is measured before and after the experiment to ensure fluid
evaporation is negligible.

In order to extract the location of the air/liquid interface, one needs first to subtract
the horizontal motion of the cell, since the camera is not attached to the vibrated tank.
To track its vertical central axis y, we threshold and binarise each image (Fig. 1(b,c)).
The external edges of the cell then appear as black vertical lines (Fig. 1(c), which are
automatically detected in a home-made Matlab program. The y axis is set as the middle
line between these two edges. The interface appears as a bold black line, because of
meniscus effects. We simply describe the interface by a curve of equation y = h(x, t), h
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being taken as the position of the top of the bold line. We checked that, apart from an
offset irrelevant to the dynamics and practically constant along all experiments, defining
h by the middle line or the bottom of the bold line would not change anything. The
relevant quantity describing the interface is actually the deviation of h from the inteface
position at rest h0, δh(x, t) = h(x, t) − h0. From this, we deduce the time-averaged
amplitude of the interface motion ∆h(x) and phase difference ϕ(x) between the interface
oscillation and the imposed displacement ã(t):

∆h(x) =
√

2〈δh(x, t)2〉t, ϕ(x) = arccos[〈ã(t)δh(x, t)〉t/
√
〈ã(t)〉2t 〈δh(x, t)〉2t ]. (2.1)

Here, time averaging 〈·〉t is performed over an entire number of cycles. This ensures
that if the horizontal displacement is ã(t) = a cosωt, then the interface displacement is
δh(x, t) = ∆h(x) cos[ωt+ ϕ(x)] in the case of a pure harmonic motion in time.

3. Theory

Let us consider the response to forcing of a liquid contained in a rectangular container
where the cell gap is much smaller than its width ζ/`� 1. The forcing is applied along
the direction x (see Figure 1(a)), and consists of an oscillatory motion of amplitude
a and angular frequency ω. Hence, the acceleration of the cell in the lab frame is
−aω2 cosωt′. Primed variables, as time t′ here, design dimensional variables, in contrast
to their dimensionless counterparts to be introduced later. In the non-inertial frame of
the cell, the fluid obeys the continuity equation and the Navier–Stokes equation with a
pseudo-force acting in the x-momentum:

∇′ · v′ = 0,
∂v′

∂t′
+ (v′ ·∇′)v′ = −1

ρ
∇′p′ + ν∆′v′ − gey − aω2 cosωt′ex, (3.1)

with v′ = u′ex + v′ey + w′ez the velocity field. In all the following, we neglect the
nonlinear advection term on behalf of the small amplitude of the oscillations. The
equations of motion are then linear, and we can write v′(x′; t′) = R[v̂′(x′)eiωt′ ] and
p′(x′; t′) = R[p̂′(x′)eiωt′ ] with i the imaginary unit and R taking the real part. We
henceforth drop the hat referring to v̂′(x′) and p̂′(x′) simply as v′ = (u′, v′, w′) and p′.

Equations are made dimensionless by using ` along the directions x and y, and ζ along
direction z. The forcing amplitude and frequency provide a scale aω for the in-plane
velocity components, whereas continuity equation imposes the transverse component to
scale as εaω, due to the strong confinement in the z-direction: ε ≡ ζ/` � 1. With these
choices, dimensionless spatial scales, velocity components and pressure write:

x =
x′

`
, y =

y′

`
, z =

z′

ζ
, u =

u′

aω
, v =

v′

aω
, w =

w′

εaω
, p =

p′

ρ`aω2
. (3.2)

Furthermore, we separate the static and dynamic pressure contributions by setting

p = x+
g

aω2
y + q. (3.3)

Projecting (3.1) along x, y and z, we thus get the following dimensionless equations at
leading order in ε:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, iu = − ∂q

∂x
+

1

2
δ2 ∂

2u

∂z2
, iv = −∂q

∂y
+

1

2
δ2 ∂

2v

∂z2
, 0 =

∂q

∂z
, (3.4)

where δ = δ′/ζ compares the thickness of Stokes boundary layer δ′ =
√

2ν/ω to the
cell thickness, ζ. Figure 2(a) shows 2δ as a function of the forcing frequency for the
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Figure 2. a) Stokes layers thickness at the walls, 2δ′, over the cell width, ζ, as a function
of the forcing frequency. Each line corresponds to a different solution used in the experiment,
whereas the vertical line depicts the inviscid resonance frequency. b) Modulus (full line) and
phase (dashed line) of α/ω as a function of ω for the less (blue lines) and most (red lines)
viscous solutions used in the experiments. The grey area shows the frequency range covered by
the experimental data.

different solutions used in the experiments. Note that when 2δ = 1 the Stokes layers
over the x− y faces of the cell merge and invade the entire fluid bulk. The dimensionless
governing equations (3.4), along with no-slip condition at z = ±1/2 correspond to a
two-dimensional pulsatile Poiseuille flow with solution

u = i
∂q

∂x

[
1− cosh(1 + i)z/δ

cosh(1 + i)/2δ

]
, v = i

∂q

∂y

[
1− cosh(1 + i)z/δ

cosh(1 + i)/2δ

]
. (3.5)

Therefore, the averaged velocity along z satisfies a Darcy-like equation

〈u〉 =

∫ 1/2

−1/2

u dz = iα∇q, where α = 1− 2δ

1 + i
tanh

1 + i

2δ
(3.6)

is the effective permeability taking into account the effect of the depth-averaged pulsatile
flow profile. Similarly to Darcy’s law (1.1), equation (3.6) prevents the no-slip condition
for the in-plane velocity to be imposed (see Appendix A for a boundary layer expansion
valid near the lateral walls). Figure 2(b) shows the ratio α/ω (to which the dimensional
solution is proportional) versus the forcing pulsation ω. For sufficiently small frequency,
depending on the fluid viscosity, α/ω becomes constant, thus meaning that the flow
profile does not depend on ω and is equal to a quasi-steady Poiseuille flow.

To obtain a governing equation for the z-averaged velocity 〈u〉, we also average the
continuity equation. Using the impermeability condition for the spanwise velocity, w = 0
at z = ±1/2, and (3.5), we find that the pressure field obeys Laplace equation

∂2q

∂x2
+
∂2q

∂y2
= 0. (3.7)

Looking for solutions by separation of variables with the requirement that they must
vanish as y → ∞ (we restrict our analysis to the deep water regime, consistently with
experiments), we find that q must be of the type

q =

∞∑
n=0

Ane−kny sin knx, (3.8)
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Figure 3. a) Resonance curves and b) phase lag for different solution viscosities (see Tab. 1)
according to experiments (symbols) and theoretical results (lines). The gain and phase are
defined as in equation (2.1) for the experimental data and as modulus and phase of the average
surface elevation (3.10) for the theory.

and the no-penetration condition 〈u〉 = 0 at x = ±1/2 results, through equation (3.6),
in a Neumann condition on q and sets the possible wavenumbers to kn = (2n+ 1)π, with
n ∈ N.

Let us define the gain η as the ratio of the displacement of the interface ∆h to the
forcing amplitude a, η = ∆h/a, where ∆h is defined by (2.1). We assume that the slope of
the interface remains small, thus, the kinematic boundary condition can be then applied
at y = 0 and simplifies to ∂η/∂t = v. Using equation (3.6), the z-averaged kinematic
condition thus writes 〈η〉 = α ∂q

∂y (x, y = 0), that, combined with (3.8), yields an equation
for the averaged interface position

〈η〉 = −α
∞∑

n=0

knAn sin knx. (3.9)

In the case of ` much larger than the capillary length `c =
√
σ/ρg with σ the sur-

face tension (typically `c = 2 mm � ` in our experiments), surface tension effect
is negligible, and the dynamic boundary condition reduces to the continuity of nor-
mal stress at the interface. Since the atmospheric pressure is an offset irrelevant to
the dynamics, it simply writes p (x, y = aη/`) = 0. From equation (3.3), we thus get
0 = x+ q(x, y = 0) + g

`ω2 〈η(x)〉 and using equations (3.8), (3.9) and the Fourier series
of x in sin knx, we can solve for the coefficients An. The interface response to the forcing
thus reads

〈η〉 =
4

π
αω̃2

∞∑
n=0

(−1)n

2n+ 1

sin[(2n+ 1)πx]

ω̃2 − (2n+ 1)α
, (3.10)

where ω̃ = ω/ω0. Note that when viscosity is small (α ≈ 1), we recover the inviscid
resonance frequencies, ω2

n = (2n+1)πg/`. In the limit of small frequencies, equation (3.10)
reduces to 〈η〉 = −πω̃2x: the interface assumes a quasi-steady tilted shape prescribed by
the acceleration of the cell in the lab frame when ω̃2 � 1.
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Figure 4. Experimental resonance curves for the base fluid for forcing amplitudes a = 1.5 mm
(©), 3.0 mm (�) and 6.0 mm (5).

4. Results

We now present the resonance curves for the different solutions. The time-averaged
surface elevation, as defined by (2.1), over the forcing amplitude, ∆h(x = xg, f)/a, is a
measure of the energy response of the sloshing wave and it is shown in Figure 3(a). Here
the position xg = 45 mm is chosen as such to be off-centred enough that the displacement
of the interface, hence the signal-to-noise ratio, is maximised, but not too close to the
side walls, not to be influenced by them (see Figure 6 and Appendix A for a discussion
of wall effects). As expected, at any given frequency, the gain is a decreasing function
of viscosity. At increasing viscosity, we observe the disappearance of the characteristic
resonance peak, which is reminiscent of an underdamped to overdamped transition, for
viscosity roughly equal to 15 mm2·s−1 (solution 6, see Tab. 1). Note that this transition
happens when the fluid bulk at the inviscid resonant frequency is almost completely
filled by the oscillating boundary layers. This transition, 2δ′ ≈ ζ, takes place indeed for
a viscosity in between that of solutions 6 and 7, as shown in Figure 2(a).

It is important to remark that, as mentioned in section 2, the energy gains reported in
Figure 3(a) correspond to the linear resonance curves. As a consequence, the maximum
wave amplification is here only limited by the viscous dissipation rather than nonlinear
saturation that is expected at larger excitation amplitude. The hypothesis of linear regime
has been verified by varying the forcing amplitude as a = 1.5, 3.0 and 6.0 mm. The energy
gains were found to be unchanged, as shown in Figure 4 for base fluid. The other solutions
with glycerol, which are more viscous and display oscillations of lesser amplitude, remain
in the linear sloshing regime too.

This observation therefore allows us to compare the experimental results with our
theoretical analysis (section 3) that is limited to linear sloshing. Assuming that we
can identify the experimental measurements of the gain to the z-averaged free-surface
elevation 〈η〉, the corresponding resonance curves are reported in Figure 3(a) (dashed
lines). For each solution, the value of the parameter α appearing in equation (3.10),
is evaluated as defined in equation (3.6) by using the measured viscosity reported in
Table 1. A good agreement is observed between the experiments and the theory without
using any adjustable parameter. In particular, the resonance frequency is well reproduced
and the disappearance of the resonance peak precisely captured. The theory, however,
overestimates the wave response in the low viscosity case (namely for solution 1 and 2)
close to the resonance peak, calling for a small additional dissipation to be considered,
as discussed in section 5.
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Figure 5. Shape of the oscillating interface at different frequencies according to experiments
(symbols) and theory (lines), for different fluid viscosities, namely a) solution 1, b) solution 4,
c) solution 6 and d) solution 8, (see Tab. 1 for the exact fluid properties). Since the data and
prediction are symmetric with respect to x = 0, only the half cell x > 0 is presented.

In order to get a more complete description about resonant waves in a Hele-Shaw cell,
the phase lag between the excitation and the response, as defined in equation (2.1), is
reported in Figure 3(b). The phase lag tends to increase from −π to 0 at increasing
frequency, except for the lowest viscosities at frequencies above 3.5 Hz, because of the
influence of higher order modes. For these lowest viscosities which display underdamped
resonance, the rate of increase of the phase is maximal at the resonance peak frequency,
similarly to a classical forced harmonic oscillator. These measurements are in good
agreement with the argument of 〈η〉 given in equation (3.10), further validating our
theoretical approach.

In addition to local quantities, we present the shape of the whole oscillating liquid/air
interface. Figure 5 shows the experimental and theoretical surface elevation, for a selection
of representative frequencies, below (2.0, 2.6 Hz) and above resonance (3.2, 3.8 and
4.4 Hz), and for a set of viscosities in both underdamped and overdamped regime. Below
resonance (circles in (a-d)), the shape of the interface is roughly a tilted line, as prescribed
by the acceleration of the cell in the lab, in agreement with the discussion at the end of
section 3. At moderate viscosities and close to resonance (squares in (a-c)) 〈η〉 matches a
sinusoidal free-edge mode, whereas a tilted line mode is still observed for high viscosity
(d). At increasing frequency, the shape becomes more complex, and the gain is no longer
a monotonic function of |x| for the largest frequencies and the lowest viscosities. In
particular, for forcing frequency f = 4.4 Hz higher modes contribute to the dynamics at
low and moderate viscosities (see x-symbols in (a,b)). Although some discrepancies are
present, especially at low viscosity (a), our model reproduces the main features of the
free-surface shape observed in the experiments.
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5. Conclusions and further discussions
In this paper, the behaviour of surface gravity waves in a Hele-Shaw cell subjected to a

horizontal oscillation is investigated. The resonance curves are measured experimentally
in the low amplitude regime and the oscillating boundary layer to cell’s gap ratio is varied
by filling the cell with liquids of different viscosities. With increasing viscosity and, as a
consequence, thickness of the Stokes layers the viscous forces dominate over the inertial
forces and the surface elevation of the sloshing wave decreases. In addition, the fluidic
system undergoes to a transition from underdamped to overdamped regime when the two
Stokes layers over the large faces of the cell fill the fluid bulk (2δ′/ζ ≈ 1). Similarly to a
damped harmonic oscillator, the phase lag increases from −π to 0 with frequency and it
is equal to −π/2 at resonance. At moderate viscosities and close to resonance, i.e. higher
wave amplitude, the surface wave is well described by the usual free-end edge modes.
In contrast, when the exciting frequency is small the free-surface becomes roughly flat
according to a quasi-steady non-inertial force acting on the system, which basically has
the effect of tilting the gravity acceleration. This behaviour is further observed for higher
viscosity at higher frequencies.

These results have been rationalized by taking into account a modification of Darcy’s
law where an unsteady term is introduced to deal with flow oscillation. The resulting
governing equations can be rigorously deduced from the Navier-Stokes equations in the
limit of small amplitudes and it is one of the main contributions of this work. In contrast
to the traditional approach in sloshing theory where the viscous dissipation is found as a
first order correction of the inviscid dynamics, in our formulation the viscous dissipation
of the oscillating boundary layers comes at leading order. Hence, the hypothesis about the
smallness of the fluid viscosity usually needed to determine the dissipation (Faltinsen &
Timokha 2009) is not required here. An analytic expression for the instantaneous velocity
and averaged free-surface elevation is found and used to compare against experimental
reuslts. A good agreement is observed between the experiments and the theory, thereby
validating our perturbative approach to predict the main characteristics of confined
sloshing. In particular, the resonance frequency is well reproduced and the transition
from underdamped to overdamped response correctly captured.

The theory, however, overestimates the wave response in the low viscosity case (namely
for solution 1 and 2) close to the resonance peak. This is likely due to the fact that
dissipative mechanisms other than the viscous dissipation at the vertical walls are not
accounted in the model. So far we have not considered the additional dissipation at the
free surface. In particular, the contamination of the free surface by impurities significantly
affects both the damping rate and the eigenfrequency, which are highly sensitive to small
local variations of the surface tension due to the presence of surfactants (Davies & Vose
1965). Miles (1967) showed theoretically that the presence of a thin surface film, which
was modeled as a viscoelastic media, can potentially double the damping rate. Additional
dissipation is also expected in the tiny flow region in between the wetting film at the wall
and the moving meniscus. In wetting conditions, as in our experiments, this dissipation
is associated with a friction force scaling as the capillary number at the power 2/3. This
result is identical to what is found when pulling a plate out of a bath and in Tanner’s
problem (Cantat 2013), or when a foam layer is present over the sloshing liquid (Sauret
et al. 2015; Viola et al. 2016). We believe that these dissipative phenomenon at the
free liquid surface and at the dynamic meniscus, related to wetting effects (Keulegan
1959; Cocciaro et al. 1991), are present in our experiments, but are overshadowed by the
viscous dissipation in the oscillating boundary layers that becomes dominant when the
confinement or the viscosity are large enough, as confirmed by the very good matching
between theory and experiments for ν > 3.7 mm2/s.
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Figure 6. Example of the side wall correction by asymptotic matching technique for solution 1
and forcing frequency equal to 2.6 Hz. The no-slip boundary condition at x′ = l/2 is satisfied
by the matched solution v + v̄ (dot-dashed line), which is given by adding the inner velocity
correction (dashed line) to the vertical outer velocity v (solid line).

Appendix A. Side wall correction: a matched asymptotic expansion

The leading-order solution derived in section 3 does not satisfy the no-slip boundary
condition at the lateral walls, thus suggesting that the scaling x = x′/` is not suited to
describe the flow close to x′ = ±`/2. Let here set x̄ = (x′ ∓ `/2)/ζ and let look for an
inner correction to the vertical velocity, v̄, such that the matched solution v+ v̄ tends to
the outer solution, v, far from the wall and satisfies the no-slip condition at x̄ = 0:

lim
x̄→∞

v̄ = 0, v̄(x̄ = 0, y, z) = −v
(
x = ±1

2
, y, z

)
. (A 1)

At leading order, the inner velocity v̄ obeys the Helmholtz equation

iv̄ =
1

2
δ2

(
∂2v̄

∂x̄2
+
∂2v̄

∂z2

)
, (A 2)

which admits solutions of the kind

v̄(x̄, z̄) =

∞∑
m=1

Bm(x̄) sin [mπ(z + 1/2)], (A 3)

that satisfy the no-slip condition at z = ±1/2. Substituting the Fourier series (A 3) in
the governing equation (A 2) we get

d2Bm

dx̄2
−
(
m2π2 +

2i

δ2

)
Bm = 0 ⇒ Bm(x̄) = Bm(0) exp

(
−x̄
√
m2π2 +

2i

δ

)
, (A 4)

where exponentially growing solutions have been discarded due to the first condi-
tion (A 1). In order to determine the unknown coefficients Bm(0), equation (A 3) is
inserted in the no-slip condition (A 1). By projecting on the basis sin [mπ(z + 1/2)] and
using equation (3.5) we obtain that

Bm(0) = −2

∫ 1
2

− 1
2

v

(
±1

2
, y, z

)
sin [mπ(z + 1/2)]dz =−i

∂q

∂y

(
±1

2
, y, z

)
8i/δ2

mπ(m2π2 + 2i/δ2)
,

(A 5)
if m odd and Bm(0) = 0 if m even. Let define m = 2j + 1 with j ∈ N, whence the
side-wall velocity correction is

v̄ =

∞∑
j=0

B2j+1(0) exp

[
−x̄
√

(2j + 1)2π2 +
2i

δ

]
sin [(2j + 1)π(z + 1/2)], (A 6)
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and the matched velocity solution v + v̄ satisfies the no-slip condition at x′ = `/2, see
Figure 6. The outer and matched solutions are indistinguishable at xg = 45 mm.
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