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1. Introduction

The increase of traffic volume and speed is probably going to
affect the design of railways and lead to the construction of new lines
possibly incorporating novel technologies (e.g. use of asphalt pav-
ing materials, structures without ballast. . .) whose performances
need to be evaluated. In such investigations, modeling and numer-
ical simulation of the mechanical response of railways is comple-
mentary to laboratory and on-site experimentations. This has
motivated the present study for the development of a numerical
program for computing the dynamic response of railway structures
with a view to meeting two objectives which are: (i) the design of a
program that requires small computation times (therefore, suited
to parametric studies) and (ii) that is able to deal with structures
incorporating layers of asphalt materials (viscoelastic), which are
now highly considered for construction projects (Rose et al.,
2011). To fulfill these goals, we developed a semi-analytical
method which is presented thereafter.

There exist various formulations that allow the modeling of the
dynamic response of railway structures under moving loads. Here
we focus on analytical and semi-analytical methods that require
small computation time compared to the boundary element or
finite element methods which nonetheless have been used already
to simulate the response of railway tracks and which are well-doc-
umented in the specialized literature. Concerning analytical and
semi-analytical methods, after Vostroukhov and Metrikine (2003)
one of the first models was proposed by Filippov (1961) who rep-
resented the structure by an Euler–Bernoulli beam resting on an
elastic half-space. Then, improved models were developed to take
into account the soil composed of elastic or viscoelastic layers, as
well as the sleepers that distribute the load at the surface of the
soil structure (Metrikine and Popp, 1999; Van den Broeck et al.,
2002), or different types of loads (i.e. constant intensity or har-
monic loads, e.g. Sheng et al., 1999). Among the cited references,
Metrikine and Popp (1999) presented a pioneering analytical study
of a three-dimensional non-homogeneous model for a railway
track by considering an Euler–Bernoulli beam laid on periodically
positioned supports resting on a elastic half-space. Vostroukhov
and Metrikine (2003) presented an improvement of this model
by replacing the elastic half-space by a layer of viscoelastic mate-
rial (Kelvin–Voigt model) placed over a substratum. Along the
same lines, the present paper presents a new method for comput-
ing the three-dimensional dynamic response of a railway track sys-
tem composed of Euler–Bernoulli beams laid on sleepers resting on
a multilayered structure. The latter may incorporate asphalt layers
whose behavior, in contrast with previous works, is represented by
a thermo-sensitive viscoelastic constitutive law specifically



adapted to bituminous mixes, the Huet–Sayegh model (Huet,
1963; Sayegh, 1965), which is commonly used in the field of road
pavement. As explained further, this method is based on a sub-
structuring technique and a decomposition of the pressure distri-
bution under the sleepers into ‘‘loading waves’’ which allow us
to solve the problem in a quasi-stationary framework that does
not require time to be explicitly accounted for. Then, we can avoid
the moving of the loading on the rails. The developed method can
be seen as an extension of the methods dedicated to homogeneous
structures, for which the solution is sought in the moving reference
frame (e.g. Frýba, 1999; Barros and Luco, 1994), to take into
account the specificity of railway tracks and loading conditions.

The outlines of the paper are as follows: the first sections aim at
providing the model assumptions and describing the proposed
method, as well as presenting the Huet–Sayegh viscoelastic model.
Then, numerical examples are presented to validate the approach
and to demonstrate its capabilities to simulate dynamic effects in
the structure and to account for the presence of asphalt layers.

2. Preliminary considerations

2.1. Position of the problem

The geometry and the mechanical model considered in this pa-
per to represent the railway infrastructure are shown in Fig. 1. In
order to compute the dynamic response of the railway structure
to a passing train, we propose a sub-structuring procedure (or
decoupling method) that consists in separating the initial model
into two subsystems which are: (i) the track system which consists
in rails secured on periodically positioned sleepers and (ii) the sub-
structure (trackbed plus soil) modeled as a stacking of semi-infi-
nite layers. The link between these two subsystems is made
through the pressure distribution, p(x, t), at the surface of the
trackbed (interface between the subsystems) which is straightly
correlated to the load transfer across the track system. In the
numerical procedure, this pressure distribution is first set to a gi-
ven initial value and an iterative process based on a fix point meth-
od is used to make the solution converge to the actual distribution
corresponding to the global coupled system. The dynamic response
of the sub-structure is given by the mechanical fields (stress, dis-
placement, acceleration, etc.) obtained after convergence. In order
Fig. 1. Schematic representation of a portion of the railway track system under
consideration submitted to a bogie comprising two axle loads and moving at
constant speed.
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to compute the dynamic response of the sub-structure to the pres-
sure distribution p(x, t), as required by the iterative process, we use
a numerical code intended for road pavement structures and based
on a quasi-stationary approach. To comply with the requirements
of that program called ViscoRoute�2.0, a decomposition method
of p(x, t) into ‘‘loading waves’’ is proposed. The advantages of using
ViscoRoute�2.0 are two-fold. First, the computation time is small
because of the semi-analytical method considered in ViscoRo-
ute�2.0 and the constitutive behavior of the material layers can
be chosen as viscoelastic according to the Huet–Sayegh model,
which is fully adapted to asphalt materials. In the next section,
we present the main features of ViscoRoute�2.0.

2.2. ViscoRoute�2.0: a numerical program for the computation of the
quasi-stationary response of a layered medium subjected to moving
loads

This numerical code has been described in previous works,
which the reader is referred to for a more comprehensive descrip-
tion (Duhamel et al., 2005; Chabot et al., 2010; Chupin et al., 2010).
Only a summary of the main features is given in the present
section.

ViscoRoute�2.0 is a numerical program designed to solve the
equations of motion for semi-infinite layered media excited by
loads moving at constant speed. The layers are supposed to be
homogeneous and their constitutive behavior is either linear elas-
tic or viscoelastic according to the Huet–Sayegh model, which is
well suited for asphalt materials. As shown on the schematic rep-
resentation in Fig. 2, this model is represented (in one dimension)
by a purely elastic spring (E0) (branch I) connected in parallel to
two parabolic dampers in series with an elastic spring (E1 � E0)
(branch II). In the frequency domain in which asphalt materials
are characterized, the complex modulus of the Huet–Sayegh model
reads:

E�ðxsðhÞÞ ¼ E0 þ
E1 � E0

1þ dðixsðhÞÞ�k þ ðixsðhÞÞ�h
ð1Þ

E0 is the static elastic modulus, E1 is the instantaneous elastic
modulus, k and h are exponents of the parabolic dampers
(1 > h > k > 0), and d is a positive non-dimensional coefficient bal-
ancing the contribution of the first damper in the global behavior. h
denotes the temperature and s is a response time parameter which
accounts for the equivalence principle between frequency and
temperature. s is governed by the following equation:

sðhÞ ¼ exp A0 þ A1hþ A2h
2� �

ð2Þ

where A0, A1 and A2 are constant parameters. The extension of the
Huet–Sayegh model to a tensorial expression can be obtained
simply by considering a constant Poisson’s ratio, t; it reads in the
frequency domain:
Fig. 2. Schematic representation of the Huet–Sayegh model.



e� ¼ 1
E�ðxsðhÞÞ ð1þ tÞr� � tTrðr�ÞIð Þ ð3Þ

in which I is the identity tensor. The representation of the Huet–
Sayegh model in the Black and Cole–Cole diagrams shows that this
model is able to reproduce accurately experimental data stemming
from complex modulus tests performed on asphalt materials (Huet,
1963; Sayegh, 1965; Heck et al., 1998).

In ViscoRoute�2.0, the loads are supposed to move at constant
speed upon a semi-infinite homogeneous medium, and the prob-
lem of quasi-stationary motion is solved in the reference frame
(X ¼ x� Vt) moving simultaneously with the loads (Frýba, 1999).
The solution process is based on a semi-analytical method which
consists firstly in solving the problem in the wave number domain
after performing a double Fourier transform in the X and y direc-
tions. The solution to the original problem (space-time domain)
is subsequently obtained by using inverse Fast Fourier Transforms
and adequate integration techniques to handle integrable singular-
ities that characterize the solution in the wave number domain
(Chupin et al., 2010). The output results of ViscoRoute�2.0 are
the mechanical fields (displacement, stress, acceleration, etc.)
expressed in any horizontal plane Xy located at a given depth z.

3. Load distribution at the surface of the sub-structure

The load distribution, which links the two sub-systems, is
defined assuming that the vertical stress under each sleeper is uni-
form. According to Vostroukhov and Metrikine (2003), this approx-
imation is valid as far as the waves in the sub-structure are long
compared to the spatial dimensions of the sleepers (low-frequency
vibrations of the railway track). As explained further in the present
study, vertical loads with constant intensity (no impact loading) are
used to model a passing train and thus the approximation under
discussion is applicable in the frame of continuum modeling. In
addition, we assume that the speed of the train is constant and that
inertia forces due to the mass of the applied loads can be neglected
considering the presence of shock absorbers in vehicles. Under these
conditions, the distribution of the vertical stress at the surface of the
railway sub-structure can be written under the following generic
form:

rzzðx; y; zÞ ¼ ½Hðyþ aÞ � Hðy� aÞ�pðx; tÞ ð4Þ

with

pðx; tÞ ¼
Xn¼þ1

n¼�1
½Hðx� nlþ bÞ � Hðx� nl� bÞ� f ðnl� VtÞ ð5Þ

in which n is the sleeper number, 2a and 2b are the width and the
length of the sleepers, l is the center-to-center distance between
two sleepers and H is the Heaviside step function. f(nl � Vt) is a
master curve that defines the amplitude of the stress distribution
and that takes into account the location of the train moving at speed
V. The sole function f makes it possible to determine the stress dis-
tribution at any time t as shown by Eq. (5) which expresses the fact
that p(x, t + l/V) = p(x � l, t) (i.e. points separated by the distance l
experience the same pressure history with a delay l/V) if x is the ab-
scissa of a point located under a sleeper and p(x, t) = 0 elsewhere,
with p uniform under the sleepers. The resulting load exerted by
the train being assumed constant and equal to the weight of the
train W, f must verify the following condition at any time:

Xn¼þ1
n¼�1

f ðnl� VtÞ ¼ constant ¼W=ð8abÞ ð6Þ

The space of functions that verifies exactly Eq. (6) is derived in
the Appendix A. However, in the present paper, the master curve is
not chosen within this function space, but instead a Gaussian-type
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function is used since it respects Eq. (6) with a good approximation
(as shown further) and is easy to handle in the calculations. The
computation of f as part of the global solution technique is ad-
dressed in Section 7. Prior to that, f is supposed to be known.

As an example, Fig. 3 shows typical distributions (hatched
areas) obtained for two different positions of a wheel of a bogie,
either right above a sleeper or between two sleepers, and the asso-
ciated master curve, f. Although the distribution of the vertical
stress does not appear the same for the two different positions,
the resultant force at the surface of the top layer (sum of the
hatched areas in Fig. 3(a) and (b)) is precisely the same in both
cases.

4. Decomposition of the loading function or load distribution

To compute the dynamic response of the railway structure
based on a quasi-stationary approach, the loading function p(x, t)
cannot be directly used such as expressed in Eq. (5). Indeed, such
an approach requires the structure under consideration to be
homogeneous in the moving direction but also the loading ampli-
tude not to vary with time. To comply with the latter restriction
and by using the linearity of the problem, we developed a method
based on the decomposition of p(x, t) into functions named ‘‘load-
ing waves’’ that enables us to calculate the dynamic response of
the railway structure over a continuous set of moving reference
frames. As explained further in this section, the loading waves
are continuous functions moving at different speeds, constant with
time. The recombination of the loading waves gives the loading
function p(x, t).

4.1. The general case for an arbitrary function f

In this section we do not make any assumptions on the defini-
tion of the master curve. We start the decomposition by expressing
the functions H and f in Eq. (5) as inverse Fourier transforms such
that:

f ðnl� VtÞ ¼ 1
2p

Z 1

�1
f̂ ðqÞeiqðnl�VtÞdq ð7Þ

and,

HðxÞ ¼ 1
2ip

PV
Z 1

�1

eipx

p
dpþ 1

2
ð8Þ

in which f̂ is the Fourier transform of the master curve and i the
imaginary unit. PV denotes the principal value of the integral.

Using the distribution theory and substituting Eqs. (7) and (8)
into Eq. (5) lead to:

pðx;tÞ¼ 1
4ip2

Xn¼þ1
n¼�1

Z þ1

�1

eipðx�nlþbÞ �eipðx�nl�bÞ

p
dp
Z þ1

�1
f̂ ðqÞeiqðnl�VtÞdq

� �

ð9Þ

or equivalently,

pðx;tÞ¼ 1
4ip2

Z þ1

�1

Z þ1

�1
f̂ ðqÞe

iðpxþpb�qVtÞ �eiðpx�pb�qVtÞ

p

Xn¼þ1
n¼�1

e�inðp�qÞ ldpdq

¼ 1
4ip2l

Z þ1

�1

Z þ1

�1
f̂

q
l

� �eiðpxþpb�qVtÞ=l�eiðpx�pb�qVtÞ=l

p

Xn¼þ1
n¼�1

e�inðp�qÞdpdq

ð10Þ

The following relation for the infinite sum of the exponential
function can be deduced:

Pn¼þ1
n¼�1e�inr ¼ 2p

Pn¼þ1
n¼�1d ðr � 2npÞ, d

being the Dirac delta function. Then, Eq. (10) can be rewritten as
follows:



Fig. 3. Master curve and distribution of vertical stress (hatched areas) at the surface of the topmost layer of the railway structure excited by one wheel of a bogie. (a) The load
is located right above a sleeper; (b) the load is located between two sleepers.
pðx; tÞ ¼ 1
4ip2l

Z þ1

�1

Z þ1

�1
f̂

q
l

� � eip xþb�qV
p tð Þ=l � eip x�b�qV

p tð Þ=l

p

� 2p
Xn¼þ1

n¼�1
d ðp� q� 2npÞ

" #
dpdq ð11Þ

and after integration with respect to p:

pðx;tÞ¼ 1
2ipl

Xn¼þ1
n¼�1

Z þ1

�1
f̂

q
l

� �ei 2npþqð Þ xþb� qV
2npþqtð Þ

�
l�eið2npþqÞ x�b� qV

2npþqtð Þ
�

l

2npþq
dq

ð12Þ

Note that now Eq. (12) makes sense in the usual way of summa-
tion and integration provided that f̂ is conveniently chosen (see
further for the choice of a Gaussian type function).

Let us now make the following change of variable:

v ¼ qV
2npþ q

ð13Þ

which in turn leads to:

q ¼ 2np v
V � v and dq ¼ 2np V

ðV � vÞ2
dv or

dq
2npþ q

¼ dv
V � v

ð14Þ

As a consequence of Eq. (14), if n is positive, the variable v varies
from V to +1 when �1 < q < �2np and from �1 to V when
�2np < q < +1. On the other hand, if n is negative, v varies from V
to�1when�1 < q < �2np and from +1 to V when�2np < q < +1.
The above change of variable applied to Eq. (12) gives:

pðx; tÞ ¼ 1
2ipl

Z þ1

�1

1
V � v

�

X1
n¼1

f̂ 2np 1
l

v
V�v

� �
ei2np V

V�v
ðxþb�vtÞ

l � ei2np V
V�v

ðx�b�vtÞ
l

� �

�
X�1

n¼�1

f̂ 2np 1
l

v
V�v

� �
ei2np V

V�v
ðxþb�vtÞ

l � ei2np V
V�v

ðx�b�vtÞ
l

� �
2
66664

3
77775dv

þ 1
2ipl

Z þ1

�1
f̂

q
l

� � eiqðxþb�VtÞ=l � eiqðx�b�VtÞ=l

q
dq ð15Þ

By setting v = aV and by switching, for any real value of a, to the
moving basis defined by aX = x � aVt and 1X for a = 1, Eq. (15)
becomes:
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pðx; tÞ ¼
Z þ1

�1
gðx� aVt;aÞdaþ 1

l

Z x�Vtþb

x�Vt�b
f ðxÞdx

¼
Z þ1

�1
gðaX;aÞdaþ 1

l

Z 1Xþb

1X�b
f ðxÞdx ð16Þ

with, for a – 1,

gðaX;aÞ¼ 1
2ipl

1
1�a

X1
n¼1

f̂ n2p
l

a
1�a

� �
ein 2p

1�a
aXþb

l � f̂ �n2p
l

a
1�a

� �
e�in 2p

1�a
aXþb

l

�f̂ n2p
l

a
1�a

� �
ein 2p

1�a
aX�b

l þ f̂ �n2p
l

a
1�a

� �
e�in 2p

1�a
aX�b

l

2
4

3
5

ð17Þ

Eq. (16) reflects the fact that p(x, t) can be in part expressed as
the superimposition of the loading waves g(aX,a) = g(x � aVt,a)
moving at positive or negative speed v = aV (a varying from �1
to +1). The second term in the right hand side of Eq. (16) repre-
sents the contribution of a specific wave moving at speed V
(a ¼ 1) and having the shape of f. Note that the wave function g
is periodic with Xa of period ð1� aÞl. Moreover, for a real symmet-
ric function f(x) (as it will be encountered further in this article),

the Fourier transform is a real function and verifies f̂ ðqÞ ¼ f̂ ð�qÞ.
Then, for a – 1, Eq. (17) becomes:

gðaX;aÞ ¼ 1
pl

1
1� a

X1
n¼1

f̂ n
2p
l

a
1� a

� �

� sin n
2p

1� a

aX þ b
l

� �
� sin n

2p
1� a

aX � b
l

� �	 

ð18Þ

Then, under the assumptions of the present study, in particular
the linearity of the constitutive laws, the response of the sub-struc-
ture to a train moving at constant speed can be obtained by super-
imposing the responses of the sub-structure to each loading wave
defined by Eq. (18) plus the one corresponding to the second term
of the right hand side of Eq. (16) (loading wave moving at speed V).
In what follows, the response to a given loading wave character-
ized by a given value of a in Eq. (18) is computed using ViscoRo-
ute�2.0 numerical program (see Section 2.2).

Note: it can be shown that in the right hand side of Eq. (16) the
integral with respect to x of the term associated to the wave mov-
ing at speed V (a = 1) is equal to the integral of p(x, t), which is itself
equal to W/4a that is the weight of the train (or bogie) divided by
the width (4a = 2 � 2a) of the sleepers for the two rails. Numerical
applications show that this loading wave is dominant in the com-
putation of acceleration and thus can be used standalone as an



external load applied on the sub-structure to obtain a first approx-
imate of the acceleration field (calculation avoiding the modeling
of rails and sleepers). Nonetheless, the computation of other
mechanical fields such as stress requires the consideration of a
wider spectrum of loading waves of type g(aX,a) (Chupin and Piau,
2011).

4.2. Loading decomposition for a Gaussian-type master curve

The master curve must be taken in a specific function space to
ensure the condition of Eq. (6). However, as mentioned earlier, a
Gaussian-type function which does not lie within this space of func-
tions allows Eq. (6) to be approached with a reasonable accuracy,
provided that it has a width sufficiently large compared to the dis-
tance between two sleepers. Moreover, as it is shown further in
the numerical example, the Gaussian-type function fits well the dis-
tribution of the vertical stress at the surface of the layered structure.
For these reasons and also for an easy use in the numerical calcula-
tions, the master curve is chosen as the sum of Gaussian functions:

f ðxÞ ¼
Xnloads

i¼1

Aie�ðx�xi
axle
Þ2=L2

i ð19Þ

in which nloads is the number of wheels applied on the rails and
xi

axle is the location of axle i. The Gaussian-type function is character-
ized by the parameters Ai and Li. Now, Eq. (18) that defines the
amplitude of the loading waves can be evaluated for the Gauss-
ian-type function defined above, whose Fourier transform in the
case of one load with x1

axle ¼ 0 is:

f̂ ðqÞ ¼ A
ffiffiffiffi
p
p

Le�L2q2=4 ð20Þ

Then, Eq. (18) becomes:

gðaX;aÞ ¼ Affiffiffiffi
p
p L

l
1

1� a
X1
n¼1

e� npL
l

a
1�að Þ2

� sin n
2p

1� a

aX þ b
l

� �
� sin n

2p
1� a

aX � b
l

� �	 

ð21Þ

Note that for a in the vicinity of 1, the function g is well-defined
since lim

a!1
gðaX;aÞ ¼ 0 and that the Gaussian function effectively

leads to a finite value of the sum in Eq. (21).
As an illustration of the decomposition method, Fig. 4 shows

some of the loading waves obtained by considering the parameters
of the numerical example (Section 8) and for a master curve
defined according to the Gaussian-like function. The recombina-
tion of the loading is also illustrated in the numerical example.

5. Numerical treatment of the decomposition method

In this section, we explain how the decomposition method is
implemented in a numerical code for computing the dynamic re-
sponse of the sub-structure to a passing train.

We have shown in Section 3 that the load applied at the surface
of the structure could be decomposed into loading waves moving
at different speeds. The interesting point is that, unlike the stress
distribution defined by Eq. (5), each of the loading waves can be
formulated independently of time (in its own moving reference
frame) and thus can be used as an input for the quasi-stationary
calculation of the dynamic response of the sub-structure with
ViscoRoute�2.0. The response of the sub-structure to the actual
loading induced by a passing train is then obtained by recombining
the responses due to every loading wave.

In order to compute the dynamic response of the railway sub-
structure using a numerical approximation, the first integral of
the right hand side in Eq. (16) is evaluated through the discretiza-
tion of the integration variable a. The integration range that extends
5

from�1 to +1 is reduced to a finite interval Ia = [a1,aN+1] which is
discretized into N subintervals of equal length Da. The integration is
performed by applying a trapezoidal rule on each of them. On the
other hand, the second integral of the right hand side of Eq. (16) is
simply calculated using a midpoint approximation that yields:

1
l

Z 1Xþb

1X�b
f ðxÞdx � f ð1XÞ2b

l
ð22Þ

Finally, the stress distribution can be approached by the follow-
ing discretized form:

pðx; tÞ � Da
gða1 X;a1Þ þ gðaN X;aNÞ

2
þ
XaN�1

a2

gðai X;aiÞ
" #

þ f ð1XÞ2b
l

ð23Þ

Using Eq. (23), the dynamic response of the sub-structure is
computed for ‘‘wave packets’’ localized in ai and resulting from
the sum of the loading waves taken within an interval Da around
this point. The response of the sub-structure to the global loading
is obtained by summing the dynamic responses due to each indi-
vidual ‘‘wave packet’’ and the particular wave moving at speed V
(corresponding to second term of the right hand side of Eq. (23)).
The length of Ia and the number of subintervals are chosen such
that they give an accurate representation of the stress distribution
at the surface of the railway sub-structure once the recombination
of the loading has been performed by summation of the contribu-
tion of every discretized loading wave.

Using the decomposition of Eq. (23), the dynamic response of
the sub-structure to every loading wave is computed using the
numerical program ViscoRoute�2.0. In the latter, the load is repre-
sented by a set of elliptical- or rectangular-shaped areas, on each of
which a uniform pressure distribution is applied. Consequently, to
respect the representation of the input loading in ViscoRoute�2.0
and prior to compute the mechanical response to a given loading
wave (input for ViscoRoute�2.0), the latter is discretized in X (dis-
cretization points denoted ai Xj) and a uniform pressure P0ðai XjÞ is
applied on each interval of length dXai

centered in ai Xj. In order
to keep the discrete value of the integral of that loading wave
(resultant force) equal to the analytical value, P0ðai XjÞ can be
advantageously computed such as:

P0
ai Xj
� �

¼
G ai Xj þ

dXai
2

� �
� G ai Xj �

dXai
2

� �
dXai

ð24Þ

in which G is the integral of g with respect to aX, provided that G has
an analytical expression.

In the case of the master curve being defined by a Gaussian-
type function, g is given by Eq. (21) and its integral reads (a–1):

GðaX;aÞ ¼ AL
2p3=2

Xn¼þ1
n¼1

e� npL
l

a
1�að Þ2

n

� � cos n
2p

1� a

aX þ b
l

� �
þ cos n

2p
1� a

aX � b
l

� �	 

ð25Þ

To get the discretized loading owing to ‘‘wave packet’’ ai, Eq.
(25) is evaluated at points ai Xj � dXai

=2, and substituted into Eq.
(24). This must be done for all the points, ai Xj. Practically, since
G(aX,a) is a periodic function in aX, the loading due to ‘‘wave pack-
et’’ ai is considered over one period defined by l(1 � ai), i.e. aXj are
chosen within this period interval, and the response to the com-
plete signal that characterizes the ‘‘wave packet’’ ai is obtained
using the superposition principle for a large number of periods
so that the corresponding loading extends far from the region
where the mechanical fields need to be evaluated.

After running ViscoRoute�2.0 for all the ‘‘wave packets’’, the
dynamic response of the structure is visualized at points of a



Fig. 4. Example of loading waves (amplitude).

Fig. 5. Schematic representation of the rail/sleeper system.
projection grid (x,y,z) which is set in the fixed reference frame tied
to the railway structure. Then, the recombination of the loading
and of any mechanical field, c(x,y,z, t), computed by ViscoRo-
ute�2.0 is obtained by the summation:

cðx; y; z; tÞ ¼
XaN

a1

cai
ai X; y; zð Þ þ c1ð1X; y; zÞ ð26Þ

Given the FFT algorithm used in ViscoRoute�2.0, the sampling
theorem (Shannon, 1949) can be utilized to interpolate field cai

at the x locations of the grid using the relationship:

ai X ¼ x� aiVt:

To summarize, a numerical code with successive calls to ViscoR-
oute�2.0 was developed to implement the different steps above
(denoted ‘‘loop on a’’ in Fig. 6), as well as the calculation of the
master curve explained in the next section (see Fig. 6 for the global
iterative process). In practice, the mechanical fields of interest are
determined by running an additional ‘‘loop on a’’ after the iterative
process in Fig. 6 has converged, i.e. once the master curve is known.
After running the numerical simulations, a post-processing vs.
space and time is performed. This numerical approach was vali-
dated on a case study by comparison to finite element simulations
in the case of low speeds. One advantage of the developed method
is that it takes only a few minutes to compute the dynamic re-
sponse of the railway structure to a moving load. This will be of
great interest in the parametric studies.

In particular, these computations (‘‘loop on a’’) make it possible
to compute wi

rs, the displacements under the sleepers, to a given
set of pressure values, pi

s. In what follows, the resultant forces un-
der the sleepers Fi

s ¼ 4ab� pi
s are used instead of pi

s.
6. Modeling of the track/sleeper system

As shown in Fig. 5, the track/sleeper system is modeled by Eu-
ler–Bernoulli beams resting on vertical springs. The degrees of
6

freedom (DOF) considered for this system are the vertical displace-
ment and the slope of the beam (resp. wbeam and hbeam) and the
deflection (wrs) of the sub-structure.

The equilibrium equations of the track/sleeper system are first
derived by assuming a displacement field of the sub-structure,
wi

rs, considering that the stiffness, k, is the same for all the springs.
The vertical force Fs

i exerted by a given spring on the trackbed is
defined by:

Fs
i ¼ kðwbeamðxiÞ �wrsðxiÞÞ ð27Þ

in which xi is the point of application of the force located at the
center of sleeper i. In accordance, the equilibrium equation for a
bending beam resting on m (possibly +1) springs and excited by
a vertical force F applied at location xF is:

EI
d4wbeamðxÞ

dx4 þ
Xm

i¼1

k wbeamðxiÞ �wrsðxiÞ½ �dðx� xiÞ ¼ F d ðx� xFÞ

ð28Þ

E and I are the elastic modulus and the second moment of iner-
tia of the beam. d is the Dirac delta function. The DOF at the end
nodes of the beam are considered free of external forces. It is
checked a posteriori that their values are negligible as expected
far from the load location.

Assuming an elastic behavior of the typical element made up of
a portion of the beam resting on a spring at each of its ends, the
characteristic relationship in matrix form between the forces
acting on the nodes {F}e and the nodal displacements {wb}e reads
(Zienkiewicz, 1971):

fFge ¼ ½K�efwbge þ fFge
p ð29Þ

in which fFge
p represents the nodal forces required to balance any

loads (distributed or point force) acting on the element. fFge
p can

be easily derived using for example the Maxwell–Betti reciprocal
work theorem (see also Hammoud et al., 2010). For the case of a



Fig. 6. Schematic algorithm used for the computation of the master curve and the
dynamic response of the railway structure.
point force applied at distance d from the left end of the typical ele-
ment, it reads:

fFge
p ¼ F

�2d3þ3d2 l�l3

l3

�d3þ2d2 l�dl2

l2

2d3�3d2 l
l3

�d3þd2 l
l2

2
6666664

3
7777775

ð30Þ

in which l is the element length (center to center distance between
two sleepers). In Eq. (29), ½K �e is the element stiffness matrix which,
for a current typical element, reads:

½K �e ¼ EI

12
l3
þ k

2EI
6
l2

�12
l3

6
l2

6
l2

4
l � 6

l2
2
l

�12
l3

� 6
l2

12
l3
þ k

2EI � 6
l2

6
l2

2
l � 6

l2
4
l

2
666664

3
777775 ð31Þ

The displacement {wb}e related to Eq. (31)
is:fwbge ¼ wbeamðxkÞ hbeamðxkÞ wbeamðxkþ1Þ hbeamðxkþ1Þ½ �, with
the classical expression of the slope of the beam, hbeam = dwbeam/dx.

The global system is composed of m � 1 typical elements and
the equilibrium equation must be satisfied at all the nodes of these
elements. To derive the equilibrium equation at a typical node k,
each quantity involved in the equilibrium has to be equated to
the sum of the individual contributions brought by the elements
meeting at this node. Therefore this summation concerns only
the elements which contributes to node k. This procedure is re-
peated for all nodes and the structural problem is defined by
assembling the equilibrium equations derived at each node. The
following discrete equation is then obtained:

Kbb Kbs½ �
wb

wrs

� 
¼ fFbg ð32Þ

with Kbb ¼
P
½K �e and fFbg ¼

P
ðfFge � fFge

pÞ in which the element
contributions have been evaluated according to the aforementioned
prescriptions. In Eq. (32), the components of Kbs are defined as
follows:

Kpq
bs ¼ kdðp� 2qþ 1Þ; p ¼ f1; . . . ;2mg; q ¼ f1; . . . ;mg ð33Þ

The nodal displacements and forces of Eq. (32) reads:

wb ¼ fw1
beam h1

beam � � � wm
beam hm

beam g
T
; Fb ¼ f F1

b � � � F2m
b g

T
;

wrs ¼ fw1
rs � � � wm

rs g
T ð34Þ
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7. Coupling between the track/sleeper system and the sub-
structure and iterative calculation of the master curve
parameters

The coupling between the track/sleeper system and the sub-
structure is performed using a fixpoint iterative procedure based
on the determination of arrays wrs and Fs. The solution algorithm
is given in Fig. 6. To summarize, it consists in searching Fs at iter-
ation i (superscript i in the expressions of Fig. 6 denotes the itera-
tion index), wrs being known at the preceding iteration i � 1 (wrs is
initialized to zero). The forces in the springs are deduced from wi

b,
wi�1

rs and the stiffness k of the springs. They are then expressed in
terms of vertical stress applied at the surface of the sub-structure
and fitted by a sum of Gaussian-type functions (simple iterative
procedure that consists in minimizing the square difference be-
tween the sum of the Gaussian-type functions and the computed
forces in the springs) to produce the master curve at iteration i,
fi(x). At that point, the decomposition method described in Sec-
tion 3 is applied with fi(x) in order to compute the deflection (iner-
tia effects included) of the railway structure at iteration i, wi

rs. In
Fig. 6, this step is denoted ‘‘loop on a’’ within which wi

rs;a repre-
sents the deflection due to ‘‘wave packet’’ a at iteration i. The iter-
ations are stopped when wrs (or equivalently wb) does not vary
more than a small positive quantity e over the iterations. Numeri-
cally, this is reflected by the following criterion:

maxðjwi
rs �wi�1

rs jÞ < e ð35Þ

Once Eq. (35) is verified, the master curve with inertial forces in
the sub-structure is set equal to fi(x) computed at the last iteration.

In the next section, the iterative procedure is validated by com-
parison to FE simulations performed at low speeds for a sub-struc-
ture composed of elastic layers only. Let us note that very few
iterations are needed to converge to the master curve.
8. Numerical example and validation of the implemented
method

In this section, we use the developed method to compute the
dynamic response of a railway structure subjected to the bogie of
a high-speed train driven at constant speed. The simplified sub-
structure considered herein (Fig. 7) is defined such that it is
roughly representative of a real railway structure. Nonetheless,
the purpose of this section is to validate and to better apprehend
the developed method rather than to conduct a case study. The
structure is composed of three layers. The topmost layer could rep-
resent a ballast layer and is assumed to be linear elastic. For the
purpose of illustration, the sub-ballast layer is considered either
linear elastic or viscoelastic to represent in the latter case a layer
of asphalt paving material. The rails and the sleepers laid on this
structure (not represented in Fig. 7) are modeled by Euler–Ber-
noulli beams (steel beams of characteristics: Ebeam ¼ 210 GPa and
Ibeam ¼ 3� 10�5 m4) and springs of stiffness 5� 107 N=m, respec-
tively. The considered loading applied on the rails is a bogie with
four wheels (see Fig. 1), each wheel being represented by a point
force of 80 kN acting in the vertical direction. The distance
between the two axles of the bogie is db = 3 m and the distance
between the rails is set to dr = 1.5 m.

8.1. Case of a linear elastic underlayer

The validation of the developed method is performed by com-
parison with finite element (FE) simulations for a whole railway
composed of elastic layers. The FE simulations are performed with
the software CESAR–LCPC which is an in-house developed code
that includes standard functionalities of FEM. The FE simulations



Fig. 7. Schematic representation of a vertical section of the structure under study.

Fig. 8. Comparison between the recombination of the loading waves (and master
curve) obtained from the semi-analytical method and the vertical stress distribu-
tion under the sleepers arising from FE simulations (Eplate = 1.75 � 107 MPa) for one
wheel of the bogie located in x = 0.
are run without taking into account the inertia effects in the struc-
ture. As shown further in this section, at relatively low speeds of
the moving loads, such FE simulations are nonetheless in good
agreement with the developed semi-analytical method that solves
the full dynamic problem.

In the FE simulations, the rails are modeled by volume elements
and their section is assumed to be rectangular with a moment of
inertia equal to Ibeam. The rails are tied to the structure through ele-
ments (SPR) of special rigidity that make it possible to enforce the
mechanical connection between the rails and the trackbed to be
the same as the one used in the developed method and modeled
by springs of rigidity k. The SPR elements are laid on thin rigid
plates (of dimensions 2a � 2b = 0:3� 0:8 m2 and of Young’s modu-
lus Eplate) that distribute the vertical load at the surface of the rail-
way structure.

The structure under consideration is the one in Fig. 7 for which
the sub-ballast is assumed linear elastic with Young’s modulus
equal to 120 MPa. The Young modulus of the topmost layer is
chosen such that no traction stress develops in this layer which is
supposed to represent a non-cohesive granular material. Addition-
ally, it is assumed that all the layers have the same density equal
to 1800 kg/m3. The mechanical response of this structure is com-
puted using both the semi-analytical method and FE simulations.
In the developed method, Eq. (16) that gives the stress distribution
under the sleepers is computed numerically using the following
8

discretization: Ia = [�0.8,0.8] [ {a = 1} and N = 40, i.e. 40 loading
waves are use to evaluate the integral with respect to a in Eq. (16).

8.1.1. Validation of the developed method
When a train bogie is driven at low speed on the rails, the iner-

tia effects in the structure are quite negligible. This makes it possi-
ble for us to validate the developed method and in particular the
decomposition/recombination technique as well as the computa-
tion of the master curve (through the association of discrete and
continuum models) by comparison with the aforementioned FE
simulations. Consequently, a relatively low speed equal to 50 m/s
is chosen in this section. Then, the developed method is compared
to FE simulations in terms of stress distribution, rzz, under the
sleepers and deflection, uz. These quantities are plotted in Figs. 8
and 9 for a given time t corresponding to the wheels of the bogie
positioned right above the sleeper centers. With regards to the
stress distribution, we look at the horizontal profile in the x-direc-
tion plotted for z = 0 (surface of the trackbed) and y = 0 (under a
rail axis). The master curve after convergence computed for the
present example is shown in Fig. 8 (thick continuous line) for
one wheel of the bogie. It is a Gaussian function whose parameters
are equal approximately to: A � 115 kPa and l � 1 m. The recombi-
nation of the 40 loading waves stemming from the master curve is
displayed with circle symbols in Fig. 8. At the sleeper centers, rzz

obtained from the recombination is superimposed on the master
curve. It clearly appears that the stress distribution arising from
the recombination reproduces accurately the actual shape of rzz

that exhibits non-zero values only under the sleepers.
Moreover, the amplitude of rzz obtained by recombination of

the loading waves is in good agreement with the FE simulation dis-
played in Fig. 8. The FE simulation is performed for the global rail-
way including the rail/sleeper system (black filled square symbols)
for which rzz is plotted at the sleeper centers (i.e. far from the
edges of the rigid plates where stress singularities are present).
Fig. 8 shows also the external loading (thin black line) for another
FE simulation which was performed by replacing the rail/sleeper
system at the surface of the trackbed by a step distribution of uni-
form pressures defined from the master curve. The result of this
simulation is presented in Fig. 9 in terms of deflection.

Fig. 9 shows the horizontal profile of uz in the x-direction plot-
ted for z = 0.05 m and y = 0 (under a rail axis). The deflection ob-
tained with the developed method compares well with the FE
simulations run with and without the rail/sleeper system. It can
be noticed also that the primary and secondary peaks of uz are ob-
tained under the sleepers located in the vicinity of the position of
the wheels (x = 0 and x = 3 m).

It can be shown that the good agreement between the devel-
oped method and the FE simulations extends also to other fields
(see for example the results on the vertical acceleration shown in
the next section).

8.1.2. Influence of dynamic effects at high speeds
The role of the dynamic effects is now highlighted by running

the developed method for a higher speed (V = 95 m/s) and by com-
paring the computed vertical acceleration, cz, to the one obtained
using FE simulations without inertia forces. In the latter case, cz

is computed from the second derivative with respect to time of
the deflection uz (post-treatment), uz being reconstructed from
several static computations performed for different positions of
the bogie.

The time evolution of cz is plotted in Fig. 10 for a particular
point located under a sleeper center at a depth of 0.05 m (top of
the ballast layer). The peaks of upward cz observed in this figure
correspond to an axle of the bogie driven right above the point of
observation (at t = 0 the rear axle is passing above this point). At
V = 50 m/s the difference between the calculations performed with



Fig. 9. Profile in the x-direction of the deflection in z = 0.05 m computed at a given
time t corresponding to the wheels of the bogie positioned right above sleeper
centers in x = 0 and x = 3 m.

Table 1
Value of the Huet Sayegh parameters.

E1 (MPa) E0 (MPa) d h k A0 A1 A2

32665 110 2.24 0.59 0.19 2.94 �0.40 1.95E�3

Fig. 11. Horizontal profile of the vertical acceleration in the ballast layer and under
a rail axis (y = 0, z = 0.05 m): influence of temperature.
and without inertia forces is negligible as attested by the superim-
position of the curves in this case (this result is in accordance to
what was shown in Section 8.1.1). Nevertheless, at V = 95 m/s iner-
tia forces in the structure impact the calculation of cz and, at this
speed, an amplification of the vertical acceleration around 15–
20% is noticeable at the extrema of the curves when they are com-
puted with inertia forces. So at high speeds, inertia effects in the
trackbed start being significant. Note also that at V = 95 m/s the
peak values of cz are about 4 times greater than at V = 50 m/s.
8.2. Case of a linear viscoelastic underlayer

To further illustrate the potential of the developed method we
consider in this section a structure that incorporates a layer of as-
phalt paving material (underlayer).

Note that in this case, static computations as those used in the
FE simulations of Section 8.1 cannot be done since in viscoelasticity
the response of the material depends on the speed. The structure
under consideration is that of Fig. 7 for which the sub-ballast layer
is assumed to be linear viscoelastic according to the Huet–Sayegh
model whose parameters are given in Table 1. A bogie is driven on
this structure at a speed of 95 m/s and cz is computed for two tem-
peratures of the asphalt layer equal to T = 15 �C and T = 45 �C. The
parameters of the master curves obtained at these different
Fig. 10. Time evolution under a passing bogie (V = 95 and 50 m/s) of the vertical accelerat
center. Comparison between FE simulations without inertia effect and the semi-analytic
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temperatures are almost the same with a value of A � 120 kPa
and l � 0:97 m (close to the values obtained for the elastic struc-
ture). The horizontal profile of cz (in y = 0 and z = 0.05 m, i.e. in
the ballast layer) computed with the developed method is shown
in Fig. 11 for the two tested temperatures and for a given time t
corresponding to the wheels of the bogie located in x = 0 and
x = 3 m.

In both downward and upward directions, the peak values of cz

in z = 0.05 m are higher at T = 45 �C than at T = 15 �C, i.e. as the
asphalt layer positioned under the topmost layer becomes softer.
Indeed asphalt materials are thermo-sensitive and their stiffness
decreases with temperature. We also notice that, due to the visco-
elastic behavior of the underlayer, the symmetry of the response is
lost at T = 45 �C. By comparison with the results shown in Fig. 10
(V = 95 m/s) we finally note that the amplitude of cz is divided by
more than 2 for the structure incorporating the asphalt layer
because of a higher stiffness of the underlayer in this case.
ion at the top of the ballast layer (z = 0.05 m) for a point located right under a sleeper
al method (full dynamics).



Fig. A1. Representation of the function given by (A9) for r = 10.
The effect of speed on cz could also be studied, viscoelastic
materials being sensitive to the loading frequency. Moreover, other
mechanical variables could be computed, in particular the exten-
sional strains at the bottom of the asphalt layer since these are
used in design criteria of such layers. However, such analyses are
beyond the scope of the present paper and will be addressed in
further works.

9. Conclusion

The goal of this study was to develop of a semi-analytical meth-
od for the computation of the dynamic response of railways includ-
ing viscoelastic layers and solicited by moving loads. The
developed method is based on a decoupling technique that consists
in solving iteratively the two problems related to the rail/sleeper
system and the trackbed. The connection between the two systems
is made trough the vertical stress distribution under the sleepers
which is decomposed into loading waves to make the rapid com-
putation of the trackbed response in a quasi-stationary frame pos-
sible. The viscoelastic layers are modeled using the Huet–Sayegh
thermo-sensitive viscoelastic law which gives access to an accurate
modeling of the mechanical behavior of bituminous mixes.
Therefore, the numerical method is well adapted to the simulation
of railways incorporating asphalt layers as illustrated by the exam-
ple presented in this paper.

Appendix A

Function. space that ensures constancy of loading at the surface of the
structure

The aim of the present Appendix A is to derive the function
space f(x) such that

Xn¼þ1
n¼�1

f ðx� nÞ ¼ 1 ;8x 2 R ðA1Þ

in whichR is the set of real numbers. Let us assume that f has a Fou-
rier transform f̂ ðsÞ defined as follows

f̂ ðsÞ ¼
Z 1

�1
f ðtÞe�istdt ðA2Þ

in which s the transform variable. Then, based on Eq. (A1), we have

Xn¼þ1
n¼�1

TFðf ðx� nÞÞðsÞ ¼ 2pd ðsÞ ðA3Þ

with d the delta Dirac distribution. TF stands for Fourier transform.
On the other hand, term

Pn¼þ1
n¼�1TFðf ðx� nÞÞðsÞ in Eq. (A3) can also be

expressed as:

Xn¼þ1
n¼�1

TFðf ðx� nÞÞðsÞ ¼ f̂ ðsÞ
Xn¼þ1

n¼�1
e�ins ðA4Þ

Then, considering the distribution theory, it can be shown that
the sum in the right hand side of Eq. (A4) is equal to

Xn¼þ1
n¼�1

e�ins ¼ 2p
Xn¼þ1

n¼�1
dðs� 2npÞ ðA5Þ

Finally, combining Eq. (A3) with Eq. (A4) after substitution of
Eq. (A5) into Eq. (A4) yields

f̂ ðsÞ
Xn¼þ1

n¼�1
dðs� 2npÞ ¼ dðsÞ ðA6Þ

Interestingly n is not part of the argument of f̂ and the function
space that ensures Eq. (A1) can be summarized as follows
10
f8n 2 Z�; f̂ ð2pnÞ ¼ 0; f̂ ð0Þ ¼ 1g ðA7Þ

in which Z⁄ is the set of integers with zero not included.

Example of a function satisfying Eq. (A6)

The following Fourier transform of function f satisfies Eq. (A7)

f̂ ðsÞ ¼ e�
s2

2r2 cos
s
4

if s 2 ½�2p;2p� ðA8Þ

f̂ ðsÞ ¼ 0 otherwise

Thus, the inverse of Eq. (A8) is a function that could possibly be
used as a master curve to define the loading at the surface of a
railway structure. It reads:

f ðxÞ ¼ 1
2p

Z 2p

�2p
e�

s2

2r2 cosðsxÞ cos
s
4

� �
ds ðA9Þ

Obviously Eq. (A9) is more complicated than the Gaussian-type
function used in the present article and it definitely would not be
so easy to handle in the numerical computations. As an illustration,
function f(x) given by (A9) is represented for r = 10 in Fig. A1.

References

Barros, F.C.P., Luco, J.E., 1994. Response of a layered viscoelastic half-space to a
moving point load. Wave Motion 19, 189–210.

Chabot, A., Chupin, O., Deloffre, L., Duhamel, D., 2010. Viscoroute 2.0 a tool for the
simulation of moving load effects on asphalt pavement. Road Mater. Pavement
Des. 11, 227–250, No. 2/2010.

Chupin, O., Chabot, A., Piau, J.-M., Duhamel, D., 2010. Influence of sliding interfaces
on the response of a layered viscoelastic medium under a moving load. Int. J.
Solids Struct. 47 (3435–3446), 2010.

Chupin, O., Piau J.-M., 2011. Modélisation de la réponse dynamique d’une structure
ferroviaire multicouche sous chargement roulant. 20ème Congrès Français de
Mécanique, Besançon, France, 6 p.

Duhamel, D., Chabot, A., Tamagny, P., Harfouche, L., 2005. ViscoRoute: visco-elastic
modeling for asphalt pavements. Bulletin des Laboratoires des Ponts et
Chaussées 258–259, 89–103.

Filippov, A.P., 1961. Steady-state vibrations of an infinite beam on a elastic half-
space under moving load. Izvestija AN SSSR OTN Mehanica and
Mashinostroenie 6, 97–105.
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