
HAL Id: hal-01630651
https://hal.science/hal-01630651

Submitted on 18 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

On the complexity of minimizing the total calibration
cost

Eric Angel, Evripidis Bampis, Vincent Chau, Vassilis Zissimopoulos

To cite this version:
Eric Angel, Evripidis Bampis, Vincent Chau, Vassilis Zissimopoulos. On the complexity of minimizing
the total calibration cost. 11th International Frontiers of Algorithmics Workshop (FAW 2017), Jun
2017, Chengdu, China. pp.1–12, �10.1007/978-3-319-59605-1_1�. �hal-01630651�

https://hal.science/hal-01630651
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

On the Complexity of Minimizing the Total

Calibration Cost

Eric Angel1, Evripidis Bampis2, Vincent Chau3(B),
and Vassilis Zissimopoulos4

1 IBISC, Université d’Évry Val d’Essonne, Évry, France
angel@ibisc.fr

2 Sorbonne Universités, UPMC Univ. Paris 06, UMR 7606, LIP6, Paris, France
Evripidis.Bampis@lip6.fr

3 Shenzhen Institutes of Advanced Technology, Academy of Sciences,
Shenzhen, China

vincentchau@siat.ac.cn
4 Department of Informatics and Telecommunications,

National and Kapodistrian University of Athens, Athens, Greece
vassilis@di.uoa.gr

Abstract. Bender et al. (SPAA 2013) proposed a theoretical framework
for testing in contexts where safety mistakes must be avoided. Testing
in such a context is made by machines that need to be often calibrated.
Since calibrations have non negligible cost, it is important to study poli-
cies minimizing the calibration cost while performing all the necessary
tests. We focus on the single-machine setting and we study the com-
plexity status of different variants of the problem. First, we extend the
model by considering that the jobs have arbitrary processing times and
that the preemption of jobs is allowed. For this case, we propose an opti-
mal polynomial time algorithm. Then, we study the case where there is
many types of calibrations with different lengths and costs. We prove
that the problem becomes NP-hard for arbitrary processing times even
when the preemption of the jobs is allowed. Finally, we focus on the
case of unit-time jobs and we show that a more general problem, where
the recalibration of the machine is not instantaneous, can be solved in
polynomial time.

1 Introduction

The scheduling problem of minimizing the number of calibrations has been
recently introduced by Bender et al. in [2]. It is motivated by the Integrated
Stockpile Evaluation (ISE) program [1] at Sandia National Laboratories for test-
ing in contexts where safety mistakes may have serious consequences. Formally,

This work has been supported by the ALGONOW project of the THALES pro-
gram and the Special Account for Research Grants of National and Kapodistrian
University of Athens, by NSFC (Nos. 61433012, U1435215), and by Shenzhen basic
research grant JCYJ20160229195940462.

1

the problem can be stated as follows: we are given a set J of n jobs (tests),
where each job j is characterized by its release date rj , its deadline dj and its
processing time pj . We are also given a (resp. a set of) testing machine(s) that
must be calibrated on a regular basis. The calibration of a machine has a unit
cost and it is instantaneous, i.e., a machine can be calibrated between the exe-
cution of two jobs that are processed in consecutive time-units. A machine stays
calibrated for T time-units and a job can only be processed during an interval
where the machine is calibrated. The goal is to find a feasible schedule perform-
ing all the tests (jobs) between their release dates and deadlines and minimizing
the number of calibrations. Using the classical three-field notation in scheduling
[4], the problem can be denoted as P | rj , dj , T | (# calibrations). Bender et al.
[2] studied the case of unit-time jobs. They considered both the single-machine
and multiple-machine problems. For the single-machine case, they showed that
there is a polynomial-time algorithm, called the Lazy Binning algorithm that
solves the problem optimally. For the multiple-machine case, they proposed
a 2-approximation algorithm. However, the complexity status of the multiple-
machine case with unit-time jobs remained open. Bender et al. [2] stated, “As a
next step we hope to generalize our model to capture more aspects of the actual
ISE problem. For example, machines may not be identical, and calibrations may
require machine time. Moreover, some jobs may not have unit size”.

Fineman and Sheridan [3] studied a first generalization of the problem by
considering that the jobs have arbitrary processing times. They considered the
multiple-machine case where the execution of a job is not allowed to be inter-
rupted once it has been started. Since the feasibility problem is NP-hard, they
considered a resource-augmentation [5] version of the problem. They were able
to relate this version with the classical machine-minimization problem [8] in the
following way: suppose there is an s-speed α-approximation algorithm for the
machine-minimization problem, then there is an O(α)-machine s-speed O(α)-
approximation for the resource-augmentation version of the problem of mini-
mizing the number of calibrations.

In this paper, we focus on the single-machine case without resource augmen-
tation and we study the complexity status of different variants of the problem.
In Sect. 2, we study the problem when the jobs may have arbitrary processing
times and the preemption of the jobs is allowed: the processing of any job may be
interrupted and resumed at a later time. We denote this variant of the problem as
1 | rj , dj , pmtn, T | (# calibrations). Clearly, by using the optimal algorithm of
Bender et al. for unit-time jobs, we can directly obtain a pseudopolynomial-time
algorithm by just replacing every job by a set of unit-time jobs with cardinality
equal to the processing time of the job. We propose a polynomial time algorithm
for this variant of the problem. Then, in Sect. 3, we study the case of scheduling
a set of jobs when K different types of calibrations are available. Each calibra-
tion type is associated with a length Ti and a cost fi. The objective is to find a
feasible schedule minimizing the total calibration cost. We show that the prob-
lem, denoted as 1 | rj , dj , pmtn, {T1, . . . , TK} | cost(calibrations) for arbitrary
processing times is NP-hard, even when the preemption of the jobs is allowed.

2

Given the NP-hardness of the problem for arbitrary processing times, in
Sect. 4, we study the case of unit-time jobs. We propose a polynomial time
algorithm based on dynamic programming. We present the algorithm for a
more general setting where each calibration takes λ units of time during which
the machine cannot be used. We denote this variant as 1 | rj , dj , pj = 1,
λ + {T1, . . . , TK} | cost(calibrations).

2 Arbitrary Processing Times and Preemption

We suppose here that the jobs have arbitrary processing times and that the
preemption of the jobs is allowed. An obvious approach in order to obtain an
optimal preemptive schedule is to divide each job j into pj unit-time jobs with
the same release date and deadline as job j and then apply the Lazy Binning
(LB) algorithm of [2] that optimally solves the problem for instances with unit-
time jobs. However, this idea leads to a pseudopolynomial-time algorithm. Here,
we propose a more efficient way for solving the problem. Our method is based
on the idea of Lazy Binning. Before introducing our algorithm, we briefly recall
LB: at each iteration, a time t is fixed and the (remaining) jobs are scheduled,
starting at time t+1 using the Earliest Deadline First (edf) policy1. If a feasible
schedule exists (for the remaining jobs), t is updated to t+1, otherwise the next
calibration is set to start at time t which is called the current latest-starting-
time of the calibration. Then, the jobs that are scheduled during this calibration
interval are removed and this process is iterated after updating t to t+T , where
T is the calibration length. The polynomiality of the algorithm for unit-time
jobs comes from the observation that the starting time of any calibration is at a
distance of no more than n time-units before any deadline. In our case however,
i.e. when the jobs have arbitrary processing times, a calibration may start at a
distance of at most P =

∑n

j=1 pj time-units before any deadline.

Definition 1. Let Ψ :=
⋃

i{di − P, di − P + 1, . . . , di} where P =
∑n

j=1 pj.

Proposition 1. There exists an optimal solution in which each calibration
starts at a time in Ψ .

Proof. Let σ be an optimal solution in which there is at least one calibration
that does not start at a time in Ψ . We show how to transform the schedule σ
into another optimal schedule that satisfies the statement of the proposition.

Let ci′ be the first calibration of σ that starts at time t′ /∈ Ψ . Let ci′ , . . . , ci

be the maximum set of consecutive calibrations such that when a calibration
finishes another starts immediately. We denote by ci+1 the next calibration that
is not adjacent to calibration ci. We can push the set of calibrations ci′ , . . . , ci

to the right (we delay the calibrations) until:

1 An edf policy is a schedule in which at any time, the job with the smallest deadline
among the available jobs is scheduled first.

3

ci

a1 a2 a3

ci +1 ci
ci+1

t

ci

a1 a2a3

ci +1 ci
ci+1

t

Fig. 1. Illustration of Proposition 1. The first schedule is an optimal schedule. The
second one is obtained after pushing the continuous block of calibrations ci′ , . . . , ci to
the right.

– either we reach the next calibration ci+1,
– or ci′ starts at a time in Ψ (Fig. 1).

Note that this transformation is always possible. Indeed, since ci′ starts at a
time that is in a distance more than P from a deadline, it is always possible to
push the scheduled jobs to the right. In particular, if there are no jobs scheduled
when calibration ci′ starts, then there are no modifications for the execution of
jobs. Otherwise, there is at least one job scheduled when calibration ci′ starts.
Let a1, . . . , ae be the continuous block of jobs. Since the starting time of job
a1 is at a distance (to the left hand side) more than P from a deadline, then
all these jobs can be pushed to the right by one unit. This transformation is
possible because no job of this block finishes at its deadline. Note that after this
modification, jobs can be assigned to another calibration.

We can repeat the above transformation until we get a schedule satisfying
the statement of the proposition. ⊓⊔

For jobs with arbitrary processing times when the preemption of the jobs is
allowed, we propose the following algorithm whose idea is based on the Lazy
Binning algorithm: we first compute the current latest-starting-time of the cali-
bration such that no job misses its deadline (this avoids to consider every time in
Ψ). This calibration time depends on some deadline dk. At each iteration, among
the remaining jobs, we compute for every deadline the sum of the processing
times of all these jobs (or of their remaining parts) having a smaller than or
equal deadline and we subtract it from the current deadline. The current latest-
starting-time of the calibration is obtained by choosing the smallest computed
value. Once the calibration starting time is set, we schedule the remaining jobs
in the edf order until reaching dk and we continue to schedule the available jobs
until the calibration interval finishes. In the next step, we update the processing
time of the jobs that have been processed. We repeat this computation until
there is no processing time left. A formal description of the algorithm, that we
call the Preemptive Lazy Binning (PLB) algorithm, is given below (Algorithm1).

4

Algorithm 1. Preemptive Lazy Binning (PLB)

1: Jobs in J are sorted in non-decreasing order of deadline
2: while J �= ∅ do

3: t ← maxi∈J di, k ← 0
4: for i ∈ J do

5: if t > di −
∑

j≤i,j∈J
pj then

6: t ← di −
∑

j≤i,j∈J
pj

7: k ← i

8: end if

9: end for

10: u ← t +
⌈

dk−t

T

⌉

× T

11: Calibrate the machine at time t, t + T, t + 2T, . . . , u − T

12: Schedule jobs {j ≤ k | j ∈ J } from t to dk by applying the edf policy and
remove them from J .

13: Schedule fragment of jobs from k + 1, . . . , n in [dk, u) in edf order
14: Let qj for j = k + 1, . . . , n be the processed quantity in [dk, u)
15: //Update processing time of jobs
16: for i = k + 1, . . . , n do

17: pi ← pi − qi

18: if pi = 0 then

19: J ← J \ i

20: end if

21: end for

22: end while

We can prove the optimality of this algorithm using a similar analysis as the
one for the Lazy Binning algorithm in [2].

Proposition 2. The schedule returned by Algorithm PLB is a feasible schedule
in which the starting time of each calibration is maximum.

Proof. The condition in line 5 in Algorithm PLB ensures that we always obtain
a feasible schedule. In fact, we compute the latest-starting-time at each step and
this time is exactly the latest time of the first calibration.

By fixing a deadline di, we know that jobs that have a deadline earlier than di

have to be scheduled before di, while the other jobs are scheduled after di. When
we update t for every deadline di in the algorithm, we assume that there is no idle
time between di −

∑

j≤i,j∈J pj and di. Note that if di −
∑

j≤i,j∈J pj < 0, then
the schedule is not feasible. For the sake of contradiction, suppose that a feasible
schedule exists in which some calibration is not started at a time computed by
the algorithm. We will show that the starting time of this calibration is not
maximum. Denote this time by t′. Since, the starting time of the calibration
is not one of di −

∑

j≤i,j∈J pj ∀i, then there is at least one unit of idle time
between the starting time of the calibration and some deadline di. Hence, it is
possible to delay all calibrations starting at t′ or after, as well as the execution
of the jobs inside these calibrations by keeping the edf order. This can be done
in a similar way as in the proof of Proposition 1. ⊓⊔

5

Proposition 3. Algorithm PLB is optimal.

Proof. It is sufficient to prove that Algorithm PLB returns the same schedule as
Lazy Binning after splitting all jobs to unit-time jobs. We denote respectively
PLB and LB the schedules returned by these algorithms.

Let t′ be the first time at which the two schedules differ. The jobs executed
before t′ are the same in both schedules since the jobs are scheduled in the edf
order. Given that the schedules are the same before t′, the remaining jobs are
the same after t′. Two cases may occur:

– a job is scheduled in [t′, t′ + 1) in PLB but not in LB. This means that
the machine is not calibrated at this time slot in the schedule produced by
LB. Since the calibrations are the same before t′ in both schedules, then a
calibration starting at t′ is necessary in PLB. Thanks to Proposition 2, we
have a contradiction to the fact that we were looking for the latest-starting-
time of the calibration.

– a job is scheduled in [t′, t′ +1) in LB but not in PLB. This means that there
does not exist a feasible schedule starting at t′ + 1 with the remaining jobs.
Hence, PLB is not feasible. This case cannot happen thanks to Proposition 2.

⊓⊔

Proposition 4. Algorithm PLB has a time complexity in O(n2).

Proof. We first sort jobs in the non-decreasing order of their deadlines in
O(n log n) time. At each step, we compute the first latest-starting-time of the
calibration in O(n) time. Then the scheduling of jobs in the edf order takes O(n)
time. We need also to update the processing times of the jobs whose execution
has been started. This can be done in O(n) time. At each step, we schedule at
least one job. Hence, there are at most n steps. ⊓⊔

3 Arbitrary Processing Times, Preemption and Many

Calibration Types

In this section, we consider a generalization of the model of Bender et al. in
which there are more than one types of calibration. Every calibration type is
associated with a length Ti and a cost fi. We are also given a set of jobs, each
one characterized by its processing time pj , its release time rj and its deadline
dj . Each job can be scheduled only when the machine is calibrated regardless
of the calibration type. Our objective is to find a feasible preemptive schedule
minimizing the total calibration cost. We prove that the problem is NP-hard.

Proposition 5. The problem of minimizing the calibration cost is NP-hard for
jobs with arbitrary processing times and many types of calibration, even when
the preemption is allowed.

In order to prove the NP-hardness, we use a reduction from the Unbounded
Subset Sum problem (which is NP-hard) [6,7]. In an instance of the

6

Unbounded Subset Sum problem, we are given a set of n items where each
item j is associated to a value κj . We are also given a value V . We aim to find a
subset of the items that sums to V under the assumption that an item may be
used more than once.

Proof. Let Π be the preemptive scheduling problem of minimizing the total
calibration cost for a set of n jobs that have arbitrary processing times in the
presence of a set of K calibration types.

Given an instance of the Unbounded Subset Sum problem, we construct
an instance of problem Π as follows. For each item j, create a calibration length
Tj = κj and of cost fj = κj . Moreover, we create n jobs with positive arbitrary
processing times such that

∑

i pi = V with ri = 0 and di = V ∀i.
We claim that the instance of the Unbounded Subset Sum problem is

feasible if and only if there is a feasible schedule for problem Π of cost V .
Assume that the instance of the Unbounded Subset Sum problem is fea-

sible. Therefore, there exists a subset of items C ′ such that
∑

j∈C′ κj = V . Note
that the same item may appear several times. Then we can schedule all jobs,
and calibrate the machine according to the items in C ′ in any arbitrary order.
Since the calibrations allow all the jobs to be scheduled in [0, V), then we get a
feasible schedule of cost V for Π.

For the opposite direction of our claim, assume that there is a feasible sched-
ule for problem Π of cost V . Let C be the set of calibrations that have been used
in the schedule. Then

∑

j∈C Tj = V . Therefore, the items which correspond to
the calibrations in C form a feasible solution for the Unbounded Subset Sum
problem. ⊓⊔

4 Unit-Time Jobs, Many Calibration Types

and Activation Length

Since the problem is NP-hard when many calibration types are considered even
in the case where the calibrations are instantaneous, we focus in this section on
the case where the jobs have unit processing times. We also assume that there
is an activation length, that we denote by λ. This means that in this section,
the calibrations are no more instantaneous, but each of them takes λ units of
time during which no job can be processed. For feasibility reasons, we allow to
recalibrate the machine at any time point, even when it is already calibrated. To
see this, consider the instance given in Fig. 2. The machine has to be calibrated
at time 0 and requires λ = 3 units of time for being available for the execution of
jobs. At time 3 the machine is ready to execute job 1 and it remains calibrated
for T = 4 time units. If we do not have the possibility to recalibrate an already
calibrated machine then the earliest time at which we can start calibrating the
machine is at time 7. This would lead to the impossibility of executing job 2.
However, a recalibration at time 4 would lead to a feasible schedule.

It is easy to see that the introduction of the activation length into the model
makes necessary the extension of the set of “important” dates that we have used

7

0

1 2

1 2

1 2 3 4 5 6 7 8 9 10

λ = 3

T = 4

Fig. 2. An infeasible instance if we do not have the possibility to recalibrate at any
time. We have a single machine, two unit-time jobs and a single type of calibration
of length T = 4. The activation length, i.e. the time that is required in order for the
calibration to be effective is λ = 3. Job 1 is released at time 3 and its deadline is 4.
Job 2 is released at time 7 and its deadline is 8.

in Sect. 2 (Definition 1). Indeed, jobs can be scheduled at a distance bigger than
n from a release date or a deadline. However, as we prove below, it is still possible
to define a polynomial-size time-set.

In the worst case, we have to calibrate n times and schedule n jobs. Thus the
calibration can start at a time at most n(λ + 1) time units before a deadline.
Note that it is not necessary to consider every date in [di − n(λ + 1), di] for a
fixed i. In the sequel, we suppose without loss of generality that jobs are sorted
in non-decreasing order of their deadline, d1 ≤ d2 ≤ . . . ≤ dn.

Definition 2. Let Θ :=
⋃

i{di − jλ − h, j = 0, . . . , n, h = 0, . . . , n}.

Proposition 6. There exists an optimal solution in which each calibration
starts at a time in Θ.

Proof. We show how to transform an optimal schedule into another schedule
satisfying the statement of the proposition without increasing the total calibra-
tion cost. Let cj be the last calibration that does not start at a date in Θ. We
can shift this calibration to the right until:

– one job of this calibration finishes at its deadline and hence, it is no more
possible to push this calibration to the right anymore. This means that there
is no idle time between the starting time of this calibration and this deadline.
Thus the starting time of this calibration is in Θ.

– the current calibration meets another calibration. In this case, we continue to
shift the current calibration to the right while this is possible. Perhaps, there
will be an overlap between calibration intervals, but as we said before, we
allow to recalibrate the machine at any time. If we cannot shift to the right
anymore, either a job ends at its deadline (and we are in the first case), or
there is no idle time between the current calibration and the next one. Since
there is at most n jobs and the next calibration starts at a time di −jλ−h for
some i, j, h, then the current calibration starts at a time di−(j+1)λ−(h+h′)
where h′ is the number of jobs scheduled in the current calibration with
h′ + h ≤ n and j ≤ n − 1. ⊓⊔

8

Moreover the set of starting times of jobs has also to be extended by consid-
ering the activation length λ.

Definition 3. Let Φ := {t+a | t ∈ Θ, a = 0, . . . , n}∪
⋃

i{ri, ri +1, . . . , ri +n}.

As for the starting time of calibrations, the worst case happens when we have
to recalibrate after the execution of every job.

Proposition 7. There exists an optimal solution in which the starting times
and completion times of jobs belong to Φ.

Proof. The first part of the proof comes from Proposition 1. Indeed, jobs can
only be scheduled when the machine is calibrated. Let i be the first job that is
not scheduled at a time in Φ in an optimal solution. Thanks to Proposition 1,
we know that a calibration occurs before a deadline. Job i belongs to some
calibration that starts at time t ≤ dj for some other job j. By moving job i to
the left, the cost of the schedule does not increase, since this job belongs to the
same calibration. Two cases may occur:

– job i meets another job i′ (Fig. 3(a)). In this case, we consider the continuous
block of jobs i′′, . . . , i′, i. We assume that at least one job in this block is
scheduled at its release date and job i is at a distance at most n of this
release date (because there is at most n jobs). Otherwise, we can shift this
block of jobs to the left by one time unit (Fig. 3(b)). Indeed, this shifting
is possible because no job in {i′′, . . . , i′} is executed at a starting time of a
calibration (if it is the case, job i is in Φ by definition). Since job i′ was in Φ,
by moving this block, job i will be scheduled at a time in Φ.

– job i meets its release date, thus its starting time is in Φ. ⊓⊔

Fig. 3. Illustration of Proposition 7

Definition 4. Let S(j, u, v) = {i | i ≤ j and u ≤ ri < v}. We define F (j, u, v,
t, k) as the minimum cost of a schedule of the jobs in S(j, u, v) such that:

– all these jobs are scheduled during the time-interval [u, v)
– the last calibration of the machine is at time t for a length of λ + Tk (where

the time-interval [t, t + λ) corresponds to the activation length)
– the first calibration is not before u.

9

We are now ready to give our dynamic programming algorithm. We examine
two cases depending on whether rj belongs to the interval [u, v). Otherwise,
there is two subcases: whether job j is scheduled in the last calibration or not.

Proposition 8. One has F (j, u, v, t, k) = F ′

F ′ :=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

F (j − 1, u, v, t, k) if rj /∈ [u, v)

min
u′∈Φ, rj≤u′<t+Tk+λ

t′+λ≤u′<v

u′<dj

F (j − 1, u, u′, t, k) last calibration

min
u′∈Φ, rj≤u′<t′+Tk′+λ

t′∈Θ, t′+λ≤u′<v

u′<dj

1≤k′≤K

{

F (j − 1, u, u′, t′, k′)
+F (j − 1, u′ + 1, v, t, k)

}

otherwise

with F (0, u, v, t, k) := fk, ∀t + λ ≤ v & t ≥ u.
F (0, u, v, t, k) := +∞ otherwise.

The objective function for our problem is mint∈Θ,1≤k≤K F (n,mini ri,maxi

di, t, k) (Fig. 4).

Fig. 4. Illustration of Proposition 8

Proof. When rj /∈ [u, v), we have necessarily F (j, u, v, t, k) = F (j − 1, u, v, t, k).
In the following, we suppose that rj ∈ [u, v) which includes two cases. The first
one is when job j is scheduled in the last calibration.
We first prove that F (j, u, v, t, k) ≤ F ′.

We consider a schedule S1 that realizes F (j − 1, u, u′, t′, k′) and a schedule
S2 that realizes F (j −1, u′ +1, v, t, k). We build a schedule as follows: from time
u to time u′ use S1, then execute job j in [u′, u′ + 1), and finally from u′ + 1 to
time v use S2. Moreover, it contains all jobs in {i | i ≤ j and u ≤ ri < v}. Since
the first calibration in S2 does not begin before u′ + 1, then we have a feasible
schedule.

10

So F (j, u, v, t, k) ≤ F ′.
We now prove that F (j, u, v, t, k) ≥ F ′.

Since j ∈ {i | i ≤ j and u ≤ ri < v}, job j is scheduled in all schedules that
realize F (j, u, v, t, k).

Among such schedules, let X denote the schedule of F (j, u, v, t, k) in which
the starting time of job j is maximal. We claim that all jobs in {i ≤ j, u ≤ ri < v}
that are released before u′ are completed at u′. If it is not the case, we could swap
the execution of such a job with job j, getting in this way a feasible schedule
with the same cost as before. Formally, let i be a job with {i ≤ j, u ≤ ri < u′}
that is scheduled after u′ +1. We can swap the execution of job i with job j, the
resulting schedule is feasible since job j has larger deadline than job i, and job
i is released before u′. This will contradict the fact that the starting time of job
j is maximal.

We consider a schedule S1 that realizes F (j−1, u, u′, t′, k′) and a schedule S2

that realizes F (j−1, u′+1, v, t, k). Then, the restriction of S1 in the schedule X to
[u, u′) will be a schedule that meets all constraints related to F (j−1, u, u′, t′, k′).
Hence its cost is greater than F (j −1, u, u′, t′, k′). Similarly, the restriction of S2

in the schedule X to [u′ + 1, v) is a schedule that meets all constraints related
to F (j − 1, u′ + 1, v, t, k).

Finally, F (j, u, v, t, k) ≥ F ′. ⊓⊔

Proposition 9. The problem of minimizing the total calibration cost with arbi-
trary calibration lengths, activation length and unit-time jobs can be solved in
time O(n16K2).

Proof. This problem can be solved with the dynamic program in Proposition 8.
Recall that the objective function is mint∈Θ,1≤k≤K F (n,mini ri,maxi di, t, k).
The size of both sets Θ and Φ is O(n3). Indeed, by rewriting the set Φ, we have

Φ =
⋃

i

{ri, ri + 1 . . . , ri + n} ∪ {t + a | t ∈ Θ, a = 0, . . . , n}

=
⋃

i

{ri, ri + 1 . . . , ri + n}
⋃

i

{

di − jλ − k + a, j = 0, . . . , n
k = 0, . . . , n, a = 0, . . . , n

}

=
⋃

i

{ri, ri + 1 . . . , ri + n}
⋃

i

{di − jλ + k, j = 0, . . . , n, k = −n, . . . , n}

The size of the table is O(n10K). When each value of the table is fixed, the
minimization is over the values u′, t′ and k′, so the time complexity is O(n6K).
Therefore the overall complexity time is O(n16K2). ⊓⊔

Note that when there is no feasible schedule, the objective function
mint∈Θ,1≤k≤K F (n,mini ri,maxi di, t, k) will return +∞.

5 Conclusion

We considered different extensions of the model introduced by Bender et al. in
[2]. We proved that the problem of minimizing the total calibration-cost on a

11

single machine can be solved in polynomial time for the case of jobs with arbi-
trary processing times when the preemption is allowed. Then we proved that
the problem becomes NP-hard for arbitrary processing times when there are
many calibration types, even if the preemption of jobs is authorized. Finally,
we considered the case with many calibration types, where the calibrations are
not instantaneous but take machine time, and we proved that the problem can
be solved in polynomial time using dynamic programming for unit-time jobs.
An interesting question is whether it is possible to find a lower time-complexity
algorithm for solving this version of the problem, either optimally, or in approx-
imation. Of course, it would be of great interest to study the case where more
than one machines are available. Recall that the complexity of the simple variant
studied by Bender et al. remains unknown for the multiple machines problem.

References

1. New integrated stockpile evaluation program to better ensure weapons stockpile
safety, security, reliability (2006). http://www.sandia.gov/LabNews/060331.html

2. Bender, M.A., Bunde, D.P., Leung, V.J., McCauley, S., Phillips, C.A.: Efficient
scheduling to minimize calibrations. In: 25th ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA 2013, pp. 280–287. ACM (2013). http://doi.
acm.org/10.1145/2486159.2486193

3. Fineman, J.T., Sheridan, B.: Scheduling non-unit jobs to minimize calibrations. In:
Blelloch, G.E., Agrawal, K. (eds.) Proceedings of the 27th ACM on Symposium
on Parallelism in Algorithms and Architectures, SPAA 2015, Portland, OR, USA,
13–15 June 2015, pp. 161–170. ACM (2015). http://doi.acm.org/10.1145/2755573.
2755605

4. Graham, R.L., Lawler, E.L., Lenstra, J.K., Kan, A.: Optimization and approxima-
tion in deterministic sequencing and scheduling: a survey. Ann. Discret. Math. 5,
287–326 (1979)

5. Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clairvoyance. J. ACM
47(4), 617–643 (2000). http://doi.acm.org/10.1145/347476.347479

6. Lai, T.: Worst-case analysis of greedy algorithms for the unbounded knapsack,
subset-sum and partition problems. Oper. Res. Lett. 14(4), 215–220 (1993). http://
dx.doi.org/10.1016/0167-6377(93)90072-O

7. Lueker, G.: Two NP-complete problems in nonnegative integer programming.
Report No. 178, Computer Science Laboratory, Princeton University (1975)

8. Phillips, C.A., Stein, C., Torng, E., Wein, J.: Optimal time-critical scheduling via
resource augmentation. Algorithmica 32(2), 163–200 (2002). http://dx.doi.org/10.
1007/s00453-001-0068-9

12

	On the Complexity of Minimizing the Total Calibration Cost
	1 Introduction
	2 Arbitrary Processing Times and Preemption
	3 Arbitrary Processing Times, Preemption and Many Calibration Types
	4 Unit-Time Jobs, Many Calibration Types and Activation Length
	5 Conclusion
	References

