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Abstract

Many computational tools have been proposed during the two last decades for predicting

piRNAs, which are molecules with important role in post-transcriptional gene regulation.

However, these tools are mostly based on only one feature that is generally related to the

sequence. Discoveries in the domain of piRNAs are still in their beginning stages, and recent

publications have shown many new properties. Here, we propose an integrative approach

for piRNA prediction in which several types of genomic and epigenomic properties that can

be used to characterize these molecules are examined. We reviewed and extracted a large

number of piRNA features from the literature that have been observed experimentally in

several species. These features are represented by different kernels, in a Multiple Kernel

Learning based approach, implemented within an object-oriented framework. The obtained

tool, called IpiRId, shows prediction results that attain more than 90% of accuracy on differ-

ent tested species (human, mouse and fly), outperforming all existing tools. Besides, our

method makes it possible to study the validity of each given feature in a given species.

Finally, the developed tool is modular and easily extensible, and can be adapted for predict-

ing other types of ncRNAs. The IpiRId software and the user-friendly web-based server of

our tool are now freely available to academic users at: https://evryrna.ibisc.univ-evry.fr/

evryrna/.

Introduction

Non-coding RNAs (ncRNAs) play important roles in various cellular activities and are closely

associated with cancer and other complex diseases, which has made their identification a

critical issue in biological research [1, 2]. Different computational approaches for predicting

ncRNAs have been proposed, based on homology information or on common features charac-

terizing these molecules [3, 4], and most of these methods are developed for specific classes of

PLOS ONE | https://doi.org/10.1371/journal.pone.0179787 June 16, 2017 1 / 16

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Boucheham A, Sommard V, Zehraoui F,

Boualem A, Batouche M, Bendahmane A, et al.

(2017) IpiRId: Integrative approach for piRNA

prediction using genomic and epigenomic data.

PLoS ONE 12(6): e0179787. https://doi.org/

10.1371/journal.pone.0179787

Editor: Bin Liu, Harbin Institute of Technology

Shenzhen Graduate School, CHINA

Received: March 23, 2017

Accepted: June 5, 2017

Published: June 16, 2017

Copyright: © 2017 Boucheham et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper.

Funding: The author(s) received no specific

funding for this work.

Competing interests: The affiliation of David Israeli

to the Genethon research institute Evry does not

alter our adherence to PLOS ONE policies on

sharing data and materials. The collaboration with

David Israeli from Genethon is a scientific

collaboration without any commercial purpose.

David Israeli, who is a biologist, has participated in

https://evryrna.ibisc.univ-evry.fr/evryrna/
https://evryrna.ibisc.univ-evry.fr/evryrna/
https://doi.org/10.1371/journal.pone.0179787
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179787&domain=pdf&date_stamp=2017-06-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179787&domain=pdf&date_stamp=2017-06-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179787&domain=pdf&date_stamp=2017-06-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179787&domain=pdf&date_stamp=2017-06-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179787&domain=pdf&date_stamp=2017-06-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179787&domain=pdf&date_stamp=2017-06-16
https://doi.org/10.1371/journal.pone.0179787
https://doi.org/10.1371/journal.pone.0179787
http://creativecommons.org/licenses/by/4.0/


ncRNAs. For example, a large number of tools have been developed for microRNAs, a widely

studied class of ncRNAs. Among these tools we can cite for instance miRNAFold [3], miR-

Boost [4], miRNA-dis [5] and iMiRNA-PseDPC [6].

PIWI-interacting RNAs (piRNAs) are a novel class of endogenous small ncRNAs abundant

in mammalian germline cells and interacting with the Piwi subfamily of proteins [7]. They

play a vital role in the regulation of gene expression and are involved in the formation of germ-

line cells via the “Ping-Pong” pathway. Nowadays, the main role attributed to piRNAs is the

silencing of the mobile elements (retrotransposons and other repeat elements) in germ cells [8,

9]. They are the largest and most heterogeneous class of the small ncRNA family, thereby lack-

ing clear secondary structure motifs and conservation in and between species, which makes

their identification a challenging task.

With the development of a new generation of sequencing technologies (NGS), biologists

can access huge volumes of sequencing data (e.g. RNA-seq data). Exploiting this amount of

data requires computational tools for the identification of potential piRNAs, that could be vali-

dated by experimental techniques. Several computational tools have been proposed in the liter-

ature [10–12], almost of them based on machine learning techniques.

Several features of piRNAs have been discovered, many of them recently, suggesting that

others will certainly be discovered in the next few years. The majority of these features are

linked to the sequence. Recently, a category of tools has been introduced that aim to annotate

and formulate RNA sequences with discrete vectors by focusing on their different features and

properties, such as Pse-in-one [13] and repRNA [14]. Thus, almost all of the existing tools for

piRNA prediction are based on these classical features, and are mostly based on only one kind

of features [10–12].

In this paper, we present an integrative approach for predicting piRNAs, by considering

many recently discovered features. For this purpose, we did a thorough study on what can

characterize a piRNA from both genomic and epigenomic standpoints. Indeed, a piRNA can

be characterized by its (i) sequence but also its (ii) positions on the chromatin, (iii) positions

regarding sequence and/or structural motifs that can occur at the 5’ and/or the 3’ ends, (iv)

possible occurrence in clusters, and (v) interaction with specific target sequences.

We then developed a generic tool, called IpiRId, based on the Multiple Kernel Learning

(MKL) method [15]. This method, which combines several kernels representing different

types of features, deals with the heterogeneity of the considered features. We define a set

of generic kernels that could be directly used by instantiation according to the different

types of piRNA’s features. Thanks to the proposed object-oriented framework, our tool is

modular and easily extensible and modifiable, and enables testing each kernel separately, in

order to perceive the feature conservation across species. The current version of our tool,

which implements twelve different kernels, shows the outperformance and the advantages

of an integrative analysis in piRNA prediction, when compared to all other existing tools,

i.e. piRNApredictor [10], Piano [11], Pibomd [12] and piRPred [16]. IpiRId gives more than

90% in accuracy for each of three studied species: human, mouse and fly. More importantly,

the prediction results are homogeneous for any species, which is not the case for the other

tools.

The paper is organized as follows: we first present the exhaustive study we carried out

on the different kinds of features that could be considered for predicting piRNAs. Then we

explain how these features are implemented in an MKL approach that we implemented in an

object-oriented framework. In the results section, we review the existing tools for piRNA pre-

diction and show the results obtained by each of them, as well as the ones obtained by our tool

IpiRId, on three considered species. And finally, we show the pertinence of reviewed piRNA

features across species, before concluding.

Integrative approach for piRNA prediction
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Materials and methods

piRNA’s features in diverse organisms

We reviewed the recent studies on piRNA biogenesis and function and on other biological

observations related to this molecule in diverse species, in order to deduce interesting features.

In the following, we briefly summarize and categorize these features which are mainly related

to: the function, the transcription, and other observed features, as shown in Fig 1.

Features related to the function. Recent studies revealed that both first (5’ nucleotide)

and tenth piRNA bases represent an important binding zone for many Argonaute proteins

[17]. Accordingly, PIWI and AUB proteins show a strong preference for 5’ uridine, while

Ago3-associated piRNAs do not appear any enrichment for 5’ ‘U’ but tend to contain an aden-

osine as their tenth nucleotide, also called ping-pong signature [7, 18]. Another important

piRNA characteristic concerns the principal role of this type of small ncRNA. piRNAs have

been found to be antisense to transposable elements (TEs) which protects the genome from

invasive TEs and maintains its integrity [19].

Features related to the transcription. During recent years, piRNAs have been shown

to appear in clusters in mammals and insects species [18]. To better understand the transcrip-

tion process, an important step is to take into account the state of the chromatin around the

sequences and consider almost all epigenetic modifications. A recent study reports that most

of the piRNA clusters in Drosophila melanogaster have been identified in pericentromeric

and telomeric heterochromatin regions [20]. Furthermore, another study on the same

Fig 1. Relationship between piRNA biogenesis (transcription, processing and function) and

measured features. (i) piRNA clusters can be transcribed if particular methylated histone (fly) or A-Myb

promoter (mouse) is nearby; (ii) G-quadruplexes could have a role in piRNA processing and (iii) both first and

tenth piRNA bases (respectively U and A) represent an important binding zone for Argonaute proteins,

participating in a ping-pong cycle where the piRNA sequences bind with transposons.

https://doi.org/10.1371/journal.pone.0179787.g001
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species reports that piRNA clusters are often coated with H3 trimethylated on their lysine 9

(H3K9me3). Also, the transcription of some piRNA clusters requires Rhino which is a

Heterochromatin Protein 1 (HP1) homolog and has a chromodomain (CD) which binds to

H3K9me3 or H3K27me3 [21]. An alternative way to consider epigenetic modification is to

rely on the genomic sequence by predicting CpG islands which have been shown to be linked

to histone methylation [22]. Interestingly, further studies have investigated the transcription of

piRNA clusters inMus musculus and found that the transcription factor A-Myb is required for

the expression of pachytene piRNAs. It was observed that A-Myb binds DNA near the tran-

scription start site of pachytene piRNA clusters [23].

Other observed features. Several clusters of piRNAs have been studied inMus musculus
and some are bracketed by inverted repeats, allowing the formation of precursors containing

double-stranded RNA [24]. In the same study, it was also found that some piRNA clusters are

flanked by TEs such as SINE, LINE and LTR. This has been reported also in [25] where it was

shown that the transposition of these elements can be also into piRNA clusters.

Finally, a recent study reports the presence of G-quadruplex motifs in mammal piRNA

clusters and these structures may have a role in piRNA processing [26].

Table 1 summarizes the studied piRNA biological features, with for each, the species where

it has been observed and/or validated.

MKL methodology

We propose here an integrative approach for piRNA prediction based on supervised machine

learning that considers different kinds of features.

Standard machine learning approach deals with features represented by vectors. To repre-

sent structured complex data, we use kernels. Since we have many heterogeneous features

coming from different sources, we propose to use Multiple Kernel Learning (MKL) approach

[28]. Each data source is represented by a kernel. This allow to obtain an homogeneous repre-

sentation of the heterogeneous features. These kernels are then combined and the weight of

each kernel (source) is tuned automatically inside the MKL algorithm. We thus build several

kernels representing heterogeneous features and combine them in order to perform binary

classification using a Support Vector Machine (SVM) classifier. We use the SPG-GMKL soft-

ware [15] which employs spectral projected gradient descent-based optimizer in order to find

Table 1. piRNA’s biological features over species.

Feature Species References

First Uridine Fly, Mouse, Human, Rat, Nematode (C. elegans), Zebrafish

and Silkworm (Bombyx mori)

[17–19]

Tenth Adenine Human, Fly, Mouse, Zebrafish and Silkworm (Bombyx mori) [17, 18]

Occurrence in clusters Mammals and Insects [18]

Binding with transposons Mammals and Insects [19]

CpG islands Mammals [22, 27]

G-Quadruplex Human, Mouse, Rat and Macaque [26]

Transposable elements

presence

Mouse and Marmoset [24, 25]

Promoter A-Myb Mouse [23]

Inverted repeats Mouse [24]

Distance to centromeres/

telomeres

Fly [7]

Histone methylation Fly [21]

https://doi.org/10.1371/journal.pone.0179787.t001
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the optimal combination of kernels. In this work, we choose a Gaussian kernel which is a uni-

versal kernel for feature representation. It consists of a square similarity matrix of size N � N,N
being the size of the training dataset (positive and negative samples). Let x and y be two feature

vectors or matrices representing two sequences. In this type of kernel, the inner product of x
and y in the feature space is given by the following equation:

kðx; yÞ ¼ exp� gjjx� yjj2 ð1Þ

The distance between x and y will be the Euclidian distance if x and y are vectors, and the Fro-

benius distance if x and y are matrices.

To fix an appropriate kernel parameter γ, we first use the Jaakkola’s heuristic [29] to calcu-

late the initial value of γ as follows:

gJAAK ¼ 1=ð2medianðdistMatÞ2Þ ð2Þ

Then we look for possible solution:

g ¼ expðiÞ � gJAAK ð3Þ

with i an integer in [−4, 4]. Each value of the parameter γ is evaluated by calculating the inter-

cluster distance between positive and negative sequences. Finally, we choose the one giving the

highest distance, which will lead to a better classification [30]. The inter-cluster distance is cal-

culated as follows [30]:

dðXþ;X� Þ ¼
1

lþ þ l�

X

xþ2Xþ

dðxþ; �X � Þ þ
X

x� 2X�

dðx� ; �XþÞ

 !

ð4Þ

where X+ and X− are positive and negative sequences, l+ and l− are their corresponding sizes,

and �X � and �Xþ are the class means of X+ and X−.

Principal kernel classes and our object-oriented framework

We developed an object-oriented framework, called IpiRId, implemented in Java, which con-

sists of different classes and sub-classes representing different kernels. Fig 2 gives the general

architecture of our framework and the different classes we defined. Some classes are abstract

(blue), since they do not correspond to implemented kernels, but their definition allows us to

build a better hierarchical structuration. Besides, some classes of kernels can be directly instan-

tiated for piRNA’s features (brown), and others must be specialized, according to each specific

observation related to piRNAs (green).

In the following, we give a description of the principal classes of kernels for predicting piR-

NAs, and propose for each a methodology that allows considering in a computational manner

features belonging to the kernel.

Specific motifs inside. This class of kernels represents the features corresponding to the

presence/absence of motifs at specific positions in the sequence. Accordingly, we construct a

N-dimensional binary vector containing the information about the presence or the absence of

each motif, where N is the number of motifs.

K-mer motifs. K-mers are largely applied for sequence analysis, especially in the identifi-

cation of ncRNAs, where many k-mer-based approaches have been proposed in the last years,

as for piRNAs and microRNAs [10, 12, 31]. A common step in these methods is feature extrac-

tion in which many features or k-mers are generated or in some cases extracted from strings

based on specific observations. Then feature selection techniques are applied to identify the

most pertinent and non-redundant ones for a specific species. In order to achieve high

Integrative approach for piRNA prediction
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predictive performance, we use a non-identified character ‘X’, which can be ‘A’, ‘T’, ‘C’ or ‘G’,

with a maximum occurrence probability of 0.4. Accordingly, we generate 3 588 patterns that

represent all possible k-mers, for k = 1 to 5. After that, we perform a supervised selection on

this ensemble which represents an NP-hard combinatorial optimization problem where we try

to identify the most informative subset of k-mers that can achieve good prediction. This can

be formulated as a feature selection problem where each pattern is a feature and each sequence

refers to a sample. To handle selection, we employ the modified particle swarm optimization

feature selection method proposed by [32, 33] with a predefined number of selected features,

to identify the most representative N k-mers among all generated patterns. Finally, each

sequence is represented by a N-dimentional vector, N representing the number of selected k-

mers.

K-mer frequencies. In this subclass of the K-mer motifs class, the discriminative informa-

tion used to perform the selection of k-mers is their frequencies in the sequence. Subsequently,

the N-dimensional vector will contain the frequencies of the N k-mers divided by the sequence

length.

K-mer positions. In this other subclass of the K-mer motifs class, the considered discrimi-

native information is the position of each k-mer in the sequence. If a k-mer is present many

times we keep the closest position to the beginning of the sequence and if it is never present

the corresponding value is zero.

Clusters. In order to take into consideration the location on the chromosome of piRNA

clusters, we propose a kernel, which takes into account the neighbors of each sequence in the

genome. The neighbors in our approach represent the closest sequences that are located on the

same chromosome as the target sequence and contained in the training set. We propose to

find the k-nearest neighbors of each sequence and then to construct a (K+1)�(K+1) matrix

Fig 2. The different kernel classes defined in IpiRId and their hierarchical organisation.

https://doi.org/10.1371/journal.pone.0179787.g002
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containing the distances between all the sequences (the target sequence and its k-nearest

neighbors). Each matrix represents a density ‘context’ of a target sequence in the training set

without using the labels of the neighbors. The value of k depends on the number of piRNAs

contained in a cluster. This value is a parameter that can be changed by the user.

Binding with targets. The principal information measured and considered in this class is

the extent of the binding between piRNA sequences and given targets. For measuring the

sequence/target binding information, several tools can be used, like the RNAplex tool [34].

Binding information can be represented as follows: opening brackets (“(”) to indicate paired

nucleotides and dots (“.”) to indicate unpaired nucleotides. In order to get benefits of this

information, we make use of the triplet structure sequence elements used for example in [35,

36] to predict pre-miRNAs based on their structure. These triplet structures consist of combin-

ing the middle nucleotide (‘A’, ‘T’, ‘C’ or ‘G’) of each three adjacent nucleotides, given that

there are 8 (23) possible structure compositions for any three adjacent nucleotides, to form 32

(4x8) different triplet elements that contain both folding and piRNA sequence information.

Then, we count the frequencies of each triplet element for each sequence. As a result, a

32-dimensional vector will represent its folding information.

Specific positions. This class of kernels takes into account the possible occurrence of the

piRNA near/close to specific observations on the genome. To integrate this information in a

computational manner, we measure the distance between the sequence and these observations.

As each observation can have one or many positions on the genome, we need to establish selec-

tion criteria according to the biological sense of this observation to choose the best position to

be considered (generally the nearest one). Moreover, a piRNA sequence can have many posi-

tions, thus the position with the lowest distance is conserved. Finally, we build a N-dimen-

sional vector containing the best distances to the N observations.

Motifs around. Developing a generic implementation for any feature belonging to this

class is a difficult task since the discriminant information to be investigated depends on the

biological specificities of the considered feature. However, this class of kernels is based on the

reference genome, in order to search for motifs upstream and/or downstream of the piRNA

sequence. Also it considers the closest distance to the motif and the discovered motif length as

discriminative information as well as other specific data. Several subclasses will therefore be

built according to the type of motifs searched for, which will depend on each specific observa-

tion. In the following, we describe these different subclasses.

Promoters upstream. To consider the role of transcription factors in piRNA prediction,

we make use of the identified binding motifs related to their promoters. In most cases there is

not an explicit binding motif but rather several motifs that can share a consensus. Therefore,

we use the reference genome to browse upstream of the positions of each occurrence of a

given sequence on the genome. We start from the 5’ of the sequence and search upstream for

all possible motifs and stop at the first one found. We maintain three types of information on

the discovered motif: the motif length (L), the distance (D) between the motif and the

sequence, and a probability calculated as 4L/D, which allows selecting the position with the

closest motif to the sequence as well as the longest one.

Transposons. To study the presence of TEs around piRNAs, we used the RepeatMasker

software (http://www.repeatmasker.org). We expect to find TEs around and in piRNA clusters.

For that purpose, we look until D kb upstream and D kb downstream of the given sequence.

Based on the ReapetMasker outputs, we calculate two kinds of information: the cumulated

identity and the cumulated length for each TE. The identity is calculated as:

Identity ¼ 1 � RM � RD � RS ð5Þ

Integrative approach for piRNA prediction
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where RM, RD and RS are, respectively, the ratio of mismatch, deletion and substitution. If the

piRNA sequence has multiple positions, we choose the position with highest cumulated iden-

tity. Since the different TEs have not the same chance to be found around a piRNA (for exam-

ple, LINE elements are indeed more often found in piRNA clusters than SINE elements and

then LTR elements [25]); they are therefore weighted accordingly. Finally, each sequence is

represented by a (2 � N)-dimensional vector, where N is the number of considered TEs.

Inverted repeats. To evaluate the presence of inverted repeats in the proximity of a given

sequence, we use the method used in [24]. We make use of the genomic sequence D kb

upstream and D kb downstream of the sequence and compare the obtained sequence to its

complement with BLAST (bl2seq in gapless mode). Alignments longer than 20 bases and with

more than 90% identity are considered. Accordingly, we calculate the mean of their length and

the cumulated number of their identities. Each sequence is therefore represented by a

2-dimensional vector.

G-quadruplex. We look here at G-quadruplex structures in the vicinity of each sequence.

To this purpose, we use a Python script (http://bioinformatics-misc.googlecode.com/svn-

history/r16/trunk/quadparser.py), allowing to predict the G-quadruplexes D kb upstream and

D kb downstream on the strand of the sequence and on the opposite strand. Then, we calculate

five kinds of information: the distance to the nearest G-quadruplex on the strand of the

sequence, the distance to the nearest G-quadruplex on the opposite strand, the number of

occurrences of G-quadruplexes on both strands, and finally the cumulated length of all G-

quadruplexes. Each sequence is therefore represented by a 5-dimensional vector. If a sequence

has multiple positions, we choose the position with the nearest G-quadruplex on its strand.

CpG islands. We also consider the methylation differently by using only the genomic

sequence upstream from the given piRNA and predict CpG islands on it. For that purpose, we

use newcpgreport tool [37] to detect CpG islands with a minimum length of L nucleotides. For

each sequence, the D Kb upstream genomic sequence is given to newcpgreport which calcu-

lates the related information: distance to the nearest CpG island, number of the predicted CpG

islands, mean of the observed expressed ratio, mean of the lengths of the islands and mean of

the sum of C+G bases in the islands. Each sequence is then represented by a 5-dimensional

vector. If a sequence has multiple positions, we choose the one with the lowest distance to an

upstream predicted CpG island.

To summarize, IpiRId is currently composed of twelve kernels which are listed in Table 2.

Table 2. IpiRId’s kernels instantiation. (D: distance; L: minimal length).

Kernel Class Instantiation parameters

U1|A10 Specific motifs inside {motif,position}: {U,1}, {A,10}

K-merFreq K-mer frequencies N (number of k-mers) = 32 motifs

K-merPos K-mer positions N (number of k-mers) = 32 motifs

TE binding Binding with targets target: Transposable elements (TE)

CentroTelo Specific positions observation: centromer, telomeres

Histone Specific positions observation: H3K9me3, H3K27me3

Cluster Clusters K (number of neighbours) = 4

A-Myb Promoters upstream promoter: A-Myb; D = 40 kb

G-Quadruplex G-quadruplex D = 40 kb

CpG islands CpG islands L = 100; D = 20 kb

LINE|SINE|LTR Transposons TE: LINE, SINE, LTR; D = 40 kb

InvertRep Inverted repeats D = 40 kb

https://doi.org/10.1371/journal.pone.0179787.t002
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Results and discussion

In this section, we present the study conducted in order to assess the advantages of our integra-

tive approach for piRNA prediction. We show the cross-validation results of IpiRId tool com-

pared to other tools from literature on three species, human, mouse and fly, and discuss the

pertinence of each kernel, representing a feature, according to these species.

Dataset construction

In order to build high-quality training and test datasets, we create three datasets with both pos-

itive and negative piRNA sequences, each of which refers to one of three species considered in

this study: human (Homo sapiens), mouse (Mus musculus) and fly (Drosophila melanogaster).

Positive non-redundant piRNA sequences were collected from both piRNAbank [38] (http://

pirnabank.ibab.ac.in/) and piRBase [39] (www.regulatoryrna.org/database/piRNA/) databases,

from where we downloaded 32 208, 39 986 and 18 508 human, mouse and fly piRNA

sequences, respectively. For negative sequences, we considered:

• 449, 244 and 93 human, mouse and fly tRNA sequences, respectively, downloaded from the

genomic tRNA database (http://lowelab.ucsc.edu/GtRNAdb/).

• 1 747, 712 and 288 human, mouse and fly mature miRNA high-confidence sequences [40],

respectively, downloaded from miRBase (http://www.mirbase.org/).

• 9 113, 4 896 and 740 human, mouse and fly exonic region sequences, respectively, with exact

length between 25-33 for both human and mouse and 22-35 for fly, downloaded from

Ensembl (www.ensembl.org/index.html).

All positive and negative sequences were aligned onto human hg38, mouse mm10 and fly

dm6 reference genomes using Bowtie software, which is used by piRbase to determine geno-

mic positions [39], without allowing any gaps and allowing a maximum of one mismatch for

sequences that do not match exactly. Except for mature miRNAs which are included in precur-

sors (pre-miRNAs), realigning them will produce too many positions. Thus, we use the posi-

tions provided by miRBase 21 and lift them to the appropriate reference genome using

Liftover tool from the UCSC Genome Browser [41].

In order to build the TE binding kernel, transposons were gathered from “rmsk” table of

the UCSC Genome Browser [41], excluding those with rich annotation, repeated nucleotides

and redundant transposons. For computational reasons, we considered only transposons with

length between 35 and 100 nt, and finally selected randomly 1 000 from the whole set. This

allows us to look at the same number of transposons of similar length for each species. This

length is a parameter that could be fixed by the user.

Finally, epigenetics ChIP-Seq data represented by the positions of histones H3K9me3 and

H3K27me3 were taken from the NCBI epigenomic repository. The considered tissues/cells in

our study are: T cells for human (Downloaded from: http://dir.nhlbi.nih.gov/papers/lmi/

epigenomes/hgtcell.aspx), embryonic stem cells for mouse (Downloaded from: http://www.

ncbi.nlm.nih.gov/epigenomics/166 for H3K9me3 and http://www.ncbi.nlm.nih.gov/

epigenomics/164 for H3K27me3) and ovaries (for H3K9me3) and testis (for H3K27me3) for

fly (Downloaded from: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1121659 for

H3K9me3 and http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM480447 for

H3K27me3). We used also Liftover tool [41] to lift from the downloaded epigenetics data

assemblies to the appropriate ones adopted for each considered species.

Table 3 summarizes the different downloaded data sets used in our experiments.
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piRNA prediction tools comparison

Few tools have been proposed for predicting piRNAs. The first published tool is piRNApredic-

tor which is based on k-mer motif frequencies [10]. It uses the Fisher method to select the

most discriminate k-mers (k = 1-5) and then performs an improved Fisher with a threshold to

classify the sequences. Another k-mer based tool, called Pibomd, was recently proposed [12].

It searches for all 5-mer and 4-mer motifs with three common nucleotides and belonging to

40% of the training sequences. The frequencies of all k-mers found are then used in an SVM to

classify the sequences. Another recently proposed tool, called Piano, is based on piRNA/trans-

poson binding information [11]. It uses SeqMap tool to select the sequences with three mis-

matches or less using the option “/outputallmatches”. Then, it uses RNAplex to fold each

sequence with transposons with a maximum of three mismatches, in order to perform predic-

tion using SVM classifier. In our team, we recently proposed a tool for piRNA prediction

called piRPred based on the MKL approach [16], composed of three kernels implementing

respectively the following features: (i) presence of uridine (‘U’) at the first position of the

sequence and k-mer motif frequency (k-mers considered by [10] as the most discriminant

ones), (ii) occurrence into clusters, and (iii) distance to centromeric and telomeric regions.

To undertake a comparison between our tool IpiRId and the other existing tools, we have

retrained these tools on our datasets using 5-cross validation technique. We should note that

we had many problems to retrain piRNApredictor, Piano and Pibomd tools, since they are

functional only in prediction mode, and information to retrain them are not mentioned in

their manuals or publications.

As described above, three species were considered in our study: human, mouse and fly. We

built a dataset containing 5000 piRNA sequences and 5000 pseudo piRNA sequences for both

human and mouse species and 1100 piRNA sequences and 1100 pseudo piRNA sequences for

fly. These sequences were obtained by random selection from the original downloaded set of

data for each species.

Table 4 reports the 5-fold cross validation results of our tool IpiRId and the other existing

tools (piRNApredictor, Piano, Pibomd and piRPred) on the three species. The results are

given according to five measures, usually used in supervised classification tasks: Sensitivity

Table 3. The downloaded data used in our integrative approach for piRNAs identificatiton across species.

Species/Dataset positive negative chip-seq data transposons reference genome assembly

piRNA tRNA miRNA exonic regions H3K9me3 H3K27me3

Homo sapiens 32 208 449 1 747 9 113 6 346 007 8 968 536 903 140 hg38

Mus Musculus 39 986 244 712 4 896 2 751 1 232 402 3 504 253 mm10

Drosophila melanogaster 18 508 93 288 740 508 2 322 803 255 dm6

https://doi.org/10.1371/journal.pone.0179787.t003

Table 4. Performance comparison. 5-fold cross-validation results of IpiRId and other existing tools according to: Accuracy (Acc), Sensitivity (Se), Specificity

(Sp), Precision (Pre) and F1 score (F1).

Tool/Species Human Mouse Fly

Acc Se Sp Pre F1 Acc Se Sp Pre F1 Acc Se Sp Pre F1

piRNApredictor 71.85+-1.53 48.40 95.5 91.49 63.30 70.95+-1.15 47.79 94.10 89.01 62.19 52.17+-3.72 63.90 40.45 51.76 57.19

Piano 50 0 100 0 0 50 0 100 0 0 87.9+-1.472 78.90 96.90 96.22 86.70

Pibomd 78.13+-1.38 78.05 78.21 78.17 78.11 79.13+-1.19 79.43 78.82 78.94 79.18 66.08+-4.02 70.44 61.72 64.78 67.94

piRPred 81.20+-1.25 80.54 81.86 81.67 81.07 90.92 +-0.51 90.36 91.48 91.39 90.87 86.36+-2.33 86 86.72 86.66 86.30

IpiRId 90.09+-0.25 90.56 89.62 89.73 90.13 93.66+-0.46 90.74 96.58 96.37 93.47 92.59+-1.87 87.27 97.90 97.67 92.12

https://doi.org/10.1371/journal.pone.0179787.t004
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(Se), Specificity (Sp), Precision (Pre), Accuracy (Acc) and F1 score (F1). They are described

below using the following abbreviations: TP: True Positive, FP: False Positive, TN: True Nega-

tive and FN: False Negative.

AccuracyðAccÞ ¼
TP þ TN

TP þ TN þ FP þ FN
� 100 ð6Þ

SensitivityðSeÞ ¼
TP

TPþ FN
� 100 ð7Þ

SpecificityðSpÞ ¼
TN

TN þ FP
� 100 ð8Þ

PrecisionðPreÞ ¼
TP

TPþ FP
� 100 ð9Þ

F1 scoreðF1Þ ¼
2TP

2TPþ FP þ FN
� 100 ð10Þ

The results clearly show the outperformance of our tool. IpiRId gives more than 90% of

accuracy in all species, as well as a close sensitivity, specificity, precision and F1 score that are

all around 90%. Pibomd, the tool showing the third best results (after piRPred, a previous tool

developed by our team), gives an accuracy, as well as a sensitivity, specificity, precision and F1

score less than 80% in all species (less than 70% in fly). Note that Piano works only in Drosoph-
ila melanogaster. This could be due for selecting only sequences matching with transposons

and for each sequence selecting only the matching transposons. Thus, Piano doesn’t consider

the same subset of transposons for each sequence to calculate and doesn’t consider the match-

ing transposons with a gap. Especially that it has been observed that only 17% of piRNAs map

to transposons in mammals [18, 42].

The ROC spaces given in Fig 3 and corresponding to the 5-fold cross-validation results

obtained by IpiRId, piRPred, Pibomd, Piano and piRNApredictor show clearly that IpiRId

gives the best compromise between specificity and sensitivity for all considered species, partic-

ularly for Mouse and Fly. The other tools give very heterogeneous results across species.

Furthermore, we have assessed the predictive performances of our tool using sequences

that haven’t been considered in the training process. Accordingly, we have used 5000 positive

and 6150 negative sequences for human, 5000 positive and 807 negative sequences for mouse

Fig 3. ROC space and plots of the 5-fold cross-validation results of IpiRId and other tools across species, with fixed parameters.

https://doi.org/10.1371/journal.pone.0179787.g003
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and 17408 positive and 174 negative sequences for fly. Fig 4 illustrates the predictive perfor-

mance results of IpiRId over the three considered species human, mouse and fly. From this fig-

ure, it can be clearly observed that IpiRId can predict both piRNA and pseudo-piRNA

sequences with high accuracy.

Feature pertinence over species

A significant interest of our tool is that it makes it possible for biologists to measure the perti-

nence of a given feature regarding the considered species. Obviously, the features are often

observed experimentally in one or many species, as shown in Table 1.

Here, we present through our computational results the pertinence of each of these features.

The results shown in Fig 5 confirm that the features of first ‘U’ and tenth ‘A’, the occurrence in

clusters and the binding with transposons, which were observed in several species, mammals

and insects, are the ones that better characterize piRNAs in all studied species. The kernels

implementing these features are indeed the ones giving the best prediction results (between 70

and 91% accuracy). Note that the results obtained by the TE binding kernel can certainly be

Fig 4. IpiRId prediction results on piRNA and pseudo-piRNA sequences across species.

https://doi.org/10.1371/journal.pone.0179787.g004

Fig 5. IpiRId’s features pertinence across species: Mouse, Human and Fly.

https://doi.org/10.1371/journal.pone.0179787.g005
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improved by considering a larger set of transposons (for computational reasons, we considered

a set of only 1 000 transposons in this study).

Also, the two k-mer-related kernels (K-mer frequencies and K-mer positions), which are

not specific to piRNAs and could be used for other ncRNA, give good results, validating the

new methodology proposed in this work for considering these important features.

Regarding the other kernels representing features observed in specific species, the results

are different from one species to another, suggesting that these features are not conserved in

all species. For instance, two features observed in fly seem to be not conserved in the other

considered species: the distance to centromere and telomere regions and the histone methyla-

tion. The kernels implementing each of these two features give very good prediction results in

Drosophila, with an accuracy around 90%, while, in human and mouse species, they give an

accuracy less than 70%.

The G-quadruplex feature, observed in human and mouse (and also in rat and macaque),

gives similar accuracy results, around 60%, on the three species, which shows that this feature

is not very significant, even it seems not to be due to a random event. In addition, we can

make the same remark on the feature of the presence of transposons upstream or downstream

of the piRNA sequence, feature that was observed in mouse and marmoset species. The corre-

sponding kernel (LINE|SINE|LTR) gives relatively same accuracy results.

Surprisingly, two features observed in mouse do not produce significant prediction results

in this species: the transcription factor (A-Myb promoter) and the piRNA cluster encapsulated

by an inverted repeat. The kernels implementing these two features give respectively around

50% and 60% of accuracy. The results are quite similar for human, but however, they give rela-

tively good accuracy results, around 74%, for fly. Note that about the A-Myb promoter, the

low accuracy might be because this feature characterizes a particular sub-class of piRNAs, the

pachytene piRNAs.

Another remarkable result concerns the CpG islands kernel. Since the corresponding fea-

ture is related to histone methylation in mammals, we expected to get prediction results close

to the ones obtained by the histone methylation kernel. But this is not the case since for

human the CpG kernel gives an accuracy of 75% whereas the histone methylation kernel gives

only 58% and inversely, for fly, it gives an accuracy of 63% when the histone methylation ker-

nel gives more than 90% accuracy.

In the MKL approach, we seek for the combination of kernels that allows to obtain the best

classification results. For the three species, the MKL algorithm have associated small weights

to the kernels which give the worst results (for example, in the Mouse specie, the weight of the

kernel “A-Myb” is 2,32 whereas the weight of the “cluster” kernel is 34,12).

To summarize, it can be observed that the different studied species share very few features.

However, our method deals with this limitation and allows to get good prediction results using

all these features together.

Conclusion

A piRNA can be characterized by its sequence, and also its positions on the chromatin, posi-

tions regarding sequence and/or structural motifs that can occur at the 5’ and/or the 3’ ends,

possible occurrence in clusters, and interaction with specific target sequences. We have pro-

posed in this work an integrative approach for piRNA identification based on MKL methodol-

ogy taking into account a large set of heterogeneous features, and dealing with the non-

conservation of certain features between species (thus taking into account the species evolu-

tion). The MKL method allows combining heterogeneous features by tuning automatically

their weights in order to improve the prediction. We did a thorough study of possible
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biological features that characterize piRNAs and that could be used for their prediction by

computational methods. This resulted in a large number of heterogeneous features (13 fea-

tures, very few of which have already been considered in computational tools), mostly related

to function and transcription. Then, we categorized these features into several principal classes

and implemented them in generic and modular tool, called IpiRId, that could be easily adapted

for the prediction of other classes of ncRNAs. It makes it possible to test features observed for

a type of ncRNA on other ones, as well as testing the validity of new features that have never

been considered.

IpiRId outperforms all existing tools for piRNA prediction, giving an accuracy around 90%

in human, mouse and fly species. Finally, and thanks to our MKL method and modular tool,

we could measure the importance of each feature in these three species (users could also

choose the most appropriate combination of features to a specific species). In brief, our study

reveals that the most conserved piRNA features across species are: first Uridine, tenth Ade-

nine, occurrence in cluster and binding with transposons.

The running time of IpiRId depends on the number of sequences used in the training step

to build the prediction model as well as the number of the selected kernels. For example, the

time required to predict 10 sequences in fly is around 8 seconds based on the model built

using 2 200 sequences. To improve the running time and the computational performances

of IpiRId, we are working on a parallel version where the the different kernels are built in

parallel.

In our approach, we have used the L2 regularization which associates smooth weight values

to each kernel because it gives better classification results. In future work, we will test the con-

sequence of the use of L1 or Lp (0 < p< 1) norms, which leads to sparse weight values (this

represents a sort of feature/kernel selection) on the running time and the result interpretation.

Finally, an ongoing work concerns the development of tools for the prediction of other clas-

ses of ncRNAs (miRNAs, snoRNAs, circRNAs, . . .), by integrating other kernels implementing

specific features of each of these ncRNAs.
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