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THE REGULARITY OF THE LINEAR DRIFT IN NEGATIVELY
CURVED SPACES

FRANCOIS LEDRAPPIER AND LIN SHU

ABSTRACT. We show the linear drift of the Brownian motion on the universal cover of
a closed connected Riemannian manifold is C*~2 differentiable along any C* curve in
the manifold of C* metrics with negative sectional curvature. We also show that the
stochastic entropy of the Brownian motion is C' differentiable along any C® curve of C*
metrics with negative sectional curvature. We formulate the first derivatives of the linear
drift and entropy, respectively, and show they are critical at locally symmetric metrics.
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1. INTRODUCTION AND STATEMENT OF RESULTS

If we think of curvature as a measure of the geometric complexity of a closed connected
Riemannian manifold, the ‘simplest’ geometric objects are those with constant sectional
curvatures since their universal covers must be spheres, planes or Poincaré disks. A lit-
tle more ‘complicated’ objects are locally symmetric spaces, whose universal covers are
symmetric. An attractive problem in geometry is to characterize locally symmetric spaces
using other complexities, for instance, Lichnerowicz’s conjecture in 1944 ([Li]) says that
symmetry is equivalent to the harmonic property of the space, which means the geodesic
spheres have constant mean curvature depending only on their radii.

From the point of view of dynamical systems, geometry influences dynamics and hence
the geometric complexities can be read using dynamical complexities. One example is
volume entropy, which is the exponential growth rate of the volume of a ball in the universal
cover as a function of the radius. It is named entropy since it is no bigger than the
topological entropy of the geodesic flow in the unit bundle, with equality if the underlying
space is of nonpositive curvature ([Man]) or the underlying space has no conjugate points
and its Riemannian metric is Holder C3 ([FM]). In 1983, Gromov (|Gro]) conjectured
that among all metrics of volume equal to the volume of a locally symmetric metric go,
the volume entropy is minimized at metrics isometric to gg. For negatively curved spaces,
this was shown by Katok ([K1]) for the 2-dimensional case and was shown for higher
dimensional cases by Besson, Courtois and Gallot ([BCG]). The remarkable rigidity result
in [BCG] implies the Mostow rigidity ([Mos]) (and its generalizations by Corlette ([Cor]),
Siu ([Si]) and Thurston ([Th])) and also has many interesting rigidity applications in
dynamics combined with the results of [BFL], [FL], [L2], etc. This helps us to understand
the interaction between differential geometry and dynamical systems, and leads to many
more rigidity studies on both sides.

Since the geodesic flow in the unit tangent bundle always preserves the Liouville measure,
its entropy is another natural quantity (besides the topological entropy) for the description
of the dynamical complexity of the system. Clearly, the entropy of the Liouville measure
is always less or equal to the topological entropy for the geodesic flow. It was conjectured
by Katok in 1982 ([K1], see also [BK]) that in the negatively curved manifold case, these
two entropies coincide (if and) only if the manifold is locally symmetric. This is true in
the 2-dimensional case ([K1]). For the higher dimensional cases, it is a very difficult prob-
lem and it depends on our understanding of the dedicate difference between the Liouville
measure and the Bowen-Margulis measure (for topological entropy). To approach this con-
jecture, many experts tried to study the variations of the two entropies with respect to
perturbations of the original system and to derive formulas for their infinitesimal changes
(see e.g., [Con, F1, KKPW, KKW, KW, Kn|). We mention some of them briefly. The
smoothness of the topological entropy for perturbations of the Anosov flows were consid-
ered by Katok, Knieper, Pollicott and Weiss in [KKPW] (see [KKW] for the first order
derivative formula of the topological entropy of the geodesic flow under one-parameter
family of C? perturbations of the original C? negative curved metric). (As a corollary of
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the results of [BCG] and [KKPW], a locally symmetric negatively curved metric go is
a critical point of the topological entropy. Whether the reverse is true or not is an open
question that was addressed in [KKW].) Contreras ([Con|) continued to analyze the
regularity of the Liouville entropy with respect to perturbations of the system. Further-
more, Flaminio ([F1]) gave a partial positive answer to Katok’s conjecture by showing that
along any non-trivial deformation the topological entropy and the difference between the
topological entropy and the Liouville entropy are locally strictly convex functions of the
deformation parameter. Besides its connection with the above rigidity problems, the stud-
ies of the regularities of the entropies have their own interest in the dynamical dimension
theory (see e.g., [Ano2, K2, Misl, Mis2, Ne, P, Rug, Y1, Y2]). They are also in the
same flavor of the studies of the linear response problems in statistical mechanics for the
understanding of the heat conduction (see Ruelle ([Rul, Ru2, Ru3, Ru4))). The key step
in the linear response theory is to justify, derive and understand the first order derivative
of the measure theoretical entropy of the SRB measure under smooth perturbations of the
original system (see [Rub| and [B] for nice introductions to this field and hot references).

Now, if we consider Brownian motion instead of the geodesic flow, can we find similar
connections between the stochastic dynamics and the geometric complexities?

Let M be an m-dimensional orientable £losed connected sm/\o/oth manifold with funda-
mental group G. Its universal cover space M is such that M = M /G. For a C? Riemannian

metric g on M, let § be its G-invariant extension to M. Consider the Brownian motion on
(]\7 ,§) with starting point x € M. Tts density function of the distribution at time t € R,
denoted by p(t,x,y),y € M , is the fundamental solution to the heat equation du/0t = Au,
where A := DivV is the Laplacian of metric § on C? functions on M. Denote by Vol the

Riemannian volume on (]\7 ,§). In this paper, we are mainly interested in the behaviors of
the following two dynamical quantities. One is the linear drift

1
(:= lim fdg(:v,y)p(t,:v,y) dVolg(y),

t—+ow ¢
which was introduced by Guivarc’h ([Gu]). It tells the average in time of the shift of the
Brownian motion from its starting point. The other is the (stochastic) entropy

) 1
B o= tEr-Poo - Jlnp(t,x,y)p(t,%y) dVolg(y),

which was introduced by Kaimanovich ([Kail]). It tells the average decay rate of the
transition probabilities of the Brownian motion. Both ¢ and h are independent of the
choice of x and are well-defined since we have a compact quotient.

The linear drift, the stochastic entropy and the volume entropy (denoted by v) are
interrelated as follows:

b
(1.1) 29y 2
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(For (a), see [Kail] for the negatively curved case and see [L4] for the general case. For
(b), see [Gu]. Inequality (c) was derived in [L4] as a corollary of (a) and (b).) All the
equalities in (1.1) turn out to be related to the rigidity problem of locally symmetric
spaces. The equality /2 = h (and hence v?> = h and ¢ = v) implies the space is locally
symmetric in the negative curvature case by results in [Kail, BCG, BFL, FL, FM]| and
this characterization continues to hold in the non focal point case ([LS1]).

For h = fv, whether it holds only for locally symmetric spaces is equivalent to a conjec-
ture of Sullivan (see [L2] for a discussion), which is not even known for negatively curved
manifolds with dimensions greater than 2. Note that for Brownian motion, it is associated
with a natural important probability measure in the unit tangent bundle of M, the so-called
harmonic measure (see Section 2.3) and, in the negatively curved case, the quotient h/¢ is
proportional to the Hausdorff dimension of the harmonic measure at the infinity boundary
([L1]). Hence Sullivan’s conjecture depends on the understanding of the dedicate differ-
ence between the harmonic measure and the Bowen-Margulis measure. This, together with
the works that we mentioned above on Katok’s conjecture and the linear response theory,
motivates our study in [LS2] and the present paper to analyze the regularities of the linear
drift and the stochastic entropy with respect to metric changes, to derive formulas for the
corresponding differentials and to understand the critical points.

We need some notations to state our regularity results in a precise form.

For k € N, let C*(S?T*) be the collection of C* sections of S?T*, the bundle of sym-
metric 2-forms on the tangent space TM. It is a Banach space with the topology of the
uniform convergence in k derivatives. The set of all smooth sections of S?T*, denoted
by C*®(S*T*) := (L, C*(S?T*), is a Fréchet space whose topology is given by all the
C*-norms. Let M¥(M) denote the set of C* Riemannian metrics on M. It is the collection
of elements in C*(S2T*) which induces a positive definite inner product on each tangent
space T, M, x € M. The space of all smooth Riemannian metrics M* (M) = (_; M*(M)
consists of an open convex positive cone in C®(S?T*) and is a Fréchet manifold.

Let R¥(M) (k = 3 or k = o) be the submanifold of M¥(M) made of negatively curved
C* metrics on M. It is open in M¥(M). For any curve A € (—1,1) = g* € R¥(M), the
linear drift for each (M, g*), denoted by £y, is positive ([Kail, Theorem 10]).

Our main result in this paper is the following.

Theorem 1.1. Let M be a closed connected smooth manifold. For any C* (k = 3) curve
Ae (—=1,1) — g* e RE(M), the function X\ — £y is C¥=2 differentiable; for any C® curve
Ae (—1,1) = g* e R°(M), the function X — £y is C* differentiable.

A special case of Theorem 1.1 was treated in [LS2], where we considered the case

that ¢* = 629"Ag is a C3 curve of C3 conformal changes of g in R3(M) and showed the
differentiability of £ in \. In that setting, the relation between the §*-Laplacian A* and
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the g-Laplacian A can be formulated as: for f a C? function on M ,
AN = e (A + (m =2V, V)

where we still denote ¢* its G-invariant extension to M. So we can split the difference
£y — £p into two parts corresponding to the time change and drift change of the diffusion,
respectively. The first part differentiability can be handled using the results in [FF, LMM],
while the second part differentiability was shown in the process of the diffusion using the
Cameron-Martin-Girsanov formula and the Central Limit Theorem for the linear drift
([L3]). There is no such simple picture for the C'! regularity of the linear drift for general
deformation of metrics or for the higher order regularities consideration.

Our strategy to prove Theorem 1.1 is to use the expression of the linear drift at the
infinity boundary of M and prove the C*=2 regularity of the ingredients in that formula.

Let §* be the G-invariant extensions of ¢* in M. The geometric boundary of (]\7 ),
denoted oM A is the collection of the equivalence classes of unit speed §*-geodesics that
remain a bounded distance apart. FEach oM™ can be identified with oM (or simply oM )
since the identity isomorphism from G to itself induces a natural homeomorphism between
the two boundaries. For z € M and e 5]\7, let X*(x, &) be the initial speed vector of the
unit speed §*-geodesic starting from z belonging to the equivalent class of £. Let Div* be
the divergence operator of (]\7 , ). Tt is true (see Section 2 for a more precise statement)
that

(1.2) 0y = —J Div* X* dim?,
Moxaj\\j

where My is a connected fundamental domain and dm* = dz* x dm), where da* is

proportional dVolz and m) is the hitting probability at oM of the ¢ -Brownian motion
starting at x.

The term —Div*X* in (1.2) has its geometric feature as being the mean curvature of the
strong stable horosphere of the geodesic flow in the metric §* (see (2.4)); its regularity in A
can be deduced using the results from [Con, KKPW, LMM] on the Morse correspondence
map between the geodesic flows of two negatively curved spaces (Proposition 3.5).

To conclude Theorem 1.1, we show the following on the regularity in A of the harmonic

measure m* := m*|gys, where SM := My x oM (see Section 3 for precise definitions).

Theorem 1.2. Let M be a closed connected smooth manifold. For any g € ®F(M), k > 3,
there exist a meighborhood V, of g in RE(M) and a Banach subspace HY of continuous
functions on SM such that for any C* curve A € (—=1,1) — ¢g* € V, with g’ = g, the
mapping A — m> is C*=2 in the weak topology of the dual space (HQ)*.

The regularity problem in Theorem 1.2 was not discussed in [LS1] for the conformal
change case. It is subtle since harmonic measures are not the dual of linear functionals
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acting on the space of continuous functions on SM. For each g*, it is defined naturally a
one parameter family of actions Q' (¢ = 0) on continuous functions f on SM:

(1.3) QU= | Fna w6 dw.m).
MgxoM

where g denotes the transition probability of the ¢g*-Brownian motion on the stable leaves
of SM and f denotes the G-invariant extension of f to M x oM. Since (M, g*) is negatively
curved, it is known ([L3]) that each Q). (for T large) is a contraction on some Banach space
Hy of continuous functions on SM which are Holder continuous with respect to direction
changes and this makes m* a fixed point of the dual of QEHHA‘ The idea to prove Theorem
1.2 is to use the classical perturbation result on a linear cgntraction in a Banach space
([Kat]). Hence, it suffices to find a common Banach space H and a T' > 0 such that

e all Q:/\r’ A€ (—1,1), are contractions on HY, uniformly in A, and
° )\ Q%& is C*=2 as maps from HY into itself.

To achieve this, we not only need the regularity of the heat kernels q* in ¢*, but also need
the estimations on its differentials, which we present with full generality as follows.

For each C* Riemannian metric g = (g;j(z)) € MF(M), set |g|ca (a < k) for the
C“norm of g which involves the bounds of {g;j(x)} and of their differentials up to the
a-th order. Each C* curve A € (—1,1) = g* € M¥(M) defines a one parameter family of
tangent vectors X = (Xlz‘(x)) e C*(S2T*). Let

() =22, (N0 = (NN r=1 k-
All (XM are elements in C*(S2T*). By [|(XM)V|ca (a < k), we mean the C®norm of
(AMD | which involves the bounds of the (X ’\)Z(;) (z) and of their differentials in = up to
the a-th order.

Let Ck"(M ) denote the collection of C* functions on M with Hélder exponent . The
set of continuous functions on M is denoted by C(M). For any one parameter family of

real functions on M or real numbers A a*, let (a)‘)()\i) denote the i-th differential in A
whenever it exists.

Theorem 1.3. For any ge M*(M), k > 3, there exist 1 € (0,1) and a neighborhood Vy of
g in M¥(M) such that for any C* curve A € (—1,1) — ¢g* € V, with ¢° = g:

i) The mappings A\ — pNT,x,-), x € ]\7,T eRy, are C*2 in Ck"(M).

i) Let Ty > 0 and ¢ = 1. Foreach i, 1 < i < k—2,1,0 <1< k—2-—1,
and T > Ty, there exists cy 15(q) depending on (1,i), m,q,T,To, lg* | cisiv2 and
{H(X)\)(j)‘|Cl+i7j+1}j<i_1 such that

(1.4) VO (T2, < en (@),

La
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where the LY-norm is taken with respect to the distribution at T of the §*-Brownian
motion probability.
iii) Let To > 0 and ¢ = 1. For each i, 1 <i <k —2, and T > Ty, there exists cy (;(q)

depending on i,m, q, T, To, || civ2 and {|(X*)9)|ci-ji1}j<io1 such that

)T, )

(1.5) T2,

< ey @)(q)-
La

iv) Let ]?e C’(N) be uniformly continuous and bounded. Then for any T > 0 and 1,
1 <1< k—2, the function SM (l) (T, z,y)f(y) dVolzx (y) belongs to C(M)

A priori, the derivative in A of p*(t, x,y), if it exists, satisfies the equation
5 1
(16) { %Q(tvxaz» = Ag’}q(t,x,y) (A/\)( ) )\(tvxay)a
q(0,z,y) = 0.
Equation (1.6) always has a solution in the distribution sense. Our Theorem 1.3 is that this
distribution is given by a function (p’\)E\l)(t,x, ) € Ck’L(M ) and that its gradients satisfy

(1.4). This does not follow directly from (1.6) since (A;)g\l)p)‘(t,x,y) has singularities as
t goes to zero and y = x. This type of singularities was not handled in the literature and

this difficulty accumulates when we consider { (p’\)g\i) (T,z,-)}is2. Moreover the universal
cover is non-compact. We are not successful to give a more direct proof after trying many

classical analysis methods such as parametrix, parabolic Schauder theory, Sobolev spaces,
etc. (cf. [Fr, MM, Ro]).

To get an explicit expression of the solution, we use the stochastic calculus representa-
tions of the heat kernel and the Brownian motion. Namely, we find a C! vector field z:)}l(y)

on M (see (5.15)) such that, for any smooth f on M with compact support,

(J F()pNT, x,y) dVol* (y > J (Vo F(y), PNToa, y)zp (), dVol (y).

So, using the classical integration by parts formula, we obtain
(1
<J F)p™(T,z,y) dVol*(y )>
A
(1.7) J fly DlV/\ /\1 y) + {(z7 /\1 y), V¥ InpMT, z,7) >)\> (T, z,y) dVol*(y).

In the same way, we will find C! vector fields {z:}}’j(y)}jqqg 2 (see (6.6) and (6.12)), which
will enter the formulas of (Inp )(l) and the gradients V) (In p )(Z)
It is not hard to obtain a stochastic expression for Z;\Jl using the Eells-Elworthy-Malliavin

construction of the Brownian motion on a manifold. But the associated stochastic differen-
tial equation of the Brownian motion in the orthogonal frame bundle is degenerate. So the
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main technical difficulty is that the C! regularity of Z?F’l does not follow directly from the
stochastic pathwise integration by parts theory or the stochastic functional methods for the
calculus of variations (cf. [Bil, Bi2, D1, D2, Mall, Mal3, Mal4, W]). Similar difficul-
ties will also arise in obtaining the stochastic expressions of {Z;’] (¥)}2<j<i<k—2 and in using
these expressions to identify Z%’Z. However, since we are mainly interested in the behaviors
of the projections of the various stochastic objects on the manifold, we can overcome these
difficulties by a constructive method using some ideas from [CE, D3, Hs1, Mal2]. Most
computations to guarantee the constructions will appear in Chapter 4 for the neatness of
the paper. It is also for the introduction of the beautiful ideas from [CE, Mal2] to treat
the Brownian motion as a stochastic analogue of the geodesic flow (see Section 4.2 for de-
tails). This dynamical point of view will be very helpful in understanding our constructive
proof concerning the smoothness of all the vector fields {za\ij (W) hi<j<k—2-

Note that the stochastic flow (for the Brownian motion) always preserves the Liouville
measure ([CE]). In analogy with Katok’s conjecture, one interesting question is when will
the entropy of the Liouville measure be equal to the topological entropy for this flow?

In showing Theorem 1.1, we also obtain the formula (3.12) (see the formula (3.13) for
a more precise form) for the first order differential of the linear drift under one-parameter
family of deformations of negative curved metrics, which implies the following two theo-
rems.

Theorem 1.4. (see Corollary 3.10) Let M be a closed connected smooth manifold. Let
g € R3(M) be a negatively curved locally symmetric metric. Then for any C3 curve \ €
(—=1,1) — g* e R3(M) with ¢° = g and constant volume,

(£x)0 := (d€x/dN)|x=0 = 0.

Theorem 1.5. (see Theorem 3.11) There is a linear functional £ on C*(S?*T*) such that
for all C3 curve X € (—1,1) — g* € R3(M) with ¢° = g and constant volume,

(Ex)o = L(X).

A similar approach yields the first order differentiability in A of the stochastic entropy
h* of the Brownian motion on (M, g*).

Theorem 1.6. Let M be a closed connected smooth manifold. For any C® curve \ €
(—1,1) — g* € R3(M), the function X\ — h* is C differentiable and is critical at X = 0
when ¢° is locally symmetric. Moreover, there is a linear functional K on C*(S?T*) such
that

(1Y) := (dh*/dN)[x=0 = K(X).

An explicit formula of IC(X) is given in Theorem 7.3, where the infinitesimals of the
metric changes appear in a neat way. Hence an interesting question is to characterize the
critical points of the entropies of harmonic measures. In our approach, the higher order
regularity of A — h* and the analysis on the differentials would depend on understanding
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the regularity of the Martin kernel, which is a delicate problem in the manifold setting.
This will be treated in a subsequent paper ([LS3]).

Note that the Hausdorff dimension of the distribution of m), denoted by dimpgm),
is given by h*/(»0*) for a fixed number s associated with the distance function on the
boundary (see (3.1)) ([L1]). The following is a corollary of Theorem 1.1 and Theorem 1.6.

Corollary 1.7. Let M be a closed connected smooth manifold. For any C® curve \ €
(=1,1) = g* e R3(M) and all x € M, the function \ — dimgm? is C' differentiable.

If we switch from a negatively curved manifold to a finitely generated hyperbolic group
G, we do not have to control any more the subtle influence of the changes of soft geometric
structures. But diffusions live on in the form of random walks, so the regularity problem
of random dynamics with respect to probabilities still has its interest. More precisely, let
N be the set of probability measures with support a fixed finite subset Gy < G which
generates G as a semigroup. Then N is an open finite dimensional simplex, in particular,
it has a natural real analytic structure. Each element € N defines a random walk on G
by convolutions {(™},en. The linear drift and the entropy of u are defined by

1 1
bui= T — 3 (), b= lim == () log ™ (),
ve@G veG

where, for v € G,|vy| denotes the word length of 4. In this setting, much progress has
been achieved in understanding the regularity of ¢,,, h, with respect to p: the continuity
property was considered by Erschler and Kaimanovich ([EK]), the Lipschitz property was
shown by one of the authors ([L5]), the differentiability under one parameter family of
differentiable curve of u is due to Mathieu ([Mat]), and, more recently, the real analytic
property is shown by Gouézel ([Go]). (See [Go] for the whole history and other previous
results in various settings.) In the same flavor of the rigidity problems in the manifold
case, a basic question is what can we say about the group structure using our knowledge
of the dynamical quantities £, and h,? We don’t have an answer to this general question,
but we can mention one result which is related to (b) of (1.1) in the above group setting:
in [GMM], Gouézel, Mathéus and Maucourant show that if G is not virtually free, then
there is ¢ < 1 such that for any symmetric measure u € N, h, < ¢l v, where v denotes
the volume entropy of the group in the word metric.

We arrange the paper as follows. In Section 2, we give some preliminaries. In Section
3, we assume Theorem 1.3 and prove consecutively Theorem 1.2, Theorem 1.1, Theorem
1.4 and Theorem 1.5. Section 4 is for the Eells-Elworthy-Malliavin construction of the
stochastic flow corresponding to the Brownian motion and its related dynamical properties.
The estimations of the growth of various stochastic tangent structures are done with some
special care since we are in the non-compact case. The strategy for proving the first order
differentiability in Theorem 1.3 and the i = 1 case of (1.4) and (1.5) is explained in Section
5.1. Section 5 is devoted to the details of that proof: Section 5.2 is for the construction for
the C' regularity of Z;\«’l, followed by the existence proof and estimations in Section 5.3-5.5,



10 FRANCOIS LEDRAPPIER AND LIN SHU

and the proof of Theorem 1.3 with ¢ = 1 is given in Section 5.6 using the regularities and
estimations of z%’l. The rest of the proof of Theorem 1.3 is by induction on the order of
differentiability. See Section 6.1 for the description of the necessary steps and Section 6.2
for their proofs. Finally, in Section 7, we consider the first order regularity of the entropy.

2. PRELIMINARIES

In this section, we introduce the basic notions related to formula (1.2). In the rest of the
paper, if it is not specified, we only consider the elements of M*(M), R¥(M) with k > 3

2.1. Jacobi fields and the geodesic flow. For g € M*(M), let V, R be the Levi-Civita

connection and the curvature tensor on (M,g) and (M,q). Recall that a unit speed g-

geodesic ¢t — ~(t) € M is such that V4y = 0, where 4(t) = V 27(t). The Jacobi fields
ot

along « are vector fields t — J(t) € Tw(t)]\?f which describe the infinitesimal variations of
the geodesics around ~y. It is well known that J(t) satisfies the Jacobi equation

Vi) Vi (@) + R(J (), 7(8))¥(t) = 0
and is uniquely determined by the values of J(0) and J'(0). Let N(v) be the normal bundle
of v, i.e.,

= JNi(y), where Ny(y) = {Y € Ty, M : (Y,5(t)) = 0}.
teR
(1,1)-tensor along v is a family V' = {V (¢), t € R}, where each V (¢) is an endomorphism
t('y) such that for any family Y; of parallel vectors along -, the covariant derivative

50 (V(t)Y:) exists. The curvature tensor R induces a symmetric (1, 1)-tensor along vy by
(t )Y R(Y,4(t))¥(t). A (1,1)-tensor V(t) along = is called a Jacobi tensor if it satisfies

Vﬁ(t)vﬂ'/(t)‘/(t) + R(t)V(t) = 0.

If V(t) is a Jacobi tensor along +, then V(¢)Y; is a Jacobi field for any parallel field Y;
along ~.

A
of

V.
R(t

The Jacobi fields can also be visualized using the geodesic flow map on the unit tangent
bundle. For x € M and v € T, M, an element w € T, TM is vertical if its projection
on T, M vanishes. The vertical subspace V; is identified with T, M. The connection
defines a horizontal complement H,, which also can be identified with T, M. This gives a
horizontal /vertical Whitney sum decomposition

TTM = TM @& TM.
Define the inner product on TTM by

(Y1, 21),(Ya, Z2) ) i= (Y, Yoy, + {20, Za ).
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It induces a Riemannian metric on TM , the so-called Sasaki metric. The unit tangent
bundle SM of the universal cover (M, q) is a subspace of TM with tangent space

Tw)ySM = {(Y,2): Y,Z€T,M,Z Lv}, for x € M,ve S, M.

Assume v = (z,v) € SM and let v be the g-geodesic starting at x with initial velocity
v. Horizontal vectors in TVSM correspond to pairs (J(0),0). In particular, the geodesic
spray Xy at v is the horizontal vector associated with (v,0). A vertical vector in TvSM
is a vector tangent to Sx]\7 , the set of unit tangent vectors at x. It corresponds to a pair
(0, J°(0)), with J’(0) orthogonal to v. The orthogonal space to Xy in T, SM corresponds
to pairs (vi,v2),v; € No(yy) for i = 1,2.

The vector field {YV}VESM generates the geodesic flow {®;};cr on the unit tangent
bundle, where ®; : SM — SM , V.— A (t). Any Jacobi field along a geodesic 7 is
of the form D®,(w), where w € T,SM is an infinitesimal change of the initial point v.
More explicitly, if (J(0), J'(0)) is the horizontal /vertical decomposition of w € T, SM, then
(J(t),J'(t)) is the horizontal /vertical decomposition of D®;(w) € Tq)t(v)SM.

2.2. Anosov flow and invariant manifolds. Assume g € R¥(M). The g-geodesic flow
®; on SM has some special properties due the negative curvature nature of the space.

Firstly, (]\7 ,§) has no conjugate points. Hence we can identify SM with M x oM since
each pair (z,¢) € M x oM corresponds to a unique unit speed geodesic vy, ¢, which begins at
x and is asymptotic to &, and the mapping oM — SIM sending & to ¥ ¢(0) is a bijection.
In the (]\7 , oM )-coordinate, the geodesic flow map ®; has the expression

®(2,8) = (yue(t),€), V(z,€) € SM.

Furthermore, the geodesic flow on SM is Anosov: the tangent bundle TSM decomposes
into the Witney sum of three D®;-invariant subbundles E¢ @ E*® @ E*", where E° is the
1-dimensional subbundle tangent to the flow and E% and E®" are the strongly contracting
and expanding subbundles, respectively, so that there are constants C, ¢ > 0 such that

i) |[D®,w| < Ce “t||w]| for we E*, t > 0.
i) |[D®; 'w| < Ce c|w| for we E" t > 0.

The E*, E*" and E° are the so-called stable, unstable and central bundles, respectively.

The subbundles E* E' have their characterizations using Jacobi tensors. Assume
v =(x,v)€E SM. For each s > 0, let Sy s be the Jacobi tensor along 7, with the boundary
conditions Sy 5(0) = Id and Sy s(s) = 0. Since (]\7, g) has no conjugate points, the limit
limg 10 Sy s =: Sy exists ([Esc]) and is called the stable tensor along the geodesic 7y .
Similarly, by reversing the time s, we obtain the unstable tensor U, along the geodesic 7.
The stable subbundle E* at v is the graph of the mapping S%,(0), considered as a map from
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No(yv) to Vi sending Y to SL(0)Y, where No(yy) := {w,w € Hy,w L X,}. Similarly, the
unstable subbundle E®" at v is the graph of the mapping U, (0) considered as a map from

NO(/YV) to ‘/v

Due to the Anosov property of the geodesic flow, the distributions of E**, E*" (and hence
Ec@ E* E°@E™) are Holder continuous ([Anol], see also [Ba, Proposition 4.4]). Hence,
the (1, 1)-tensors Sy, S,, Uy, and U, are also Holder continuous with respect to v.

Associated with the bundle E® := E° @ E® are the (weak) stable manifolds of ®;:

t—+00

(2.1) WS (z,€) = {(y,n) e M x oM : nmsupllndist(@t(y,n),ét(x,g)) < 0}.

Each W*(z,£) coincides with the collection of the initial speed vectors of the geodesics
asymptotic to & and can be identified with M. Associated with E% are the strong stable
manifolds

~ ~ 1
(2.2) W™(z,€) = {(y,n) € M x oM : limsup — Indist (®:(y,n), P(z,£)) < O}.
t—+00
Each WS(x,£), locally, is a C*¥~! graph from E
Ef ¢ ([SFL]). It is true that
D (W (,8)) = W (R4(,€))
and the union of these images is just the stable manifold, i.e.,

W, ) = | & (W (2, 0)).

teR

?315) to E‘(:z@ @ E?g@ and is tangent to

The weak and strong unstable manifolds, denoted by W"(z, &) and W' (z, ), respectively,
can be defined similarly as in (2.1) and (2.2) by reversing the time. They have tangents
E := E° @ E® and E®", respectively.

The geodesic flow ®, on S M naturally descends to the geodesic flow ®; on g-unit tangent
bundle SM, carrying the tangent splitting and the corresponding submanifolds downstairs.
Indeed, the action of G' on the tangent bundle E (where E denotes any one of E**, E®" and
E°) satisfies ¥(E(z,§)) = E(DvY(z,£)) for all ¥ € G so that it defines the D®;-invariant
subbundles £, E5" and E° of T'SM, the so-called stable, unstable and central bundles.
We see that E° is tangent to the flow direction and F, E" are such that

i) |[D®w| < Ce™|wl| for we E, t > 0.
i) |D®;  w| < Ce™|w| for we B, t > 0.

Similarly, the action of G on the submanifolds W (where W denotes any one of W* W W
and W) satisfies (W (x,§)) = W(Dy(x,€)) for all ¢ € G so that it defines the stable,
strong stable, unstable and strong unstable manifolds of the geodesic flow on SM, which
have tangents E% @ E°, £% E5" @ E° and E®", respectively. In particular, the collection
of W*(x,&) defines a foliation W = {W5(v)}yesy on SM, the so-called stable foliation
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of SM. Each W*(z,§) can be identified with M x {¢}. Hence the quotients W5(v) are
naturally endowed with the Riemannian metric induced from §. They are C*~1 immersed
submanifolds of SM depending continuously on v in the C*~! topology ([SFL]).

2.3. Harmonic measure for the stable foliation. We continue to assume g € R¥(M).
Associated with the stable foliation W is the harmonic measure which is closely related to
the leafwise Brownian motion. Write A" for the leafwise Laplace operator of W, which
acts on functions that are of class C? along the leaves of W. A probability measure m on
SM is called harmonic if it satisfies, for any C? function f on SM,

J AV f dm = 0.
SM

Since (M, g) is negatively curved, there is a unique harmonic measure m associated to the
stable foliation ([Gal). Let m be the G-invariant extension of m to SM. It is closely
related to the Brownian motion on the stable leaves. For (z,&) € SM, let

p(t, (2,€),d(y,n)) := p(t,z,y) dVolz(y)de(n),
where d¢(n) is the Dirac function at £. Then p is just the transition probability function
of the Brownian motion on W*(z,£) = M x {€} starting from (z, ). Let €, be the space

of continuous paths w : [0, +00) — S M equipped with the smallest o-algebra for which the
projections Ry : w + w(t) are measurable. Let {P(,¢)} be the corresponding Markovian

family of p on .. Then for every t > 0 and every Borel set A c M x oM ,

Blag) (fwe 0y s w(t) € A}) = L p(t, (2, €), d(y,m)).
Proposition 2.1. ([Ga]) The following hold true.

i) The measure M satisfies, for any f € 02(1\7 X é’]\7f) with compact support,

| ([ st aineo = [ fee) dinge.)

M xoM M xoM

ii) The measure P = Sﬁ)(x@) dm(x, &) on Q. is invariant under every t-time shift
mapping oy« Qy — Qi) 0y ((s)) = (s + 1), for s> 0 and &€ Q.

iii) The measure m can be expressed locally at (z,€) € M x oM as di = dx x dmy,,
where dx is proportional to the volume element and m, is the hitting probability at
oM of the Brownian motion starting at x.

The group G acts naturally and discretely on the space §+ with quotient the space €2
of continuous paths in SM, and this action commutes with the shift o;,¢ > 0. Therefore,
the measure P is the extension of a finite, shift invariant measure P on .. We identify
SM with Mgy x oM , where My is a connected fundamental domain of (]\7 ,g). Hence we can
also identify 24 with the lift of its elements in §~2+ starting from My. We will continue to
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denote elements in Q. by w and will clarify the notation whenever there is an ambiguity.
In this paper, we normalize the harmonic measure m to be a probability measure, so that
P is also a probability measure. We denote by Ep the corresponding expectation symbol.

A nice property for the laminated Brownian motion is that the semi-group oy,t = 0, of
transformations of €2, has strong ergodic properties with respect to the probability IP.
Proposition 2.2. ([Ga], ¢f. [LS2, Proposition 2.3]) The shift semi-flow oy, t = 0, is
mizing on (Q4+,P) in the sense for any bounded measurable functions fi, fa on Q4

tEIlleP(fl (faoor)) = Ep(f1)Ep(fa)-

2.4. Busemann function and the linear drift. In this subsection, we derive (1.2).

Let g € RE(M). For v = (x,€) € My x 6M, the projection on M of the law of Py on
We(x, &) = M x {£} is the same as that of P, of the Brownian motion on M starting from

x. For w e Q, we still denote by w its projection to M. By ergodicity of P with respect
to the shift map oy (Proposition 2.2), for P-almost all path w € Q. its leafwise linear drift
coincides with £.

Since g is negatively curved, for P-almost all path w, w(t) tends to a point in the
geometric boundary oM ([Kail]). Write w(o0) := limy— 4o w(t). Roughly speaking, w
follows 7,(0)w(e0)- Hence the drift of w(t) from w(0) can be measured via its shadow on
Yo (0)w(ew)- A candidate function for this measurement is the Busemann function. Let

Tg € M be a reference point. For y, z € M , define

bxo,y(z) = d(zvy) - d(‘TOa y)
The assignment of y — b, , is continuous, one-to-one and takes value in a relatively
compact set of functions for the topology of uniform convergence on compact subsets of
M. The Busemann compactification of M is the closure of M for that topology ([BGS])
and it coincides with the geometric compactification in the negative curvature case (see

[Ba]). So for each v = (z,§) € M x oM, the function
by(z) := liné by y(z), for z € M,
y%

is well-defined and is called the Busemann function at v. It is known ([EQ]) that, if we
consider by as a function defined on W*(z,§), then

(2.3) Vby(2) = —X(z,8).

The difference between by (y) and by (y') is preserved when (y,£) and (v, ) are driven by
the geodesic flow ®;. Hence

W=(v) = {(1,€) : bu(y) = be(2)}.
Note that W (v) locally is a C¥~! graph from E$ to ES @ E$" and is tangent to ES*. So,
by the Jacobi tensor characterization of EJ and (2.3), it is true ([Esc, HIH]) that

Vw(Vby)(z) = =S, (0)(w), Yw € T, M.
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Thus,
(2.4) Azby = —DivX = —Trace of S.(0),
which is the mean curvature of the set of footpoints of W*(z, £). Note that for each ¢ € G,

Do, 6) (V) = bz £) (%) + b(yp—12.6) (T0)-

Hence Ayb(y, ) satisfies Ayub(z pe) = Aub(zy,e) and defines a function B on the unit tangent
bundle SM, which is called the Laplacian of the Busemann function. The function B is a
Holder continuous function on SM by the Holder continuity of the strong stable tangent
bundles ([Anol], see Section 2.2).

Now, we can derive the integral formula of the linear drift using the geodesic spray
and the harmonic measure ([Kail]). For P-almost all path w € Q4, let v := w(0) and
7 :=w() € IM. When t goes to infinity, the process by (w(t)) —d(x,w(t)) converges P-a.e.
to the a.e. finite number —2(£|n),, where the Gromov product (:|), is such that

. 1
(2.5) (Elm)e = lm  (yl2)s and (y]2)s == 5 (d(z,y) +d(z,2) —d(y, 2)).

y—§&,2—n

So for P-almost all w € Q,, we have

. 1
Jim by (w(t)) = £

Using the fact that the leafwise Brownian motion has generator A and is ergodic with
invariant measure m on SM, we obtain

14

I
—
g
[
=
<
—~
€
—
w
N—
SN—
U
V2]

I
B

I
>
o>
<
£
w
=
=¥
V2]

/”\

f Ab,, dm>
Mqx oM
(2.6) = — f Div"(X) dm,

Mg xoM

where Div"V is the laminated divergence operator for the stable foliation W. Since on
each leaf we have Div"Y(X) = Div(X), (2.6) reduces to (1.2). But that will not simplify
the discussion of the regularity of the linear drift under metric changes since Div(X) is
essentially a leafwise object. In contrast, (2.6) is more suitable for this purpose because of
the natural connection between the geodesic spray X and the geodesic flow.

3. REGULARITY OF THE LINEAR DRIFT

In this section, we assume Theorem 1.3 holds true. We first prove Theorem 1.1 by
showing the regularities of Div’Y X and m under a one parameter family of C* deformation
of metrics in R¥(M) and then prove Theorems 1.4 and 1.5.
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3.1. Regularity of the leafwise divergence term Div’VX. Clearly, the geodesic sprays
of a metric g € R¥(M) form a C¥~! vector field which varies C*~1 with respect to C*¥ metric
change. But this does not imply the regularity of Div"VX with respect to the metric changes
since we are considering the leafwise divergence.

Laminate SM = M x 0M into stable leaves {W3(z,€) = M x {¢}}, where each leaf can

be identified with (]\z g), but is only Holder continuous in the £-coordinate (see Section
2.2). Consequently, X (y,&) € TW3(z,€) is C*~1 in the y-coordinate, but is only Holder
continuous in the &-coordinate. Let g’ € R*%(M) be another metric. Its geometric boundary

8]\79/ can be identified with oM. But the §'-geodesic spray Xy (x,€) differs from X (z,€)
and the divergence operator on the g'-stable leaf W (z,¢) differs from that on W*(z,§).

Both difference contribute to the change of (DE/WY)(x, ¢) in metrics. This, by (2.4), can
be understood by a study of the regularity of X and E* in RF(M).

Assume g € R¥(M). The set of g-oriented geodesics in M can be identified with 02 :=
(OM x OMM\{(&,€) : &€ € oM}. Indeed, for (z,&) € SM, let v : R — M be the unique
geodesic with 4(0) = (z,&) and write 07~ := limy_, 4o, ¥(t) and 0~ := limy_,_o, y(t). The
mapping v — (07,07 7) establishes a homeomorphism between the set of all oriented
geodesics in (]\7 ,g) and 02M. Consequently, for any ¢’ € RF(M), the mapping Dy
02 (]\7 ) — 02(]\75/) induced from the identity isomorphism from G to itself can be viewed
as a homeomorphism between the set of oriented geodesics in (M, §) and (M, ). Further
realize points from S]\Ajgx by pairs (v,y), where v is an oriented geodesic and y € 7. For ¢/
close to g, we obtain a map ﬁ'g/ : SM — S],\\jg/ which sends (v,y) € SM to

Fy(v,y) = (Dy(7),9),

where 3’ is the unique intersection point of Dy () and the hypersurface {exp; Y : Y L v}
with v being the vector in SyM pointing at 0*~. The map ﬁgr is a homeomorphism between
SM and Sl\7§/ which preserves the geodesics, i.e., sending g-geodesics to §’-geodesics, and
is referred to as a (¢,9')-Morse correspondence map. The restriction of ﬁg/ to geodesics
asymptotic to & € 0M is a homeomorphism from Ws(x €) to w5 (x,8). Let Ty : SJ\7~/ —
SM be the e map sending v to v/|v|; which records the direction information points of
S M~/ in SM. Then 7 Tg © F + is a homeomorphism between S M and itself.

The map Fg/ induces a homeomorphism Fj between SM and SM, which sends g-
geodesics to g’-geodesics and is called a (g, ¢')-Morse correspondence map. For any suffi-
ciently small €, if ¢’ is sufficiently close to g, then F is such that the footpoint of Fy (v)
belongs to the hypersurface of points {exp, Y : Y L v, ||Y|,; < €}, where v is the projection
of viin SM. Let my : SMy — SM be the natural projection map sending v to v/||vlg.
Then 7y o Fy is a homeomorphism between SM and itself.
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For ¢’ in a small neighborhood of g in R*(M), let E, (resp. E,) denote any one of
E7, B and Ef, (r/evsp. any one of £}, ES' and Ef,). We also regard Ey (resp. Ey) as
a mapping from SMjy (resp. SMy) to its tangent bundle. Of our special interest, is the
regularity of the mappings ¢’ — 7y o Fy, ¢’ — D7ty o Ey. Equivalently, we can consider
the regularity of the downstairs mappings ¢’ — 7wy o Fyy and ¢’ — Dy o Ey, for which,

we can take advantage of the compactness of M to construct certain manifolds of maps so
that the implicit function theory applies ((LMM, KKPW)]).

Let H*~1(SM) be the Banach space of C*¥~1 vector fields on SM endowed with the
topology of uniform C*~! convergence on compact subsets. Let X 4 be the vector field
generating the g-geodesic flow. Then X, the projection (via Dmy) of the generating
vector field of the g’-geodesic flow on SMy, belongs to HF1(SM) and is C*~! close to
X, whenever ¢ is C* close to g. For a € [0,1), let C*(SM, N) denote the Banach space
of a-Hélder (or continuous for o = 0) maps from SM to a Banach space N endowed with
the topology given by the a-Holder norm on SM. Consider

d
C$(SM,SM) := {F e CY(SM,SM): DgF(v) := aF(@t(v)) exists and is a—Hélder}
t=0
with the topology of the norm |F| + |DgF|q, where | - |, denotes the a-Holder norm,
together with the mapping
U HEL(SM) x CE(SM, SM) x C*(SM,R) — C(SM, TSM)
U(Y,F,f) =Y o F — f- DgF.
By hyperbolicity of the g-geodesic flow ®;, the implicit function theory applies to ¥
if we further require F' € C§(SM,SM) to be such that the footpoint of F(v) lies in
{exp,(w) : w L v} for any v € SM. The following structural stability theorem is due to de
la Llave-Marco-Moriyén ([LMM]) for continuous case and Katok-Knieper-Pollicott-Weiss
([KKPW)]) for Hélder continuous case.
Proposition 3.1. ([KKPW, Proposition 2.2]) For g € R¥(M), there exist a € (0,1) and
a neighborhood U < HF~L(SM) of X, and C*2 maps U — CEL(SM,SM) : Y — Fy
and U — C* (SM, [%, +oo)) : Y — fy such that Y o Fy = fy DgF. Moreover, the maps
U— CHSM,SM): Y — Fy andUd — C° (SM,[3,+0)) : Y — fy are C*1.

Define CQ(SM,N),Cg(SM,N) analogously as C*(SM,N), C§(SM,N). A conse-
quence of Proposition 3.1 is
Corollary 3.2. Assume g € R¥(M). There exist a € (0,1) and a neighborhood V of g in
RE(M) such that the map g’ € V +— my o Fy is C*~2 into Cg(SM,SM) and is C*~1 into
C‘%(S%’ S]\i); the map g’ € V — Ty o f‘g/ is C*=2 into C$(SM,SM) and is C*~! into
CY(SM,SM).

The regularity of ¢ — Dny o Ey and ¢’ — D7y o Ey can be analyzed analogously
([Con]). Let G be the Grassmann bundle of u-planes on T'SM, where u = dimE}". Let
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Cg(SM,G) be the space of a-Hélder maps F: SM — G,F(v) = (F(v), E(v)), where
F e Cg(SM,SM), with the topology of the a-Holder norm on F,DgF and E. Then
instead of ¥, one can consider the maps

Uy HY(SM) x C3(SM,G) x C*(SM,R) — C*(SM,TSM & G)

Vi(Y,F, f) = (Y o F = f - DaF, Dy () 0 F(®:1(0) E(®11(v)))
where 1) is the time ¢ map of the flow generated by Y and 7y is the time change such that
ww(v) ¢} Fy(@il(v)) = Fy(v), Yv e SM.

Again, by hyperbolicity of the flow generated by Y which is close to X, and the invariance
of the corresponding strong stable and unstable bundles, denoted by E§?, E5*, the implicit
function theory applies for W, W_ and gives the following.
Proposition 3.3. ([Con, Proposition 2.1]) For g € R¥(M), there exist a neighborhood
U of X, in HFL(SM) and o € (0,1) such that the map U — CE(SM,G) : Y — (v
By o Fy(v)) is C*¥=3 and the map U — CQ(SM,G) : Y — Ey o Fy is C*2, where
Ey = E? or E}*.

Let G be the Grassmann bundle of u-planes on T'SM (where u = dimEj") and define

Cg(S M , G) in analogy with Cg(SM,§G). The following is an application of Proposition 3.3
to the geodesic flows.

Corollary 3.4. There exist o€ (0,1) and a neighborhood V of g in R*(M) such that the
map g €V — DryoEyoF, is Ck=3 into C$(SM,G) and is C*~2 into CI(SM,G), where

Ey

into C’%(SM, G) and is C*~2 into Cg(SM, G), where Ey is any one of B, EZ' and Ef,.

/is any one of EF, B and Eg,. Similarly, the map ¢ eV—DryoEyo ﬁg/ is C*—3

For A € (=1,1) — g¢* € R¥(M), we write X for the *-geodesic spray, (E*)* for
the g*-stable bundle and Div* for the divergence operator associated with the §*-stable
foliation.

Proposition 3.5. Let g € R¥(M). There ezist a € (0,1) and a neighborhood V, of g in
RE(M) such that for any C* curve X € (—1,1) — g* € V, with ¢° = g,
i) A — X is CF3 into Ca(]\7 x OM, TTM) and is C*=2 into CO(M x OM, TTM),
i) A — (E*)* is C*¥=3 into C*(M x dM,G) and is C*=2 into CO(M x 0M,G), and
iii) A — Div’ X" is CF=3 into C(M x 0M,R") and is C*=2 into CO(M x oM, R").

Proof. Express the (§,§")-Morse correspondence map F o» from M x 0M to itself as
FN @, = (£(2),€), V(,6) € M x oM,

where fg‘ records the change of the footpoint for the unit vector pointing at & in the
boundary. For (z,§) € M x 0M, we transform X;(z,€) to Ygx (z,€) in three steps: the first
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is to follow the footpoint of the inverse of the (g*, g)-Morse correspondence from X(z, £) to
X5(( f?)_l(a:), €) with the constraint that the vector remains within TW?*(z, §); the second
is to use the (¢g*, g)-Morse correspondence from Yg((fg‘)*l(:v), €) to X (2, 8) /| Xn (2, €) |3
the third is to adjust the length of X (x,€)/[ X g (2, €)|l5 to be 1 in the metric ¢*. Hence,

7§>‘ (‘T’ ’S) - Yﬁ(ajv 5)

X ( _ Y§A($,§) Yﬁk(xag) X (Y
(Xg("g) K. 9) >+<\X§A(x,§)§ Holle ()’§)>

+ (T @),6) - Kyl 6)

g

=:(a)x + (b)x + ()

Note that (a)o, (b)o and (c)g are all zero. So the regularity of A — X will follow from that
of (a)y, (b)x and (c)x by Taylor’s formula. This is true since (a)y corresponds to length
change and is C* in \, (b)y is C*~2 (or C*~3) in A depending on & = 0 (or not) by Corollary
3.2, while (c), has the same regularity as (b)y since X (x,&) is C*~! in the x-coordinate.

Similarly, we write v* = X (z,€) and
(B () — (E%)°(0) = (B ) = (B)°((f2) 7 @).€))
+ (B (@),6) — (B)°())
=: (d)x + (e)a

This means we can transport (E*)°(vY) to (E*)*(v}) in two steps: first is to transport
(E=)°(vY) to (E®)°((f2)"'(x),€) along the tangent bundle of W5(x,&) and follow the

footpoint of the inverse of the (§*, §)-Morse correspondence; the second is to use the Morse
correspondence for the stable bundle from (E¥)°((f2)7!(x),€) to (E*)*(v*). Note that

(d)o, (€)o are zero. The regularity of A\ — (E*)* will follow from that of (d)y, (e)x by
Taylor’s formula, which will follow by Corollary 3.4 if we can show the C*~1 dependence
of E¥(z,£) on the z-coordinate. This is true because each E*(y,¢) is the tangent plane

of the strong stable manifold W™ (y, £). Locally, W (z,¢) is a C*~! graph from E?jc ¢ 1O

E((?:c,g) G—)E?gé). This means, locally, y — E%(y, &) is C*~1 along the leaf W (x, ). On the
other hand, by invariance of the strong stable bundle with respect to the geodesic flow,
y — E%(y, &) is smooth as y varies on the geodesic passing through x asymptotic to £. By
invariance of the strong stable leaf under the geodesic flow, W (x, ) and the time direction
(i.e. the direction of the geodesic spray) consist of a coordinate chart for W*(z,£). This

shows, locally at @, y — E=(y, £) is C*~1 along W*(z, &) = M x {€}.
Finally iii) is just an application of ii) noting that for any g € R¥(M), we have

(DivX)(z, &) = Trace of S,(0), Vv = (z,&) € M x oM,
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and the stable bundle E*® at v is the graph of the mapping S (0), considered as a map

from Ny(vy) to Vi sending Y to S, (0)Y, where No(vv) := {w,we Hy,w L X,}. O

3.2. Regularity of the harmonic measure. In this subsection, we prove Theorem 1.2
following the sketch that we gave in the Section 1.

For ¢g* € ®*(M), we introduce a metric on OM as follows. Let 3 > 0. For z € M, define
(3.1) A (Cm) = e, ¢y e M,

where (:|-)2 is the Gromov product defined in (2.5) for dgs. If 5 is small, each o)

defines a distance on oM , the so-called s-Busemann distance ([Kai2]), which is related to
the §*-Busemann functions b* since

(32) ) = Jim ((Cln) ~ (Cn)2) . for any v = (2.€) € SM, ye M.

)

Let b > 0. For continuous functions f on SM = My x oM , define

~

L£15 == sup f(z,6)] + sup Tl €1) — Fla, &) P12

JJ,§1 752

Let H; be the Banach space of continuous functions f on SM with | f[ < +o0. Elements
of Hy are continuous on SM and Holder continuous with respect to the direction changes.

Recall that the transition probability of the §*-Brownian motion on the stable leaf
o (x,€) = M x {£} starting from (z,€) is given by

pr(t, (2,€),d(y,n)) == p*(t,z,y) dVol*(y)d¢(n),

where {p*(t, z, et R, is the transition probabilities of the §*-Brownian motion on M ,
d¢(n) is the Dirac function at £ and Vol* is the §* volume element. Then p* descends to be
the transition probability of g*-Brownian motion the stable leaves of SM: for (x,£), (y,n) €
SM = My x 0M, the transition probability is

a (4, (,€),d(y,n) = >, P (¢, (x,€),d(By, Bn))

BeG

= p(t, 2, By)dVol* (y)de(Bn).
peG

Let Q) (t = 0) be given in (1.3). It defines the action of [0, +00) on continuous functions f
on SM which describes the A;‘;-diffusion. It was shown in [L3] that for sufficiently small
b > 0, there exists T" > 0 such that Q% is a contraction on H and hence, as t — o0, Q}
converges to the mapping f +— { f dm? exponentially in ¢ for f € Hy. Thus, each harmonic

measure m” is a fixed point of the dual operation (Q}.)* in the dual space (H{)* with the
weak topology, where

(QD)*()(f) := n(Q2())), for all pe (Hy)*, f e Hy.
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The following proposition shows that H; can be chosen to be independent of g*.

Proposition 3.6. Let V, be as in Theorem 1.5. For every b > 0 small enough, there ewist
C >0 and k < 1 such that, for all \e (—1,1),t >0 and f € HY,

‘Q?f - [ £ o

< CK'[ f]-
b

The proof of Proposition 3.6 follows [L3, Theorem 3] for an individual metric. The only
modification is to find a common Holder continuous function space independent of the
metrics where the contractions (of Holder norm) happen. Denote d and (£|n), for the §°
distance and its Gromov product. The key lemma is the following.

Lemma 3.7. Let V, be as in Theorem 1.3. There is a number b' > 0 such that for any b,
0 <b <V, there exists ky < 1 such that for t large enough, x € My and all £,7, £ + 1, we
have for all A € (—1,1),

]EJ)C\’5 <eb((£|n)lXt]>\(5|n)$>> < ki,

where |x;]* denotes the §*-Brownian motion on W*(z,€) starting from (x,€) and Egg
denotes its corresponding expectation.

As a preparation for the proof of Lemma 3.7, define on My x OM x M the transition
probabilities

q27>\(t7 ($, 51) §2)7 d(y7 m, 772)) = Z pk(ta z, By) dVOl)\(y)5§1 (18771)552 (6772)
BeG

and the corresponding operator Q? A on continuous functions on My x OM x 0M:

Q%)\f(xa£1a£2) = Jf(y7n1a 772)‘12’)\ (('1"751)52)’ d(y,nla 772)) .

By analogy with the case of Q}, there is a unique Qf Ainvariant probability measure on
My x 0M x M which is related to the harmonic measure m* as follows.

Lemma 3.8. ([L3, Proposition 1]) For each g* € R¥(M), with the above notations, there
is a unique probability measure m>* on My x OM x OM satisfying

JQ?,)\f de,)\ _ Jf dmZ,)\
for all f e C(My x oM x 6]\7, R) and all positive t. The measure m?* is characterized by

J f dm® = fM (@, 6.6) dm (x,€).

xOM
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For ¢’ € %k( ), let ¢’ be its G-invariant extension to M, x; /( ) its Brownian motion on
M and m? its harmonic measure. The following limit exists almost surely:

lim - g = AY J—_.7,
t—lI-Poo tb(a:,ﬁ) (Xt (W)> JMOxaM b(x@ dm Eg

As ¢’ - g, m9 — m and hence both E;,, £y converges to £. We may assume the neighbor-
hood V, of g in Theorem 1.3 is such that £ := I,Iélél {Eg/,%,} is positive. Consequently, for
g&Vyg

any curve A — g* € Vy,

)\er(m{ll {¢ /\,ng} {>0.

Lemma 3.9. Let V,; be as in Theorem 1.3. For T > 0 large enough, for all X € (—1,1),
xeMO andfﬂleaM’ 54:77,

TEe (el — (€)= 3L

—_

Proof. We may assume g is defined for A\ € [~1,1]. Assume the conclusion is not true.
Then there exist \, € [-1,1], T, € R4, T, — 0, and points zy, &y, M, §n F 1, such that

1 1
(3'3) ﬁEiZ,gn ((gn‘nn>xé\£ - (gn’nn)xn> < Zﬁ

By definition of the Gromov product (-|-), for all £ £ n e (9]\7, y,z € My and X € [—-1,1],
[(€1n)y — (€)= < 2d(y, 2) < Const. - d(y, 2),

where the constant is independent of A\, £,m,y and z. Hence by uniform continuity of
A — pMt,z,-) in , we can find g small enough such that

i~

1
3.4 E; —&me]) < g
3.4) AeS[UIl)l] 0<idts ot nie (’(5‘77)1"”A (€l D 4

By using (3.3), (3.4) and suitably relabelling A, x,,&, and n,, we can find a sequence
Aj € [—1,1], a sequence of integers N; — 00, and points z;,&; and n; such that, for all j,

1 1

By passing to suitable subsequences, we may also assume that A\, converges to some \g €
[—1,1], as n goes to infinity. For A € [—1, 1], write ¢* for the function on My x 0M x oM
defined for x € My and £, € dM, £ £+ 7, by

1
A — R —
N, &m) = B (€l — (€l
Then, by (3.2), ¢* has a continuous extension to the diagonal, still denoted ¢*, given by
1
¢)\(‘T7§75) = %]E./r\,f (b(ac,£) (Xi\g)> .
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Write |x¢]* = 8x}, where 3} € G and x) € My. Using ¢*, (3.5) shows that there exist
sequences A\; — Ao, N; — +00, as j — 00, and points x;,&;,7;, such that for all j,

N;—1
1 ' PR VI A\ 1
N2 B (@it (i) ™65 (B ™'mp)) < 3L
k=0

This means for \;, N, z;,&; and n; as above,

1
(36) N Z thOJ¢A l.jvé—]?n]) 2£

J k=0

Define a sequence of probability measures p; on My x oM x oM by

Z Qk?to x]?ﬁj?ﬁj))d(‘ﬂ‘v')a

where ( i? )* is the dual action of Qk;Oj and d(x;,&;, ;) is the Dirac measure at (x5, &;, ;).
Then,

2.0, 2
Q) 1y — i) < N

Moreover, (Qf (;/\j )* converges to ( f (;’\0)* in norm as j goes to infinity by Theorem 1.3 since

3 Q] <sup [ (ern) VOl ()~ 1) V()
reM

“oup [ [ Janr ) 0t0,2.) + 000 0] 0,2) avor' ) i
zeM JXo

<Const.|\j — Aol ,
where p* = dVol* /dVol®. Consequently, if y is a weak limit of fj, we have
Q) p = p.

Let p/ = (1/t0) 0(Q2*)*;; ds. The measure p/ is Qf’/\o-invariant (t > 0) and hence
coincides with m2 Ao by Lemma 3.8. Note that ¢ converges to ¢ as j goes to infinity.
We conclude from (3.6) that { ¢ dp < £/2. Using (3.4) again, we find that

on dm*? < ¢,

w

N

But, by Lemma 3.8, we also have

1 1
J¢Ao dm2?0 — = JEQ?S <bx5(xt)‘00)> dm?2 = lim = Ei‘?g (bx,g(X?O)) dm™° >

t—owo t

I

which is a contradiction. O
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Proof of Lemma 3.7. For Ae (—1,1), x € My, {,n € oM and t € R, , write
V(. & m,t) == B} <e‘b(@’”vﬂ*“ﬂnh)).

For each X\ and b, it is true by the Markov property of the §*-Brownian motion that
sup ¢é(l’, fa m, t1 + t2) < sup ¢£‘($a 57 7, tl) + sup 7%\(35, 57 7, tQ)
.8, ©,8,m .8

Hence for Lemma 3.7, it suffices to find, for a fixed T' and b’ sufficiently small, positive
numbers C’ and k’ such that for all Ae (—=1,1) and b < b/,

(3.7) sup sup o (z,&,n,t) <
z,E,m 0<t<T
(3.8) sup 93 (2,61, T) < K < 1.
z,8,m

Let T be as in Lemma 3.9. Note that there is some constant C' such that
€ — Elme| < 2d(|x]Y, 2) < CdM(|x], ).

Using Taylor’s expansion of the exponential function, we obtain
— — A x A T
e b((€[n) 12 = (€M) <1-— b((£|77)[xt])\ — (€ln)) + (dek(lxt]/\’w)ye(]bd (Ix¢]%2)

Since the metrics ¢ have negative sectional curvatures bounded uniformly away from 0
for all A\, we have the exponential decay of the kernel functions, which implies that there
exists some constant C7 such that for all ¢, 0 <t < T, and all A,

Eé,g ((Cd)\(lxt]k,x))ZeCdA([Xt]A,a:)) < C].
So, using Lemma 3.9, we obtain for b < 1,

sup 1/}3(1:’5,77775) <1+ bCl +b201,

o<st<T
A 1 9
wb(l’@ﬂ%T) <1- Zbg—i_b Cl'

Put b’ = min{1, £/(8C1)}. We see that (3.7) and (3.8) are satisfied for all A € (—1,1) and
b < b/ with C' =1+ £/8 + £2/(64C1), k' = 1 — £/(64C1). O

Proof of Theorem 1.2. Let T > 0 be fixed. Assume g € R*(M). By Proposition 3.6, there
exist some neighborhood V, of g in R (M) such that for any continuous curve A — ¢* in
Vg, there is some positive b and ko < 1 such that for all f e HY neN,

< kgl fo-

@) f - ff dm’
b

(For later consideration, we choose b to be small such that 2b also fulfills the requirement
of Proposition 3.6 and 2b < b’, where b’ is from Lemma 3.7.) The inequality (3.9) means
each operator Q:’\F is a bounded operator on HY, 1 is its isolated eigenvalue and m* is
the eigenfunction of eigenvalue 1 of the dual operator (QE\F)* By the classical spectrum

(3.9)
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theory on operators in Banach space (cf. [Kat, Theorem 6.17]), we can decompose H}
into the direct sum of one-dimensional F, associated to the eigenvalue 1, and an infinite-
dimensional space F.q1 on which (Q%)” tends exponentially fast to 0. Let C be any circle
around 1 with a small radius. Then the projection of f € HY to Ey is given by
1 -1
| (sa-@}) s

2w Jo

Using this and (3.9), we conclude that the following two functional on HY coincide:

j' dm* = 2;L (zId—Q%)il- dz.

For the regularity of A — m?",

composition of two mappings

1 —1
Ao Q) and Q%H%L(zld—Q%> - dz.

Note that by spectral continuity results for isolated simple eigenvalues (cf. [Kat, Theorem
3.11]), for L € (H2)* in a small neighborhood of Q%, the mapping

we mean the regularity of A — {- m?*, which is the

1
Lr—»,f (zId— L)™' dz
C

2w

is analytic. We may assume V), is such that all Qr} belong to this neighborhood. Then for
the regularity of A — (- m?, it remains to show the regularity of the mapping A — Qf\r-

For f e HY, let ]? be its G-invariant extension to M x M. Then
Qf.6) = [ P (T.,) Vol ).

Put p* := dVol*/dVol’. Then A — p* is C* in A in C¥(M). By Theorem 1.3 i) and iii),
for every 7, 1 <i<k—2, and every (z,§) € M x dM, the following differential exists:

Q.0 = () [ 70009 @) ) avoly)

To conclude this defines the i-th differential of Q7 in A in (HJ)*, we only need to show it
defines a bounded operator from Hy into itself. For V,; small, the norms of the differentials
(lnp)‘)f\z), t =1,---,k — 2, and hence the norms of (p’\)g\l)/pA, i1 =1,---,k—2, are all
bounded. So it suffices to consider Sﬁ\, where

(Sif) (@, &) = | Fu, (T, 2,y) dVol(y),

yeM

and show it is a bounded functional of HY. For each ¢ € M , f (,€) is uniformly continuous
in  and bounded. Hence Theorem 1.3 iv) applies and shows that (Sf\ f ) (z,€) is continuous



26 FRANCOIS LEDRAPPIER AND LIN SHU

in . Using Theorem 1.3 iii), we continue to compute that

($30) @8] < 1l [ LREEIAT ) dVol 3) < e 2 o

where ¢y (;)(2) is as in (1.5). For the Hélder continuity of £ — (S5 f)(x,€) and the corre-
sponding Hélder norm estimation, it suffices to show the latter is bounded. By Holder’s
inequality, Theorem 1.3 iii) and Lemma 3.7, we obtain

|(S5.) (@, &) — (ng)(;,;,@)\eb(a\sz)x
= (fxz .60 = T, &)| - |0 (T 2,9) dVol)‘(y)> eolrfe

(M, 2, y)
pMT,z,y)

o P G ) )é

< Oy (4) (2) (k1) 2| flo-

Altogether, we have that each Sf\ maps HY into itself and is a bounded operator since

|95 f 1o = sug) |(S4f) (@, 9] + sup [(S5f)(z,&) — (ng)(%&)’eb(&’fz)x

Z,61,82

<1y [ el ler) NI, y) dVol (y)

M, 2, y)
pMT,z,y)

< a1+ &) .

3.3. Differentials of the linear drift. We are in a situation to prove Theorem 1.1.

Proof of Theorem 1.1. Tt suffices to show the first statement.

Let V, be such that Proposition 3.5 and Theorem 1.2 hold true. We may also assume
the Holder exponents o of Proposition 3.5 and b of Theorem 1.2 coincide. As before, for
any C* curve \ € (—1,1) — ¢g* € V, with ¢° = g, we write X for the 3 -geodesic spray,
Div? for the divergence operator associated with the §*-stable foliation and m* for the
g*-harmonic measure on SM. Let £, be the linear drift of g*. By (2.6),

(3.10) 0 =— J (DX (2,€) dm* = —L (Div*X").
My x oM

By Proposition 3.5 iii), A — Div’X" is CF=3 into C’b(]\7f X (9]\7, R*) and is C*~2 into
CO(M x oM, R*+). Write (Div*X){” = Div’X™ and (DX )Y, i = 1,--+ k-2, for
its i-th derivative in A. Then (Div)‘y)‘)f\i) belongs to 00(1\7 x OM, R*) for t <k —2, and
belongs to Cb(]\7f X 0]\7, R*) for i < k — 3. Regard each m* as a measure on My x oM.
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The operator L) - dm” is an bounded operator on continuous functions on

- = SMOX(}M
My x 0M. Moreover, by Theorem 1.2, A\ — Ly is C*~2 differentiable as elements of
(HQ)*. Using these regularities and (3.10), we conclude that the function A ~— £y is C*~2

differentiable. Denote by Lg\i), i =1,---,k—2, the i-th differential functional of Ly. Then,
for every i, 1 < i < k — 2, the i-th differential of £ in A, i.e., E(Z), is given by

i L (i j A (=7
(3.11) ==y (;) LY ((Dw*x ) ”) .

j=0

Specifying (3.11) for i = 1, we write:

Corollary 3.10. Let g € R3(M). For any C3 curve A € (—1,1) — g* e R3(M) with ¢° = g
and constant volume, we have

(3.12) (\)y = —JDivOyOd(m/\)’O - f (DivAYA)g dm®.

In particular, if g = ¢° is a locally symmetric metric and the volume VolA(M) s constant
in A, then we have (€y); = 0.

Proof. We apply (3.11) for i = 1 and A = 0. The operator L extends to the harmonic

measure m” and L(()l) is a linear functional on the space H{ that we denote (m*)j. Formula
(3.12) follows.

Let v* be the volume entropy of (1\7, ),

1
v = I%i_rgoﬁanolAB(x,R),
where B(z, R) is the ball of radius R about z in M. We know by [Kail] that for all X,
¢* < v* and by [BCG] that the volume entropy of a negatively curved locally symmetric
space achieves its minimum over all metrics of the same volume on that space. Since A — £
and X — v* are differentiable at 0 (by Theorem 1.1 and by [KKPW]), the derivative has
to be 0. O

We develop formula (3.12). The vector (X A)g is a vertical vector given by [LS2, Propo-
— o
sition 4.5]. For v = (z,&), it is the sum of <HX>\H§0>O(V)XO(V) and of a vector Y (v)
orthogonal to v, where Y is a C! vector field along the stable manifolds. Let ug be the
function such that

Aug = —DivX — £, (see [LS2, (5.12)]).
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Theorem 3.11. Let M be a closed connected smooth manifold and let g € R3(M). For
any C® curve A € (—1,1) = g* € R3(M) with ¢° = g and constant volume,

() = f (—;<VtraceX,X>+;X(X,X)Div(XH—;<V(X(X,X)),X>—DivY> dm
(3.13)  + f (—;<VtraceX,Vu0>+Div(X(Vuo))) dm,

where we omit the index O for VO,YO,<-, 50, Div? and m® at ¢°, and where X (-) is con-
sidered as the (1,1)-form in M such that (X (Z),Z"y = X(Z,Z'). In particular, there is a
linear functional £L on C*(S2T*) such that (£))y = L(X).

Proof. To obtain (3.13), we use the decomposition of (¢)); given by (3.12) as above:
) = — f (DX, dm — J (DivX"), dm — f DivX d(m’),
and study the three terms successively.
Firstly, we have (Div* X)) = $(V(TraceX), X).
— N
Then, for v = (z,¢), (X)\)g is the sum of <HX)\H)O (v)X(v) and Y (v). Hence,
. AN/ . . =2\ ~
(DivX™), = DivY + Div (HX H)O VX)) .

Since HY/\H;A =1, we have

A I, ~, |\ <
(IXY), v) = —5X(X@). X))
Thus,
Div ((rXA)’O <v>X<v>> = S XX (), X@)DV(X () ~ ZVE(X(v), X)), K(v).

Lastly, we discuss the term {DivX d(m/\)f]. Recall that, by Theorem 1.2, A — m” is
differentiable at 0, with derivative (m*)) € (HJ)* (denoted as an integral). It follows that,
for f smooth on SM,

(3.14) f(AA)gf dm + fAf d(m*)y = 0.

The equation (3.14) extends to functions f that are of class C? along the stable leaves with
globally continuous second order derivatives. In particular, (3.14) applies to the function
ug and therefore,

JDivX d(m*)) = J(Ak)éuo dm = J <;<Vu0, ViraceX) — Div(X(Vm))) dm.
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To show (£)); is linear in X, it remains to consider {DivY dm. If we denote k(z,y,§)
the continuous version of the density (dm,/dm;)(€) (see e.g. [LS2, Proposition 2.2]), the
integration by parts formula yields

(3.15) JDivY dm = —J<Y, Vylnk(z,y,&)|y—z) dm.

We recall from [LS2, Proposition 4.5] the construction of the vector field Y. Let v e TM.
We define the vector Y(v) € TTM as the vertical vector with vertical component given by

T(v) := (Vf‘,(v))i) —<(V(\,(v))g,v>.

Clearly, for all v e SM, Y(v) depends linearly on X, and sup, ||Y(v)| is bounded by
C||X||c1. In order to obtain Y (v), we consider the orbit ®4(v),s = 0, under the geodesic
flow. For each s > 0, we decompose T(®;(v)) into a sum of its unstable part Y (®4(v))"
and its stable part. The vector Y (v) is the vertical part of

0
f (D®,) 1Y (P (v)) " ds.
0

Since the geodesic flow is Anosov, there are C, 7 > 0 such that (D®;)~! restricted to the

unstable manifold has norm smaller than Ce™"*. It follows that the expression {DivY dm
is linear in X and bounded by C|X|c1. O

Remark 3.12. We can also verify that the formula (3.13) gives indeed 0 in the case when
g = ¢ is locally symmetric.

Assume that ¢ is a locally symmetric metric, then DivX is the constant —¢ and the
measure m is the normalized Liouville measure. Since the measures m” are normalized
(and the constant functions belong to the space Hy), {DivX d(m*)) = 0 and formula
(3.13) reduces to

(0o = J <—;<VtraceX,X> + %X(Y, X)Div(X) + %<V(X(Y, X)), X) — DiVY> dm
_. f (1) + (IT) + (I1) + (IV)) dm.

Since traceX’, X (X, X) are functions on SM and we integrate with respect to the invariant
Liouville measure, the integrals of (I), (III) vanish. Since § is a symmetric space, the
k(x,y,€) in formula (3.15) is given by —lob,¢)(y), where b, ¢ is the Busemann function
(see Section 2.4). It follows that V, Ink(z,y,&)|y=s = X (v). Since Y (v) is orthogonal to
X (v), the integral { (IV) dm vanishes as well. Remains to consider

1 — = 1¢ dVol; ¢ (Volpa (M),
Mdn=——¢|XX,X)dm=—-— [ tracexX — 2% = —~ 9 ~~0
J( ) dm == f (X X)dm= =500 |, Tt GEs) ~ m Vol (Mo)

where Volj is the Riemannian volume. So, { (IT) dm vanishes since the volume is constant.
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4. BROWNIAN MOTION AND STOCHASTIC FLOWS

In this section, we recall the Eells-Elworthy-Malliavin construction of the Brownian mo-
tion on a manifold through a stochastic differential equation (SDE) on the orthogonal frame
bundle and of the associated stochastic flow (see Proposition 4.27). We give estimations
on the growth in time of the derivatives of this stochastic flow. We will need in Sections 5
and 6 both uniform estimations and estimations in average with respect to the Brownian
motion and Brownian bridge distributions in the non-compact case.

4.1. Parallelism and the Brownian motion. Let N be a C® n-dimensional Riemannian
manifold. A differential form ¥ on N with values in R" is called a parallelism differential
form ([Mal2]), if it realizes for every u € N an isomorphism of T),N on R™. A parallelism
differential form ¥ is called C* if it is a C* section of the frame bundle space F(N) of N.

Let f : [0,+00) — R™ be a C? curve. It defines a one parameter family of continuous
vectors {(df /dt)|i=r}re[0,+00)- Let 9 be a C* parallelism differential form. It, together with
f, defines a C! vector field on N x R™:
df

zf, = 19;1(%), VueN, teRF.

By the classical theory of ordinary differential equation, there exists a flow Fy; generated

by Zt{ »» Which solves Cauchy’s problem

% (Fri(uo)) = thju(t), where u(t) = Fy(uo) and Ffo(ug) = up € N.
The orbit of each uy € N under Fy; is an analogue of the curve f since the velocity at
time 7 is just the preimage of (df /dt)|;—, by 9. Moreover, the time ¢ map Fy; depends C!
on the initial point ug. The variation of Ff}t(uo) with respect to ug reflects the geometric
difference between N and R"™ and the pull back of the tangent map of Fy; in R" via o
can be formulated using the equation of d ([Mal2, Proposition 3.2]). In general, if f is a
C**1 curve in R™ and ¥ is C¥, then the flow generated by fo ., depends C* on the initial
point.

In case N is the frame bundle space of M , there are plenty of parallelism differential
forms using the dual form and the connection forms. Recall that a frame u for T, xM ,
zeM , is an ordered basis u = (uy,- - , uy,) for T, M , which defines a linear isomorphism
form R™ to T, M by letting u(y) == Y, ylu;, for y = (y*) € R™. The set of all frames u
for all tangent spaces T, M, denoted by F (]\7 ), is a C* manifold. The dual form (or the

~

canonical form) on F(M) is an R™-valued 1-form defined by

0,(Y) :=u ' (mY), VY € T,F(M),
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where 7, is the tangent map of the natural projection map from F (]\7 ) to M. The kernel
of m, is the vertical vector bundle of TF(M):

VTF(M):={Y e TF(M): mY =0}.

For A € gl(m,R), let A* be the vector field on F(M) with A*(u) = 4,(0), where v, (t) =
Rexptayu and R, denotes the right action by a. A C* (Ehresmann) affine connection @

for (]—"(]\7),77, ) is a C* gl(m, R)-valued 1-form on ]-"(]\7) satisfying
w(A*(u)) = A, YA € gi(m, R),
T((Re)+Y) = Ad(aMw(Y), Yae GL(m,R), Y € TF(M).

Each C* affine connection form w of F (]\7 ) assigns a unique C*-distributed complementary

horizontal vector bundle HTF (]\7 ), the kernel of w, which is invariant under the right
action of GL(m,R). Each w induces the notion of covariant derivative V, D on vector

fields and forms on F (M ), respectively. Let T, R be the corresponding torsion tensor and
curvature tensor, and © := D@, €2 := Dw be the torsion form and curvature form. Then

T(X,Y) = u(®(X,Y)),
R(X,Y)Z = U(Q(Xv)\}) : (u_lz))a
where )v(,}u/,Zu € Tuf(]\7) are any vectors which project to X,Y,Z € Tw]\7, respectively,

and u € F, (M) can be chosen arbitrarily. Any pair (6, w) is a parallelism differential form
for F(M). It satisfies the following structure equations (cf. [Sp, p. 327]):

(4.1) df(Y1,Yz) = = {ww (Y1) - 0(Y2) — w(Y2) - 6(Y1)} + O (Y1, Y2),
(4.2) dw(Y1,Y2) = — [w(Y1), w(Y2)] + Q(V1, Y2),

where Y1,Ys € Tu]:(M) and w(Y1)-0(Y2) is the action of the matrix w(Y7) on #(Y2) € R™.

For g € M¥(M), let (’)5(]\7) c .7-"(]\7) be the collection of g-orthogonal frames, the
so-called orthogonal frame bundle space of (M,q). Each u € O%(M) defines an isometry
from R™ with the classical Euclidean metric to (T, M,q). Let w be the unique torsion

free connection form on F (]\7 ) which induces the g-connection V and curvature tensor R.

Then w = (w}), Q@ = (Q}) satisfy

. . ) 1 )
@y = Tyt @ =5 3 Ryt A0,
k k,l

where I and R are V and R read in the frame u. The structural equations (4.1) and (4.2)
of (0, w) are reduced to

(4.3) do'(Y1,Y2) = — (@ (Y1)0? (Y2) — @} (Ya)0 (V1)) ,
(44) w1, Y2) = — (@) @I(V2) - @ ()=l (V1)) + Rigg6* (11)6'(V2),
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where Y1,Ys € Tu]:(ﬁ) and u € .7-“(]\7) The restriction of (0, w) to (’)57(]\7) also defines
a parallelism differential form. For instance, we can use this parallelism to recover the
geodesic flow on SM. Let f : [0,4+00) — O(R™) be a half line with df /dt = (€,0) for some
unit vector e € R™. It defines a C*~! vector field on ©9(M) x R by letting

df

2y = (0.); (), Yue OI(M),

where each Zt{u is just the lift of ue to HT}"(M). Let F, ; denote the flow generated by thju

with df /dt = (e,0). It projects to the g-geodesic flow on SM and the orbit of u e Og(ﬂ)
under it is the parallel transportation of u along the unit speed geodesic vye.

The key point of the Eells-Elworthy-Malliavin construction of the Brownian motion on a
Riemannian manifold is to realize it as a transportation of the R™-Brownian motion using
the parallelism differential form of the orthogonal frame bundle.

Let ©4 be the space of continuous paths w : [0, +00) — R™, equipped with the smallest
o-algebra F for which the projections R; : w — w(t) are measurable. The sub o-algebras
{Fi}ier+ of F is an increasing sequence such that {Rs}s<; are measurable in F;. An R™-
Brownian motion is a continuous time random process {B; : Biy(w) = w(t)},cp+ on O
with distribution Q so that the induced actions Q; : (Qi)(x) = E,(¢(Bi(w))) on smooth
functions ¢ form a semigroup with Euclidean Laplacian Ap, as being the infinitesimal
generator (lim;_o(Qp— )/t = Agup whenever ¢ € C2(R™), the collection of C? functions
on R™ with compact support). In other words,

(45) Bt:(Btlu"'7an)7

where all B} are independent 1-dimensional Brownian motions on R with time ¢ transition

(z—

)2
probability (471'75)7%67 i between points x; and y; in R. In the language of Stratonovich
stochastic differential equation (SDE), (4.5) is

dB; = ) ei(By) 0 dB},
i=1
where {e; = 0/0x;} is an orthogonal chart of R™, which means for all ¢ € CP(R™), the
collection of C® functions on R™ with compact support, and for all t € R*,

t m
©(Bt) = ¢(Bo) + J eip(Bs) o dBs,.
0i=1

Fix a C* function ¢, with support contained in the unit interval [0, 1] with integral 1. For
each € > 0, let c.(7) := e 'c(e~!7) be an approximate unit function. For any sample path
t— w(t) = (wh(t), --,w™(t)) of B, we can smooth it using c. by letting

wi(t) == L w'(t + s)ce(s) ds, i=1,---,m.
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Let we(t) = (wl(t), -+ ,w™(t)). We see that t — w,(t) is smooth and satisfies

€ €

lim sup |we(t) — w(t)| = 0.
+

€V ¢eR

As w varies, Bf : w — wc(t) defines an F;;.-measurable process on O. Each By solves
d ~ m ~ d .
—(By) = i(Bt) - — (wi(t
B0 = e B i)

and, almost surely, the limit of Bf (as ¢ — 0) gives the Brownian motion B; ([Mal2]).

Given a sample path w of B; starting from the origin, the smoothed curve w, has its
lift in O(R™) with tangent vectors (dwc/dt,0). Let g € M¥(M) and let 6, and H be the
associated dual form, g-connection form and horizontal lift map, respectively. Consider

the C*~1 vector field on O9(M) x R

7z = (0,@), ' (5,0), Yue OI(M).

We see that '
T

foe i dw€
Zt7U = Z H(U, ei) . W,
i=1

where H (u, e;) is horizontal lift of ue; to HTf(ﬂ). Let ©%, be the flow generated by th?f
For u € O9(M), its orbit u(¢) under @5, solves the differential equation

dut(t) . dw’
7 —;H(u (B),ei) -~

The projection of the orbit ¢ — uc(t) to M has tangent uc(t)(dwc/dt) at time ¢t and is
an analog of the curve w.. As w varies, the distribution of the projection of u(t) on M
simulates the distribution of the R” Brownian motion. As € tends to 0, almost surely, the
differential system (4.6) tends to

(4.6)

(4.7) duy = > H(uy, e;) 0 dBj(w),
=1

which means for all smooth function ¢ on ©(M),
t m
o(u) = @(ug) + J Z(H(us, ei)p)(us)odB:, 0 <t < o0.
0 ;=

Since the vector fields H(-,e;) are C*~1, for any initial ug, there exists a unique solution
u = (u¢)er, to (4.7), which is continuous in (t,uo) for all t € R, (see Proposition 4.1).

Recall that the generator A of u; is such that
¢

Mw%www—LAM%Mk
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is a local martingale for all smooth . By It0’s formula, we see that
m
A= Z H(7 61')2,
i=1

which is the Bochner horizontal Laplacian A ,; (31" It is a lift of the Laplacian A in the
sense that for any smooth function ¢ on M and its lift ¢ to OF (]\7 )

(4.8) Aog(ﬁ)go(u) = Ap(mu).

Let x = (x¢)wer, be the projection on M of the solution u = (ug)ser, of (4.7) with initial
value ug € OJ, (M). It defines a measurable map from orbits in O starting from the origin
to Cy, (RT, M ), the space of continuous paths on M starting from xg. As xq varies, Q(x~!)
gives a distribution in the space of continuous paths on M. For 7 € Ry, let Cy, ([0, 7], M)
be the collection of continuous paths p : [0,7] — M with p(0) = xo. Then x also induces

~

a measurable map xpg ;] : ©4 — Cx, ([0, 7], M) sending w to (x¢(w))se[0,7]- S0,
. —1
P, = Q(X[Oﬂ_])

gives the distribution probability of paths x(w) on M up to time 7 and this distribution
is independent of the choice of the initial orthogonal frame ug that projects to xq. Since
x has generator A by (4.8), it visualizes the Brownian motion on M. This is the Bells-
Elworthy-Malliavin’s approach to obtain the Brownian motion on a manifold (cf. [Elw]).

4.2. A stochastic analogue of the geodesic flow. The regularity of the Brownian
companion process u; with respect to its initials ug can be understood by general theory
on stochastic flows associated to SDEs.

Let X1, -+, X4 be bounded vector fields on a smooth finite dimensional Riemannian
manifold (N, {-,-)). Let (2t)wer, = (2}, -+ ,z{) be a continuous stochastic process on R%
An N-valued semimartingale (z;)er, defined up to a stopping time 7 is said to be a solution
of the following Stratonovich SDE

d
(4.9) dy = Z X;(w) o dz},
i=1
if for all ¢» € C*(N),
t d {
V() = P(wo) + f Z Xip(zs)odzl, 0 <t <T.
0i=1

The solution to (4.9) always exists when all X; are C! bounded ([Elw]). Note that X =
(X1, ,Xg) is a linear isomorphism from R? to TN. So, z; is a parallel transportation of
2 to the manifold N via X. The pair (X, (2;)swer, ) is called a stochastic dynamical system
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(SDS) on N ([Elw]) and it is said to be C7 if all X; are C’ bounded. Using X, we also
write (4.9) as
dxy = X(x¢) 0 dz.

The mapping

Fi(,w): xo(w) — x4(w)
has the following regularity with respect to the starting point xg(w).
Proposition 4.1. ([Elw, Theorem 3, Chapter VIII]) Let (X, (2¢)er.) be a C? SDS on
N. There is a version of the explosion time map x — 7%, defined for x € N, and a version
of Fi(xz,w), defined when t € [0,7%(w)), such that if N(t,w) = {z € N: t < 1%}, then the
following are true for each (t,w) e Ry x .

i) The set N(t,w) is open in N. ‘
ii) The map Fy(z,w) : N(t,w) — N is C'=! and is a diffeomorphism onto an open
subset of N. Moreover, the map T — F,.(-,w) of [0,t] into C7~! mappings of N(t, w)
18 continuous.
Corollary 4.2. Let ge M*(M) (k= 3). There is a version of the solution flow
Ft('vw) : uO(w) - ut(w)v te R+7

to (4.7) in .7-"(]\7), which is a C*=2 diffeomorphism into ]-'(]\7) and is continuous in t.

Proof. Each z € M has infinite distance to the boundary. Hence each solution process u
to (4.7) with ug € F,(M) projects to be a diffusion process on M starting from z and has
infinity explosion time. Since g € M*(M), the vector fields H(-,e;), i = 1,2,--- ,m, on
O9(M) are all C*~! bounded with respect to the § metric. So Fy(-,w) : ug(w) — ug(w) is
C*=2 with respect to the initial points ug and is continuous in ¢ by Proposition 4.1. ]

For | < j—1, the [-th tangent map of F} in Proposition 4.1, denoted by D(l)Ft(-, w), can
be formulated and its norm can be estimated if N is equipped with a reference connection.
Proposition 4.3. ([Elw]) Let (X, (2t)iwcr, ) be a C7 SDS on N. Assume there is a Levi-
Civita connection V induced by some metric such that the covariant derivatives V'X;,
t=0,1,---,5,1=1,--- ,d, are bounded and the curvature tensor R of V and its first j—1
derivatives are bounded. The following hold true.

i) There is a version of {F;(-,w)} such that almost surely, for | < j—1,te Ry and
vo(w) € TON, vi(w) := [DOFy(-,w)|vo(w) satisfies the Stratonovich SDE
d
dvy = Y [DYX;(21) v 0 dzf,
i=1
where, if we denote by F} the deterministic flow map generated by the vector field
X; and D(Z)Fti its 1-th differential map, then for ve TON with footpoint x € N,

(DO X (2)]v = 2

= ([DYVF]v).
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ii) For any q € [1,0), there is a bounded function ¢;(t,q), which depends on t, m,q,
and the bounds of V*X; and V'R, v <141, such that ||[[DYF(-,w)]| e < ci(t,q).

Proposition 4.3 applies to the flow map corresponding to (4.7). So we can formulate
the SDEs of {{DWF;(-,w)]}. We will use them to specify ¢/(t,¢) and give a more detailed
study of their norm growths in time for later use.

Let Fy(-,w) be as in Corollary 4.2. The first order tangent map DM F}(ug, w) records
the first order infinitesimal response of Fj(ug,w) to the change of initial point ug. Let
C:(—1,1) » F(M) be a differential curve with C(0) = ug,C’(0) = v. Then

D
Vi 1= [D(I)Ft(uo,w)]v = a—Ft(C(S),w)
§ s=0
The SDEs of v; can be formulated using the parallelism form (6, w) as follows.

Lemma 4.4. ([Mal2, Theorem 5.1)) Let Fi(-,w) be as in Corollary 4.2.

i) For any v € Tuof(M), vy satisfies the Statonovich SDE
th('LU) = V(Vt(W))H(ut, OdBt).
ii) Consider the map

[DD Fy(ug, w)] := (8, @)y, o [DY Fi(ug, w)] o (6, @)L

For (2(0),2(0)) := (2°(0),25(0)) € TF(R™), (2(t), () := [DW Fy(ug, w)](2(0), 2(0))
satisfies the Stratonovich SDE

dz(t) = z(t) o dBy(w),
(4.10) { dz(t) = u; 'R (us 0 dBy(w), usz(t)) uy.

iii) The Ito form of (4.10) is

dz(t) = z(t) dBi(w) + Ric(w2(t)) dt,
(4.11) dz(t) = u; 'R (wd By (w), usz(t)) ug + u; ' R (wge;, upz(t)e;) ug dt
+u; YV (uges) R) (wpeq, ugz(t)) ug dt,

where the summation X7, is omitted in (4.11) for simplicity and

(4.12) Ric(uz) := Zu (uei, uz)ue;, Yue F(M ), zeR™.

For t,4,0 <t <t <T,let F,;(-,w) be the flow map of (4.7) sending u; to uz. Then
Fi(ug, w) = Fyz(uo, w) = Fﬁ(u;, w) o Fy¢(ug, w).
Let [D(l)Fﬁ(-,w)] (I <k —2) be the [-th tangent map of Fy;. When [ = 1, let

—_——

[DDE, (ug, w)] := (6, @)y, © [D(l)Fﬁ(ug, w)] o (6, w);;.
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Then [D(I)Fﬁ] (resp. [D/(l)\}_?/’ﬁ]) satisfies the same SDE as [DM) Fy ] (resp. [D/(W?E)J]).

To describe [ D) Fy(ug, w)], we can follow [Elw] to use the horizontal /vertical Whitney
sum decomposition of T(UN)T]:(]\A[) = T, F(M) x T, F (M) with respect to the Levi-Civita
connection. The second order tangent vector

(U,V;VQ,V1) € T(UN)TN

is in one-to-one correspondence with the Jacobi field Y (s) along the geodesic s — C(s) :=
exp(sv) with Y (0) = Vo, VY (0) = Vy, where Y(0) tells the infinitesimal change of C(0)
(i.e., the horizontal part change of (C(0),C’(0))) and VY (0) tells the the infinitesimal
change of C'(0) along the geodesic from wug with initial velocity Vy (i.e., the vertical part
change of (C(0),C’(0)). For the geodesic 7 — Cy(7) := exp(7V1), let v/(7) be the parallel
transportation of v along C; to the point C;(7) and define

(4.13) Vo [DW Fufug, )] (1) = 5 [DOR(C (), )] (v ()

7=0

Then for almost all w,
(D) Fy(uo, w)] (o, v; Vo, V1) = ([P Fi (o, w) | (w5 v); [ DP Fi(ug, w)] (Vo, V1) )
where
[D(Q)Ft(uo, w)] (VO,Vl)
= <[D(1)Ft(u0,w)] (Vo), Vv, [D(l)Ft(uo,w)] (v) + [D(l)Ft(u(),w)](Vl)> .
By Lemma 4.4, to describe [D(Q)Ft(-, w)] (Vo, V1), it remains to identify
Vi(v, Vo, w) := Vy, [D(l)Ft(uo,w)](v).
Lemma 4.5. ([Elw, Lemma 5B, Chapter VIII] ) Let g € M*(M), k > 4. Forv e Ty, F(M),
(Vo,0) € Ty TF(M), let vy := [DWF,(ug, w)]v, Vi := [DW Fy(ug, w)]Vo.
i) On TF(M), the process V, := V,(v, Vo, w) satisfies the Stratonovich SDE
dV; = V(W) H (ug, 0dBy) + VO (vi, V) H (wy, 0dBy) + R(H (g, 0dBy), Vi )ve.
ii) On TF(R™), the process (0, @)y, (Vt) satisfies the Stratonovich SDE
d((0,@)e,(Vt)) = (w(Vt) o dB¢(w), ut_lR(ut o dDBy, H(Vt))ut)

(4.14) + (0, @), (v<2> (ve, V) H (w, odBy(w)) + R(H (uy, odBt(w)),Vt)vt> .
iii) The Ito form of (4.14) is

(4.15) dO(Vy) = w(V)dB(w) + Ric(u0(Vy))dt + Pg(ve, Vi, dBy, dt),

(4.16) dow(V) = 0y 'R (wd By (w), us(Vy)) uy + u; ' R (wses, upwo(Vy)e;) ug dt

+ u{l (V(utel)R) (utei, uté’(Vt)) Ug dt + <I>w(vt, Vt, dBt, dt),
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where the summation X2, is omitted and
®(ve, Vi, dBy, dt) =0 (v(2> (ve, Vo) H (ug, dBy(w)) + R(H (uy, dBt(w)),Vt)vt>

+ 2w <V( )(ve, Vo) H (uy, ;) + R(H (ut,ei),Vt)vt> e; dt

) +
40 (| H ). VO (e, V) H 1w ) + R(H (0. Vo) dt,
e (vy, Vi, dBy, dt) :=w (V@)(vt,Vt) (wg, dBy(w)) + R(H (uy, dBy(w )),Vt)vt)
+ 2ut_1R (117562‘, Ute(V(Q) (Vth)H(ut, 61) + R(H(ut, 61‘), Vt)vt)> udt

@ ([H(ut, €:), V (v, V) H (ug, e;) + R(H (uy, ei),Vt)vtD dt.

A corollary of Lemma 4.5 is that we can describe V; (resp. (0, @)y, (V)) using the tangent

maps [D(l)FLg(uo, w)] (resp. [DWF, ;(ug,w)]) by a stochastic version of the variation of
constant method, i.e., a stochastic Duhamel principle.

Corollary 4.6. Let ge M*(M) (k= 4) and let v, Vi and V; be as in Lemma 4.5.

)V, = L [DO By 17, )] (Y (vr, V) H(ur.€3) + R(H (7. ). V,)v: ) o dB.
i) (0,@)u, (Vi) =

o —
@17) [ [DOFa(ur, )]0, 2 (T (e Vo) Hlur, ) + R(H (g, 2), Vo vr) o B
0
iii) The Ito form of (4.17) is

t

(4.18)  (8,@)u,(Vy) =f [DOE, ,(u,,w)] ((T)Q(VT,VT,dBT,dT),&JW(VT,VT,dBT,dT)>,

0

where
& (vr, Vr,dB,,d7) = By(vs, Vs, dBy, dr)
2 (V(2) (vr, Vo) H (ur, e;) + R(H (ur, €i)7Vr)Vr) e;dr,
& (v,,V,, dB,,dr) = ®u(vy, Vs, dB,,dr)
—u 'R (uTei, uTH(V(Q)(vT,VT)H(uT, ei)+R(H (ur, ei),VT)vT)) u,dr.

Proof. For i) and ii), it suffices to show i) since it implies ii) by applying the (0, ) map.
Regard the tangent map [D(l)Ft(uo, w)] as a random matrix solution y;(w) to

dy(w) = V(y(w))H (ug, 0odBy), yo = Id.
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Put
t
v =V + J [D(l)FT(uO, w)]_1 (V(Q) (vr,V)H (u,,0odB;) + R(H (u,, odBT),VT)vT> )
0

Then the differentiation rule of Stratonovich integral shows that
d(yivr) = (odyi)v + yi o duy
= V(ye(w)vr) H(ug, 0dBy) + V@ (vi, Vi) H (ug, 0dBy) + R(H (ug, 0dBy), Vi)vy,
where d should be understood as the covariant derivative. Since ygvg = Vy = 0, we obtain

t .
Vi = yiup = f [DWE,,(u-,w)] (v@) (vr, V.)H(u,, ¢;) + R(H (u,, ei),VT)vT) o dBL.
0

—_—

Regard [DM Fy(-,w)] as a matrix solution y¢(w) to (4.11) with yo = Id. Put
t

Gt::Vo—i-f
0

Write yivr := ((ytv1)o, (YiUt)w), where (yivi)g € R™ and (yivt)w € F(R™). Then the It6
form infinitesimal differentiation rule shows that

d(y:0t) = (dyt)0t + yidd; + dyy - dvy
= ((y¢01)wdBi(w) + Ric(us(y)o)dt + ®o(ve, Vi, dBy, dt),
u; 'R (wdBy(w), wi(yidi)g) w + uy ' R (ugeq, uy (y40;)wes) 1y dt
—i—u;lVR(utei) (weeq, ue(ye0r)g) wy dt + P (vy, Vi, dBy, dt)) .
This means y;v; with 0y = (0,0) solves (4.15) and (4.16). Thus (4.18) holds true. O

[DDE, (u,w)] <$9(VT,VT,dBT,dT),wa(VT,VT,dBT,dT)> .

For [D(Q)Ft(uo,w)] on T(uN)Tu]:(],\\j) = Tu]:(]\7) X Tuf(M), we can define its Eu-

clidean companion map [D®) Fy(ug, w)| on TF(R™) x TF(R™) as follows. For (V,,V,) €
TFR™) x TFR™), let (Vo, V1) = (((6,@)u,) " (Vo). (0, @)ue) (V1)) Let Vip 1=
[D(l)Ft(uo,w)]Vi for i = 0,1 and let v¢, V; be defined as in Lemma 4.5. Then

—_—

[D®)F,(ug, w) ] (Yo, Vy) == ((8,@)(Voy), (6, @)(Vie + Wb)).

We can continue the above discussion to formulate [D(I)Ft(~, w)], 3<I<k—-2. Put

(u(z);v(z)) =: (u,v; Vo, Vy),
(®;v0) = (w0, -0, yID yED) gD vy e T TR,

Then,
[ DO F, (u, w)] (u®;v0) = ([ DD Fy (u, w)] (=D VD), [ DO (g, w)] (VED),

(4.19) vV(()H) [D(l_l)Ft(uo, w)] (W=D ¢ [D(l—l)Ft(uo, w)] (ng—n))
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and the covariant derivative term V1) [D(l_l)Ft(uo,w)] (v=1) involves a combination
0

of the I’-th (I’ <1 —1) covariant derivatives

(420) VVU,Z/ VVO,Z/—l e VVO,() |:D(1)Ft(u7 w)] (V)7 Vv, V0,0> T 7V0,l’ € Tuf(j\\j)v

where for I’ = 1, (4.20) was given in (4.13), and for I > 1, let 7 — Cy(7) := exp(7Vo )
be the geodesic passing through u and let V//(T),V070//(T), e ,V(),l/_l//(r) be the parallel
transportations of v, Vo, -+, Vg _; along Cp to the point Cy(7), then

Vo0 Vi Vg | DR (1,w) | ()

D
=3 (Vvo,l,_l//(ﬂ Vg, () [D(l)Ft(Cl’(T)vw)] (V//(T))> N

The Stratonovich SDE of (4.20) involves {V*H}, <y, {V*R},<y—1. But the Itd6 SDE of (4.20)
involves {V*H}, <11, {V'R} <y

By Corollary 4.2, all the tangent maps [DWF(-,w)] are invertible. The inverse maps
[DOF,(-,w)]~! can be formulated by the same equation as [D® Fy(-,w)], but using the
backward infinitesimals dT?)T, —dr instead of dB,,dr. We skip the details.

4.3. Growth of the stochastic tangent maps in time. We use the above SDEs to
estimate the L%-norm (g > 1) of supg<; <t H[D(Z)Fti(u, w)]|l-

A useful tool to the Li-norm estimations of stochastic integrals is Burkholder’s inequality
which can be obtained using It6’s formula for | - |2 and Doob’s inequality of martingales.

Lemma 4.7. (¢f. [Ku, Theorem 2.3.12]) For an Fr-adapted R™ or O(R™) process fr,

t/
f £ dr
t

(When ¢ = 2, the inequality in (4.21) becomes an equality and is referred to as the
isometry property of Brownian motion.)

q
2

t/
<f7’adBT> s Vq Z 2,
t

(4.21) E (

) <Ci(q)-E

where C1(q) = (3a(g — 1)(g/(q — 1))772)3.

We would like to list a simple fact that will be used from time to time for computations
in the remaining paper: for any ¢ > 1 and aq,--- ,a;, € Ry U {0}, ip € N,
i0 10
(4.22) (> @) < (i0)" " D af.

i=1 =1

Recall the Dambis-Dubins-Schwarz Theorem which relates local martingales with Brow-
nian motion using Lévy’s characterization (see Section 4.4).

Lemma 4.8. (¢f. [RY, Theorems 1.6 &1.7, p. 181]) If M is a (Q,F,P)-continuous local
martingale vanishing at 0. Let Ty = inf{s : (M, M), > t}.
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i) If (M,M)e, = 0, then By = My, is a (Fr,)-Brownian motion and My = By wy, -
i) If (M, M)y < o0, then there exist an enlargement (Q,F,P) of (Q,F,P) and a Brownian
motion B on Q independent of M such that the process
B _{ M7, , if t<{(M, M)y,
! Moo + BimMyys  if T = (M, M),

1 a standard linear Brownian motion. The process W given by

W = { Mz it < (M M),
PT Mo, if £ = (M, M)y,

is a (F;)-Brownian motion stopped at (M, M)y .

Given an (Q,F,P)-Brownian motion B, we know that for almost all w, ¢t — B;(w) is not
differentiable, but is a-Hélder continuous for every a € (0,1/2). Let T > 0 be fixed. Define

(4.23) IBorj()a = sup |By(w)] + sup [By(w) — Bi(w)|

0<t<t 0<t<t'<T ‘t/ - t|a

The following result of Skorokhod ([Sk]) is a weaker form of the Fernique Theorem ([Fe]).

Lemma 4.9. ([Sk]) Let B be an (Q,F,P)-Brownian motion. For any a € (0,1/2), there
exists € > 0 such that E (eE”B[OvT] Ha) < 0.

Remark 4.10. The original proof of Lemma 4.9 is for 1 = 1. In general, for any ¢t > 0
and a > 0, B; has the same distribution as /aB; /a- In particular, this holds for a = 7. A
simple calculation shows that |Bpoqjla < (v/T ++/T/7%)IIBjo,1]]a- Hence the Lemma is true

for every T with e(1) = min{e(1)/2,€(1)/(\/T + /T/T%)}

The following estimations are similar to the estimation for the first order tangent map
with t = 0,¢ = T fixed (see [Elw, Proposition 5A, Chapter VIII]).

Proposition 4.11. Let g € M*(M) with k > 3. For z € M and T e Ry, let {ut}seom
be the solution to (4.7) in OF(M) with ug € (’)g(]\mf) Then for every I, 1 <1 < k —
2, and q = 1, there exist ¢;(q) > 0, which depends on l,m,q and the norm bounds of
(V'H} <11, {V" R}y<;, and ¢;(q) > 0, which depends on I, m,q and the norm bounds of
(V'H}y<o, VR, such that

g T

(424) E sup [[DOF, i w)] "] < al@e @,

0<t<t<T

Proof. By using the cocycle property of the tangent maps, it suffices to show (4.24) with
t = 0. We show it by induction. At each step, we only check the bound for the tangent
map since the estimation on the inverse map can be obtained analogously using its SDE.
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—_—

We begin with the | = 1 case. It suffices to consider [D®) Fy(ug, w)]. Following [Mal2,
Theorem 5.1] (see Lemma 4.4), the solutions to (4.11) can be understood using multiplica-

tive stochastic integral in Ito’s form. For each j € {1,2,--- ,m} and u € ]-"(]\7), define a
m(m + 1) x m(m + 1) matrix M;(u), which is an endomorphism from 7, F(R™) to itself,
such that for (z,z) € T,F(R™),

(4.25) M, () ((2:2)) = ((#)7 (Rl (W=7 )

Define another m(m + 1) x m(m + 1) matrix N(u) (or an endomorphism from 7,F(R"™)
to itself) such that for (z,z) € T,F(R™),

(4.26) N(u)((2,2)) = (0.Ng,(w3'),

where

vi() := > {(V(uej)R (uej, uep) uey, ue, ).

UL

I
—

j
Using M, N, we conclude from (4.11) that the It6 form of the SDE of z; := (2, z¢) is’

(421 daw) = ) (Mj(ut)it(w) B (w) + [M; (1)]22(w) dt) + N(up)ze(w) dt.

(The coefficient of N in (4.27) is different from that in [Mal2, Theorem 5.1] since we are
considering Brownian motion with generator A instead of A/2.) By It6’s formula,

d|z:(w)[* =2q|2z4(w)|* "z (w), dZe (w)) + |2 (w)| X dze(w), g (w))
+2q(q — 1)|2e(w) 2972 (Zy (w), dzy (w));

=|(jv)| - mew)r% [z (w) 20,

Note that {M,}, N all have norms bounded by some constant depending on R, VR. Hence,

d1n [z (w)[** d|zt(w)|*

(428) |Z;(w)|2q _ eggdln\iz(w)|2q|zo|2q < C(q)eC(q)feangj(uq—) dB7];’20|2q’

where C(q) depends on the norm bound of R, VR and m,q, the number § depends on
¢, and {M;} L, are continuous real valued processes with bounds depending on the norm
bound of R. Consider the process

My (w) := L M;(u,) dB2.

It is a continuous martingale with My = 0 and with the quadratic variation (M, M); < Cyt
for some constant C7 which depends on the norm bound of R. By Lemma 4.8, there exist

n terms of the multiplicative stochastic integral, (4.27) shows

[m?(uo,w)] _ A5 My (ur) dBI () 4N () ar}
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a continuous martingale M and a Brownian motion B on an enlargement (é+,]? , Q) of
(04, F,Q) so that M has the same law as M and

Mt - B<M V)

Fix a € (0,1/2) and consider B[y c,jfa- Let €(1) be as in Lemma 4.9 and put € =

min{e(1)/2,¢(1)/(v/C1 + +/C1/(C1)?)}. By Remark 4.10,
Eg (QGHB[o,Cl]

2) < O < oo,
where C; depends on C; and a. Let ¢ = min{C] ! (¢§ ) ,T}. By the definition of || - |,

[M: = Mo| < (Cvt)*|Bpo.cuy, < @ [Bpo.cuy
Using this and (4.28), we obtain

E sup [7(w)/® < C(q)eC@" 202 - Egy (e Jewcnly < Gro(g)ec@n g,
0<t<ty
This implies

E sup [ [DF(u,w)][* < Oq)e "

0<t<t
where é(q) depends on 51, C(q), m,q. In the same way, we obtain
2 2
E  sup  [[DFoye (e, w)][™ B sup |[DF gy o (i e w)] [
(i—l)t1§t<it1 il(T)t1$t<T
< C(q)ef@h Vi1 <i<iy(T)=max{ieN: it; < T}.

Hence by using the cocycle property and Markov property, we conclude that there are some
¢1(q), c1(q) of the prescribed type in the statement of the proposition such that

E sup |[DF,z(uo,w)][* < (G(q)eC@n )DL _ ¢ (g)eer@T

0<t<T

Ilx

We proceed to show (4.24) with | = 2 and t = 0. By the above conclusion in the [ = 0
case and the definition of [D(® Fy(ug, w)], it remains to analyze

E sup [(0,@)u, (V)|

o<t<T

where V; 1= Vy,[DWE,(ug, w)](v) and v,V have norm 1. Put v, := [DWF, (ug,w)]v,
V, 1= [DWE, (up, w)]Vo. Let

(429)  Ar(w)i= (0, @), (VO (s, V) H(ur, ) + R(H(ur, ), Vo)vr )
B, (w) = (0, ), <[H(uT,ei),V(Q)(vT,VT)H(uT,ei) + R(H(uT,ei),VT)vTD ,
C, (w) :( (v< )(VT,VT)H(uT,ei)+R(H(u7,ei),VT)vT) e,

u 'R (uTei, 1,0(V® (vr, Vo) H(ur, ;) + R(H(uy, ei),Vr)vT)) uT>
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t

Ry(w) = J [DOF, ,(ur, w)|Ar(w) dB;(w),

By(w) J [DOE, o(ur, w)|Br (w) dr, Cyluw) = L [DOE, o (ur, w)|C (w) dr.

By Corollary 4.6,

~ ~

(0,)u,(Vy) = As(w) + By(w) + Ce(w).

Hence, by using (4.22), we obtain

~ 2q ~ 2q ~ 2q
3172E sup ||(0,w)ut(Vt)H2q < E sup HAt(w)H +E sup HBt(w)H +E sup HCt(w)H
0<t<T o<t<T 0<t<T 0<t<T
=: (A) + (B) + (C).

~

For (A), it is true by Doob’s inequality of sub-martingales and Burkholder’s inequality that

2q

T
L [DOE. 7 (ur, w)]Ar(w) dB(w)

(A) <C(29)E

Jy 1t w1t o]

<C(29)C1(2¢9)E dr

1

1
— 4q\ 2 3
<C(20)C (20)T" (E sup | [DUF, (s, w)] | ) (E sup |A7<w>||4q> ,

0<t<t<T o<r<T

where C(q) := (¢/q — 1)? and C;(q) is given in Lemma 4.7. Using (4.29), we compute that

1 1
A (w)* <CY (E s )" (B sup [Vo(w))
E sup [Ar(w)|™ <Cy sup _v-(w)] sup [V (w)]

0<r<T 0<7<T 0<r<T

<(CHOYE  sup H[D/a}ii(uz,w)] "

0<t<t<T

)

where Ca,C’y depend on the norm bounds of {V!H};<5 and {V'R};<;. With (4.24) for
[ =1, we conclude that

(A) < C'(q)(CANT)?0\/c1(4q) ey (8q)6%<c1<4q>+c1(8q>>r
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Using (4.24) with [ = 1 and Holder’s inequality, we have

! 1

~ —_—— 4 2 3
(B) <1 (E sup H [D(l)Ft,i(ubw)]H q) ' <E sup BT(w)\A‘q)
0<t<it<T - o<r<T

1

p— (E up \[Dw,tmt,w)]rq)?(@ sup )[DTlTé,Aut,w)]ng)g

0<t<t<T B o<t<t<T

<(CT)%\/c1(4q)c1 (8¢)ez (1 a)+er (Ba)T

and the same inequality holds true for (C), where C' depends on the norm bounds of
{(V!H} <3, {V!R};<o. Similarly, we can obtain the estimation on [D(2)Ft(u0,w)]71. This
finishes the proof of (4.24) for the [ = 2 case.

Let [ = 3. Assume (4.24) holds true for tangents up to the (I — 1)-th order. For the

estimation on [-th tangent map, by the inductive definition of [D(l)Ft(uo, w)] (see (4.19)),
it remains to show

(4.30) E sup HV(.)[D(Z_l)Ft(uO,w)](-)Hq < Ql(q)ecl(q)T.

0<t<T

This can be done as in the [ = 2 case by formulating Vt(lfl) in terms of [D(Z_I)Ff,t(uf, w)]

by Duhamel’s principle and using the inductive assumption on (4.24). O

4.4. Brownian bridge and conditional estimations. We want to further estimate the
growth of (4.24) with respect to Brownian bridge distributions using their SDEs, which
can be derived from the classical Cameron-Martin-Girsanov formula.

We begin with some classical estimations on heat kernels in the non-compact case.
Lemma 4.12. ([Sa, Theorem 6.1]) Let g € MF(M) and let p(t,z,y) be the heat kernel

functions of the g-Brownian motion on M. There exist constants by, cy,c2, k1 (depending
on m and the curvature bound) such that for any t > 0 and x,y € M, we have

(dg(@,9))?

(4.31) plt,z,y) < 1 e (bbat )
\/Voly Bl VOVoly Bly, V)

For later use, we would like to state a simplified rough version of (4.31): there are
constants ¢, (which depends on |¢g*|c0) and ¢y (which depends on |g*|2) such that

(4.32) p(T,z,y) < T e+,

Lemma 4.13. ([Li, Theorem 1.5]) Let g € M¥(M) and let p(t,z,y) be the heat kernel

functions of the g-Brownian motion on M. Let T > 0. There are constants c(i,T),
i < k—2, which depend on i, T and the curvature and its derivatives up to i-th order, such
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that, for all (t,z,y) € (0,T] x M x M, the i-th covariant derivative of Inp satisfies

(4.33) VO Inp(t, z,y)| < (i, T) (idg(x,y) + %) )

Let T'> 0. For z,y € M, the distribution of the Brownian bridge from x to y in time T,
i.e., the Brownian motion starting from x conditioning on paths that are at y at time T, is

Px,y,T(') = Epz ("XT = y) .
It is a probability on the bridge space
Cay ([0, T], M) := {w € Cul([0,T], M) : wo = z,wr = y}.

Proposition 4.14. Write P} 1 := p(T,z,y)Pyyr. Fiz Ty > 0. For any q € Ry and
T > Ty, there exists ¢ depending on m,q,T, Ty and |g|c2 such that for all x,y € ]\7,
(4.34) Fow @0 IVInp(T—txey)| dt < c(l+d(z,y))

. szny ~ .

Proof. By (4.33), there is some ¢ which depends on |g||c2 and T such that
T T
| Iwmp( - gl ar < evT e [t diy) dn
0 0 T—71
Hence it is true by Hoélder’s inequality that for tg € (0, min{1,7y/2}) small,
e

T 2 _ _ ¢t 1 o (T—tp 1
Teq SO [V Inp(T—t,x¢,y)| dt) <chq\/TIEHD* chqSO ;d(yny) dr | E[P* eQCq SO % d(xr,y) dr
z,y, E

z,y,T z,y,T

= :eQEq\/T(E) (to) (F)(to),

where (yt)se[o,r] denotes the Brownian motion starting from y e M. Let tg < Ty /2. Then
for (E)(to), by (4.32), we have

= 2eq {0 Ld(y-y) dr
(E) (tO) EP;E’T@ 0
— ¢to 1
— Ep, (ech 1 Ldrr) dr gy thx))
< 2Ty eI TR 2 560 Ld(y-y) dr

To show there is some small tg > 0 (depending on m, ¢, T, Ty and |g|c2) such that (E)(¢) is
bounded, we can use a trick from Driver ([D2, Lemma 3.8]) to compare it with Euclidean

Brownian motions. Find finite many smooth functions {f;}\_, on M with fi(y) = 0 and
d(z,y) < Z§=1 |fi(z)| for all z € M, where all f; have bounded first and second order
differentials on M. So for an upper bound estimation of (E)(t), it suffices to consider

Epue%qﬁ? IOl AT — (B (t)
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for any C? function f on M with bounded differentials up to second order. Let (y, U, B)
be the triple which defines the Brownian motion on M starting from y. By [t6’s formula,

X

f 51V (y,) dB,

0

t t
f@0|<‘szﬂvfbw)dBr+J;Af6w)m-<

where C(f) is some constant which bounds |Af|. Hence,
t
(E/)(t[)) < €2eq00(f) 'E]P’z (62@]%0 %HM;H d‘l’)7 where M. := J U;1Vf(y7) dB;.
0

The process Mj is a continuous martingale with Mj, being the zero vector and has quadratic
variation (M’; M"); < C’t for some constant C’ which depends on the bound of |V f|. So, to
show (E')(to) is finite for small ¢y, it suffices to show Ep, (e** o* FIMz | 97) is for M} being
in the one-dimensional process case. By Lemma 4.8, there exist a continuous martingale
M’ and a Brownian motion B’ on an enlargement (€, 7', P') of (2, F,P) such that M’ has
the same law as M" and

6/

Let a € (0, /2) By Lemma 4.9, there is some ¢ > 0 which depends on ||g|c2 such that
Es, (e %0,

@17} is finite. By the definition of the Holder norm | - ||a,

to 1
(O | dr < (o) B
0

er | dr < By o1

Hence, for tg = min{1,Th/2, (a(2eq)~1€)= /C"}, we have

OC”

o, (et ) <y ( Pscrly oo

For (F)(to), by symmetry of the bridge distribution,

T—
26q 52" d(xry) dr+22q§, O Edyr—ry) dr

(F)(to) = Epr e

1 1

1 5 £
R C) (IE Al fdee) dT) 2 (EP* 4q (" Ld(yry) dT) -

z,y, T y,x, T
By (4.31) and Markov property of p (see (4.36)),
(3T 1 AT 1
E[Pj’w’T€4chO %0 d(yr,y) dr _ E]P)y <e4cqt01§0§ d(yr,y) dr p(2T7yéT’x)>

1
_ cor—1 027
< QO2mTO m660(1+T)EPy€4th0 §¢ dlyry) dT'

Let tj < min{1,7p/2} be small. Partition [0,7/2] into 0 = 7% < 71 < ... < 7N < T2,
. : 1
where 7' := it{, and N := max{i,7" < T/2}, and chop the integral SgTd(yT,y) dr into
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pieces accordingly. Using the triangle inequality, we obtain

lT ir
2 2
L (yrry Z (J d(yt, ypi-1) dt + tod(yTz‘uy)> + JN d(yt,y-v) dt +tod(y v, y)

T

N
(J d(yt,yric1) dt + (N + 1 —i)tyd(y i, yrie 1) f d(y¢,y,n) dt.

Using the Markov property of the Brownian motion and Hoélder’s inequality, we see that

A tfl %T d d 2 d N N nt)(N+1_i)d(yl/ 7y,)
E]Pye cq 0 SO (Y-r:y) T < Sup EP eq SO (yt’y ) . H Sup ]EPI/ e to
y'eM i=1y'eM

N
N+1
= (o) [ [®)s,
i=1
where q := 8cqty L y; is the Brownian motion on M which starts from y' and Py is its

distribution probability. For (F)g, we estimate as in the first part. Note that (]\7 ,g) is the
universal cover of the compact space (M, g), although the choice of the f; may differ from
point to point, we can ensure their differentials up to second order are uniformly bounded.
So we can choose ¢, (for instance, ¢, = min{1,Tp,€'/q}) such that (F)p is bounded. Fix
such a t{, and estimate (F); using Lemma 4.12. We obtain some constant c(t;,) such that

(F)i < c(th)e@T (o) (N+1-0)*
where c¢g is as in (4.31). Hence, there is some constant ¢(7) depending on m, ¢, T, Ty and
g2 such that
1
Ep, (40t 5 d0m) dr) < oo(@,
Yy

So,
(F)(to) < co2™Ty™ oc(@)+eo(1+T)+eqty ' Td(z,y)

Putting the estimations on (E)(to), (F)(to) together, we obtain (4.34). O

Consider the Wiener space Co([0,7],R™) with the standard filtration (F)e[o,r7 and
let (Bt)seo,r] be an (F;)-Brownian motion starting from 0 with respect to a probability
measure Q on Fr. Let f : [0,7] — R™ be square integrable with respect to Lebesgue
measure. Define a random process (M) (o] on [0, T] satisfying Mg = 1 and 1té’s SDE

1
dM; = th<ft, dBy).

Then
M — e{ So<f-;-,dB (w So|f7|2 dT}

Since EQ(ei fo £+ 12 4yt < T, are all finite, we have by Novikov ([No]), that (M¢)¢efo,7 is
a continuous (F)se[o,r)-martingale, i.e.,

Eq (M) =1, Ve [0,T].
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For t € [0,T1], let Q: be the probability on Co([0,T],R™), which is absolutely continuous
with respect to Q with
aQ
dQ
Since M; is a martingale, the projection of Qt on Fr, 7 <t,is given by the same formula.
The classical Cameron-Martin-Girsanov Theorem ([CM1, CM2, Gi]) says that the process

(B; — Sé fr d7)iepo,1) is a Brownian motion with respect to Qr. In other words, we have
that the probability Q on Wiener space is quasi-invariant under the transformation T :
Co([0,T],R™) — Co([0, T],R™) : w +— w+ §, fr dr with

(w) = My(w).

-1
(4.35) dQ;J(w) — o350 Urw), dBr(w)—5 [ 1fr(w)? dr}

As in the compact case (see [Hs3, Theorem 5.4.4]), we can deduce the SDE of the
Brownian bridge on M from the Cameron-Martin-Girsanov Theorem. Let (Xt, Wt )efo,] be
the stochastic pair which defines the Brownian motion starting from x up to time 7. By
the Markov property of p,

T—t p(r —t
:p( 7Xt7y) :p( 7Ut7y) ::Et7 th[O,T)7

Fi p<T7x7y) p(TVr?y)

APy y 1
dP,

(4.36)

where p(t,u,y) := p(t, 7(u),y). Using (4.7) and the heat equation, one can calculate using
1t6’s formula to obtain

din 5 = (o' VE Inp(T — t, v, y),dBy) — |[VE Inp(T — t,u, y)|? dt.

Hence

oy 1| _ (S0 'V (T —rur ) dB {5 [VH Inp(T—7ur.9)|2dr}
P, |7,

Comparing this with (4.35), it implies

t
by := By — 2f u VBT = 7ur,y) dr
0

is a Brownian motion with respect to P, , 7 and hence Proposition 4.15 holds for ¢ € [0,T).
One can conclude that {U}e[o,7] is a semi-martingale on [0, 7] since

T
Ep, ., ( f IV Inp(T — 7, XT,y)ydT> <o
0

is also true on the non-compact universal cover space (]\7 ,g) by (4.34). In summary,

Lemma 4.15. There is a Brownian motion (bt)swe[o,1) such that the horizontal lift U of the
Brownian bridge x is a semi-martingale on [0,T] which satisfies the SDE

(4.37) dU; = H(Uy,e;) o (db} + 2H (U, e;) InPag (T — ¢, Uy, z)dt) .
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In other words, the anti-development of the Brownian bridge x (i.e., the pre-image via
parallelism, see Section 5.2 for more precise definition) is

t
Wiy =b + QJ UV Inp(T — 7,%,,9) dr.
0

Now, we can use Proposition 4.14 and Lemma 4.15 to derive a bridge version of (4.24).

Proposition 4.16. Let g € M*(M), k > 3. For z € ]\7, let (ut)sepo,r] be the solution
to (4.7) in (95(]\7) with vy € 05(1\7) For every Ty > 0, [, 1 <1 < k—-2,q¢g > 1
and T > Ty, there exist ¢;(q) > 0, which depends on l,m,q and the norm bounds of
{VZIH}Z/SZ, {VZ,R}ZIQ, and ¢;(q) > 0, which depends on l,m,q,T,Ty and the norm bounds
of {V¥R}y<1, such that

(4.38) EP* sup H D tt(ut,fw)]ﬂHq < &(q)et@D+d@9) gy e N

0<t<t<T

Proof. Using the cocycle property of the tangent map, it suffices to show (4.38) for ¢ = 0.
We show this by induction and in each step, we only verify it for the forward tangent map.

When [ = 1, it suffices to consider [ﬂl\ﬁ}(-,w)], whose SDE is as in (4.27) with
(4.39) dB; = db; + 20 'VInp(T — 7,%x,,y) dr,

where (bT)Te[O,T) is a Brownian motion for P, , v by Lemma 4.15. Hence the conditional
norm of |[[ DM Fy(ug, w)] Hq differs in distribution with the nonconditional case by a multiple

2a) o IV Inp(T—tx1,9)]| dt for some constant ¢(q) which depends on the norm bound of R, VR
and m, q. Hence by Hélder’s inequality and Proposition 4.11, we have

To<i<T NEx

(IEP* sup H [DD Fy(ug, w )) < ¢(2q)e TRy, (2@ IV Inp(T—txey)| dt,

This shows (4.38) for the [ = 1 case by Proposition 4.14.

Using the decomposition of [D(?) F;] and the first step conclusion, the I = 2 case of (4.38)
can be reduced to the estimation of

(V) =Epr  sup (6, @)u, (V)"

0<t<

Let A, B, C and K, f%, C be given in the proof of Proposition 4.11. Then

3172(V) < Eps sup Hgt(w))r + Epx sup Hﬁt(w))r + Epx sup Hét(w)qu

Fowr o<t<T 2T 0gt<T oy T 0<t<T

=: (A) + (B) + (C).
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For (B), following its non-conditional estimation in the proof of Proposition 4.11, we obtain

N

— 4q — 8¢
(B) <(CT)* (Ep;“ sup H[D(l)FLZ(u@w)]H Eps sup H[D(I)th(ui,w)]H )

W1 o<t<t<T 29T 0<t<t<T :
<(CT)%4 /¢, (4q)c, (8¢)ez (@A (4D +e1 (80) (+d(x.v)),

where C' depends on the norm bounds of {V!H};<3,{V'R};<2 and ¢}, ¢} are from (4.38) for
[ =1, and the constants can be chosen such that the same bound is valid for (C). For (A),
we use (4.39). Let

—_—

A, (w) = L [DOE, ,(u,, w)] A (w) dbs(w),

K?(w) = Jo [D’(lTﬁ;,t(uT,w)]AT(w) 2([117])‘)_1V>‘ Inp(T — 7, [XT]A,y) dr.

Then,

21-20(A) <Epr  sup HKtl(w)

HQq
x,y, T 0<t<T

—9 2q
+ Ep+ sup HAt (w) H

x,y,T 0<t<T

=: (A)1 + (A)a2.

Using the Brownian character of b, with respect to P, , 7, we can estimate (A); as in the
non-conditional case using Doob’s inequality of sub-martingales and Burkholder’s inequal-
ity. This gives

1 1
—_— 4 2 2
A); <C(2¢)C1(29)TY | Epx sup DWFE,_ (u,,w ). Ep+ sup |A[%)
P'z ’ P:r,y,T

29T 0gr<t<T 0<r<T

where C,Cy are as in the proof of Proposition 4.11. Using (4.29), we compute that

—_—

) . 2jq
(440)  Epr . sup |AJTS(CLPEpr  sup H[D(l)FOJ(uo,w)]H L VjeN,

T ogrg VT o<r<T
<7< <7<

where Cy depends on the norm bounds of {V!H},<2, {V'R};<1. Hence, by (4.38) for I = 1,
(A)1 <C'(q)(CANT)¥4 /¢, (4q)c, (8¢)ez (G (4D +e1 (80) (1+ds (x.9).

For (A)2, we have

3 g 6q
((A)2)° <Bps  sup |[DOFp(ur,w)][" By sup 4]
YT 0<r<t<T 29T 0<r<T
6q

T
Eps U IV Inp(T — 7.%0,y)| dr
x,y, T 0

Note that
6g

T T
Epx U IVInp(T — 7,x7,y)| dr| < Epx Teﬁq fo IVInp(T=txe.y)| dt.
x,Y, 0 z,Y,
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So by Proposition 4.14, (4.40) and (4.38) for [ = 1, we compute that

(A), < (Cg)2q\3/g’1(6q)g’1(12q)g(6q)e%(Cll(6‘1)“’1(12‘1)“(6‘1))(1”@’9)).

Hence (V) has the same type of bound as in (4.38) for [ = 2 as claimed.

Assume we have shown (4.38) for I < lp — 1 < k — 3. Using the induction assumption
and (4.19), we can reduce the estimation of (4.24) at [ = [y to the conditional estimation
of (4.30), which can be done exactly as in the [ = 2 step. O

4.5. Regularity of the stochastic analogue of the geodesic flow. Finally, we employ
the SDE theory in the previous subsections of this section to discuss the regularity of the
Brownian companion process u with respect to metric changes.

Let A€ (=1,1) = g* € M¥(M) be a C* curve. Each lifted metric §* in M determines a
horizontal space HATF(M) of the frame bundle space. For any u € F(M), let H(u,e;),
i =1,---,m, be the vector in H)TF(M) which projects to ue;. Since g* € M¥(M), the

map u — H*(u,e;),u € ]:(1\7), is C*~1 bounded. Hence the SDE

(4.41) dlu* = > H ([ e5) 0 dBj(w)
i=1

is solvable in F(M) for any initial |ug|* € Fy(M), z € M. In particular, if [ug]* € o? (M),
|u]* remains in (9?(1\7 ) and its projection to M gives the stochastic process of the §*-
Brownian motion starting from z. Let |F;]* : |[ug]* — |u/]* denote the low map associated
to (4.41). Let [DW|F] (-, w)], 1 <1 < k —2, be the [-th tangent map of | F;]* and denote

—_—

by [DO|F*(-,w)] its pull back map in T'F(R™) via the map (0, ). They have the
following regularity in A by applying Proposition 4.1.

Lemma 4.17. Let A€ (—=1,1) — g* € M*¥(M) (k = 3) be a C* curve. Assume H(-,e;)

has bounded norms (independent of \) for the covariant derivatives up to the (k — 1)-th

order with respect to the reference metric §°.

i) Let A — [ug]* be a C*=2 curve in ]-"(]\7) and let {|u/]*}ier, be the solution to
(4.41) with initial value |ug]®. Then there is a version of the solution to (4.41)
such that almost surely, |[u;|(w) is C*=2 in X for any t € R,.

ii) For each 1, 1 <1 < k — 2, the tangent map [DW|F (-, w)] is C*=27L in X. In
particular, for any v e Tl}"(M), the map A\ — [D(l)[Ft])‘(',w)] v is Ck=2-L,

~

Proof. Consider the stochastic process {ti;}ter, on F(M) x (—1,1) with

(4.42) dii; = Y H;(%y) 0 dBj(w), where H; = (H*(-,¢;),0).
=1
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It has the solution &; = (|us]*, A) for ¥y = (Jug]*, \), where |u;]* is the solution of (4.41)
with initial value |ug]*. Since (4.42) is a C*~1 SDS on F(M) x (—1,1), we have by
Proposition 4.1 ii) that for almost all w, the mapping iy (w) — W (w) is C*~2. Consequently,
for any C*=2 curve A +— |ug]?®, [w]*(w) is C¥~2 in X for almost all w.

For each I, 1 < 1 < k — 2, the SDE of [DW|F;]*(-,w)] was given in Section 4.1 and
it forms a C’k 1=1'SDS on TF(M ) As in Lemma 4.17, we can treat the one parameter
family SDEs of [DW|F (-, w)] as a C¥~171 SDS on TF(M) x (—1,1) when A — g* is C*
in M¥(M). So Proposition 4.1 applies and shows ii). O

For 0 <t <t <o, let |F, 0[] = |ug]* denote the flow map associated to (4.41)
and let [D( )[Ft t]’\(‘, w)], Il <k —2, be its I-th tangent map. As a corollary of the cocycle
property of | F, ] and Lemma 4.17, [D DU )[F;,E]A(" w)] is C*~2! differentiable in A and we
denote its ]—th differential by ([D(l)[ F5l (-,w)])gj) for j < k—2—1. Let |u]* be as in
Lemma 4.17 and let ([ut]A)g\j), j <k —2, be its j-th differential in A. We identify

(lur )Y = ([DO1F, P (e, w)]) .

In the following, we show the L?-norm bounds in Propositions 4.11 and 4.16 are also valid
for ([D(l)[Fﬂ])‘(-, w)])y) by a detailed analysis of their SDEs.

Endow ]-"(]\7) x (—1,1) with the product metric dgo x d(_; 1), where dgo is the induced
metric of dy in F (]\7 ) and d(_1) is canonical. Let V be the §" Levi-Civita connection

and 6, w be the associated canonical form and curvature form. Let (H)‘)E\j)(u, ), J<k-2,

be the j-th differential in A of the maps H*(u,-). The SDEs of ([D(l)[Fﬁ]’\(-,w)])E\j) can
be formulated by using Proposition 4.3. We state them as follows.

Lemma 4.18. Let |u]* be as in Lemma 4.17.
i) The Stratonovich SDE of (|u, M)\ in TF (D) is
d(lne S = V() E (el 0dBr) + (HNY ([w ), 0dBy).
ii) The Stratonovich SDE of (8, ), (([ueM)Y)) in TFR™) is

(9( [ )Y —de(HA lu ], odBy), tk)l)
w(uM)) = de (H(u, 0dBy), ([N + V(DY) (@ (A (L] edBy)))
= (D ([, odBy) )
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iii) The It6 SDE of (6, ), ((luY)\) in TF®R™) is
a(O(lu) = do (H (el dBy), (lu),
(VN [l e)dd) (H ([l e), (V)y) dt

+d6 (V(HM[ue e) B ([w], e )
+df ( ([ ,ez>,v<<tut1*>§”>HA<tut1&ez->+<H*>&”<tum,ei>) dt,
)

Ml e, (M)

MIEN [l e + (EHY D (ule)) dt
dB))) + = () (], dBy))
V() (= (HN (] e)) )t
(H) ([ ) )t

Note that Ker(d) = VT F(M),Ker(w) = HTF(M) and for any v!,v2 € HTF(M),v3 ¢
VT]-"(M), the bracket [-, -] satisfies the property (cf. [Hs3, Lemma 5.5.1])

[v',v?] e VTF(M), [v',v*] e HTF(M).
Using these facts, we can simplify the SDEs of (6, w) (([ut])‘)g\l)) at A = 0.
Corollary 4.19. Let |u]* be as in Lemma 4.17.
i) The Stratonovich SDE of (8, @)|y,)0 (([ut]A)él)) on TF(R™) is
(O M) = = (M) o dB;,
d(=([u ) = ()~ Bl 0 dBr, 0([u )5 [l + = ((HN (], 0dBy)).
ii) The It6 SDE of (6,%) o ((luY)5) on TFR™) is

d(O0(lu M) = @) dB, + Ric(wd(|u M) dt + @ ((HN (1], e:))e; dt,

d(@([udM)”) = (n]®) " R(u)°dBy, [u°0(ludM)§)) [l + @ (ED ([0, dBy))
+ ([l R (Jul e, [ ([u])§)es ) [w]” de
(1l (V1 wl%e R) (Ll ug]°6([u1)5) ) Lurl® de.

Using Corollary 4.19 and It6’s formula, we can express ([ut]’\)(()l) using DW|F, %0, w)

by Duhamel’s principle. This can be verified as in Corollary 4.6. We omit the proof.
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Corollary 4.20. Let |u]* be as in Lemma 4.17.
i) On TF(M),
(a5 = [POLET (o] ) | (Lol + Vel(lu)),

where
Ve((lu)g) = fo [ DOLF (L1, ) | (N (L0, 0d By (w)).

ii) On TF(R™), the Ité form of (|u|* )(1) (0, @) w10 (([ut])‘)(()l)) is given by

() = [DOTRI (el )] (m ) + e,

—

VellwE) = | (PO 0]
(= (N (10, e))es dr, = ((HN (|01, dB,) ) -

To describe the second order differential of [u;]* in A, we use the horizontal /vertical sum
decomposition of TTF(M) of §°. By Lemma 4.18, it remains to find the SDEs of

() = 2 () = TP

Lemma 4.21. Let A € (—1,1) > g € M¥(M) be a CF curve with k > 4. Let A\ — |ug]*
be C*=2 and let |u]* be as in Lemma 4.17 with ([ut])‘)g\l), ([ut])‘)E\Z) defined as above.

i) The Stratonovich SDE of (|u]")\? on TF(M) is
(M) =9 (L)) H (], 0dBy) +v2>( lu Y, (M) A (], edBy)
+ R(H ([ue], 0dBy), (lu) ) (a1 )
+29 (L)) (5 Yl 0dBe) + (HY) P (), 0dBy).
ii) The Stratonovich SDE of (6, %), (([ue]M)$Y) on TF(R™) is

a((6.) (M)

— d(6, =) (H)‘([ut]’\, odBy), ([um)(f)) +V(([uMP) (0, ) (HN|w]*, odBy)))
(1
A

+(0,) (VO (), () E (el odBy) )
(0, @) (RO (el 0dBy), (L)) (1))
(0, 2) (29 ((u)P) (BN (e 0dBy) + ()P ([u,] 0dBy) )
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iii) The It6 SDE of (6,),p ((lw]*)$) on TF(R™) is
a ((0.9) (1 A)&”))
|

(
) L))
)

Again, we can simplify the SDEs in Lemma 4.21 at A = 0.

Corollary 4.22. We retain all the notations in Lemma 4.21.
i) The Stratonovich SDE of (9 w) 10 (M) on TFR™) is
a((6.2) () = (=P 0 dBe, (wl’) ™ R(1wl” 0 dBy, 0w 1)) [°)
+(0,%) (v@ (Y5, (e )6”) B ([, 2dBy) )
+(0,) (RO (1], 0dBy), (L)) (L))
+(0.) (29 ()6 () (0], 0dBr) + (1) (], 0dBy))
(Lu
!

0,w

ii) The It6 SDE of 0,0 ) ) on TF(R™) is
d(O((|w1)5)) == ((lud™)§)dBy + Rie(lu0((ue]*)5)) dt
+ @p(uI), (), dBe dt) + 80 ()Y, dBy. dt),
where ®g(-, -, dBy, dt) is given in (4.15) for |u;]° and 2
o> (([uV)g”, By, dt)
— = (29((LuM$) () (il ) + () (] e0)) e de
0 (| E (el ), 29 (L)) () (el ) + (Y (il )] ) at,

2The upper script %2 is to indicate that CDg’Q, ®%? are associated with ([D(O) LE: (-, w)])f).
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and the It6 SDE of wlllt]‘)((lut])\)é2)) on TF(R™) is

(@ (M) = (el R ([l dBe, [0 Y)E) ) L]

[u1) 7 R (Jurl e, [P ()P )er) ] de

[0el) 7 (V(elen)R) (Lueles, [ue°0((uel ) ) Ll dt
+ ()5, (el dBr de) + 9%(([ue V)5, dBr, db),

where ®g(-, -, dBy, dt) is given in (4.15) for |u]° and

@2 ([w ), dBy, dt) = (29 ((luM)E") () (el dBy) + (H) P (], dBy) ).
By Corollary 4.22 with Lemma 4.5, we can formulate ([ut])‘)((]z) and (6, w)([ut]k)((f) using

DM | F>]°(-, w) by stochastic Duhamel principle. We only state the conclusion.

Corollary 4.23. We retain all the notations in Lemma 4.21.

i) On TF(M),

()6 = [DDLEI (ol ) | (L0l + ¥ g [ POLEP (Lol w)| ((Luol)E)

uo] )0
+ Ve (™)),
where
Ve(([uH) = f (DO )] {72 (S, () O (10, o)
0

- VvO(IDWF H(tuoml,[ NE T (Luol)SY) HO(lur 1, 0d B,)
+ R(H([u-1°, 0dB.), (lu 1)) (lur1Y)5”
—R(HO([ ur]°, od B.), [D(ll ]m ]A) (1) )[D(l)[ ] 1([uo] )(

+ 2V (([u )§Y) (HN) S ([ur1, 0dBy) + (A 0,cdB,)} .

ii) On TF(R™), the Ito form of (Jus|* )(2) (0, @), 0 ((lut])\>(()2)) is

() = [DOTER L, w)] (L)
+ (0,2 (V g | D1 (ol ) | (00 )E)) + Vel (D),
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Ve = | [DOE 0l w)] { (@0 ) (L P (e B )
— (@9, @) ([P F 11 (o), [DHEA N ([uolY)S”, dB-, dr)
+ (257, 02) ([, dBr dr) = (@ (@2 ([ )6, (M) e

(10 Rl e, [0 (@22 (1Y, (L 1)) 1) ar )

Let [D@|F;]%(-,w)] be the restriction of the second order tangent map of |F;]° on the

space T(l 1. ]A)(l))Tlu]O]:(M). We can deduce from Corollary 4.20 and Corollary 4.23 that
u]Y,([u]?)

(4.43) (L)Y, (e M)§) = [POLEPC w)] (([uolM), (luol)§Y)
+ (ValuME, Va(ueH)ED) ) -
Continuing the discussions in Lemma 4.18 and Lemma 4.21, we can derive the SDEs for

the differentials ([ut]/\)g\j), 3 < j <k — 2, and their pull back ([utP‘)(Aj) via the (6, w)-map,
whose It6 forms involve {V(l')(HA)E\J/)}]K]-J/H/SJ-, (VO RN ;. We omit the details.

The SDEs of ([DO|F](, w)])E\J) can be formulated as in Section 4.2 by analogy with

the deterministic case. We only state the SDEs for the (I, j) = (1, 1) case using the reference
connection of §°, whose calculations can be done as in Lemma 4.5.

Lemma 4.24. Let A € (—1,1) = ¢g* € MF(M) be a CF curve with k > 4. Let \
(luo]*, vy) € TF(M) be C* and write

(Lol ) s= (LE P (ol [DDLEP (ol w)]va )« (v = (w57 ve
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i) The process (vt)‘)g\l) satisfies the Stratonovich SDE
) =V (W) N (e, 0dBy) + VO (), (a3 B (], 0d By
+ R(E(u] e), (M) + V) EN) Y (], 0dBy).

ii) The process (0,w)|y,» ((v?)E\l)) satisfies the Stratonovich SDE

= d(6, ) (H(lul, 0dB,). (o)) + V(D) (6, @) (H (], 0dBy)) )
(VO 2, ()Y B (el 0dBy) + RO (el edBy), (u 1)) v?)

+(0,2) (VO EN ([, 0dBy) )

iii) The Ito SDE of the process (6, ), (v))1)) is
d((6,=) (v
= (o, w) ( q (B, ()Y) + V(D) (0 ) (HM (w1, dBy))

+ (0, SN (ul, dBy) + RO ((ul e). ([u]))?)
MY (il dBy) ) + VN (e, ) {0, @) (B ([, e0), (7))
[ul e0))) + (6, ) (VO (v (L)) A ([l e0)
vt +(0,2) (VOO (N (el e) | .
As before, the formulas in Lemma 4.24 can be simplified at A = 0.

Corollary 4.25. Let A\ € (—1,1) — ¢g* € MK(M) be a C* curve with k > 4 and let
A= (lu]},vp) e TF(M ) be Ct. We retain all the notations in Lemma 4.24.

i) The process (8, ), (V1)) satisfies the Stratonovich SDE
a((0,=)(vDF) = (=D 0 dBr, ([l ™ R(lud] 0 B, 0((v)57) Luel°)
+(0,2) (VO (v, () B ([ odBt)>
+ (6, @) (R(HA([uﬂ odBy), ([ugM)V)v) + V() (HY) Y (| t]’\,odBt)).
ii) The Ito SDE of the process 6),,1x ((v; M ) in TF(R™) is
A (

d(O((v))) =@ ((v))dB; + Ric([ug°0((v)§))dt
+ ®(v), ((u MY, dBy, dt) + B4 (v, (lu MY, dB, db),
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where ®g(-, -, dBy, dt) is given in (4.15) associated to |u;]° and 3
(v (LG, By, dt) = 20 (V) (HN)E ([, ) exdt
0 ([H(url” e0), VOO E (0], ) |)
The Ito SDE of the process wy,,pr ((v))S) in TF(R") is
a(@ (D)) = (l”) R (L l°dBy, [ 0((v)5) ) Lug]”
()R (e, [ = () )er ) L] dt
(Ll (VL) R) (Ll e Lu 10D Ll e
+ o (v (L5 dB,db) + @5 (), ([ V), dBy, dt),
where ® (-, -, dBy,dt) is given in (4.16) associated to |u;]° and

P20 (L6 B dt) = (V) ([l dBr) )

We can formulate (vf‘)él) and (0, w)(vf‘)él) by stochastic Duhamel principle.

Corollary 4.26. We retain all the notations in Corollary 4.25.

i) The process (Vt)‘)(()l)

(VN8 = [DDLEL (o]’ w) [ (v)S) + V(oIS [DDF (w01, w) ] (vE) +Vel(v)§

where

Ve((v)g) = fo (DD (1%, )] (T HENS (1%, 0dBr))

has the expression

1))

ii) On TF(R™), the process (Vi‘)((]l) = (Q,W)ludx((v?)[()l)) has the expression

()8 =DOLEI o], w)] ()6 + (6, ) (T (Lol )§H DD LET (o], ) ()

+ V(M)
where
VD - | [ DO (% )] { (@, 011 (62, L ). B )
0

~ (=(TEDENP (01, e))eis 0) dr}

3We use the upper script ! to indicate the functions @é’l, ®L! are associated with ([D(1> LF: (-, w)])(;).
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Proof. By a comparison of the SDEs in Lemma 4.24 and Corollary 4.25 with those in
Lemma 4.5, we can compute as in Corollary 4.6 to derive i) and ii). We note that for ii),

\z((vi‘)él)) has an extra term

= (0, ([l 7R (Jur e, Lo 120 (V) (EE ([ur1%, ) ) Lur1°) dr,
which turns out to be zero since H(V(Vg)(H’\)(()l)([uT]O, e;)) is zero. O

We are in a situation to state the norm estimations on the differential processes.

Proposition 4.27. Let A\ — g € M¥(M) be a C* curve with k > 3. Let = € M and
A — |u* e (’)gA(]\fo) be a C¥=2 curve in F(M) and let {lue] o) be the solution to
(4.41) with initial [ug]*.
i) For every q =1 and (I,j) with 1 <1+ j < k — 2, there exist (15 (q) depending on
m,q and the norm bounds of {v(l’)(HA)&j/)}jlnglJrj/sl_i_j, (VO RN g, and .5 (q)
depending on (l,7),m,q and the norm bounds of {V(l/)RA}l/@, such that

G)?
(4.44) E sup ([1)“41%]%%,w)])A < ¢ (@)t DT VT e Ry
o<t<t<T

ii) Let Ty > 0. For each ¢ > 1, (I,j) with 1 <1+ j <k—2 and T > Ty, there exist
Q/(lyj)(q), which depends on m,q and the norm bounds of{V(l')(H)‘)g\] )}j/sj,l/ﬂ'/slﬂ‘,
r<is and ¢, - (q), which depends on (1, j), m,q,T, Ty and the norm bounds
VO RN g, and ¢ hich depends on (1, j T, Ty and th bound

of {VW R y<1, such that, for any x,y € M,

(129 1F, P )]

q
/

<y (@)e DT )

(4.45) Eprs  sup

=0T 0t <i<T

By using the SDEs formulated in Section 4.5, the estimation in (4.44) can be obtained
using (4.24) and the estimation in (4.45) can be obtained using Lemma 4.15 (4.34) and
(4.38). The proofs are similar to the second steps in the proofs of Proposition 4.11 and
Proposition 4.16, respectively. We omit them.

5. THE FIRST DIFFERENTIAL OF THE HEAT KERNELS IN METRICS

Our main result in this section is a first step of the proof of Theorem 1.3.

Theorem 5.1. For any ¢° = g e M¥(M) (k = 3), there exist v € (0,1) and a neighborhood
V, of g in M¥(M) such that the following hold true for any C* curve X € (—1,1) — g* € V,.

i) For any x € M and TRy, A — pNT,x,-) is Ot in Ck’L(M) with

(5.1) (Inp) (T, 2, ) + (o) V() = 65(T,2,1),
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where p*(y) = (dVol*/dVol°)(y) and ¢}, is as in (5.16).
ii) Let To > 0. Forq > 1 andl, 0 <1 < k — 3, there are constants c (;,1)(q) which

depend on.m,q, T, Ty, |g*|ci+s and |X*|cis2 such that for all z € M and T > Ty,
(5.2) VO (Ta,)| < enunl):

~

iii) The function x — §(p )( (T, x y) (y) dVolza(y) is continuous for any uniformly

continuous and bounded f € C(M )

5.1. Strategy. We show Theorem 5.1 by describing the C'* vector field Z%’l such that (1.7)
holds true. Before that, let us recall some classical results for parabolic equations.

Let D c D; x Dy with Dy being a bounded interval of R, and Dy being a bounded
connected open domain of M. For g € M¥(M), consider the parabolic equation

(5.3) Lg:= (5 ~Ag=r.

where A is the §-Laplacian on C? functions on M and r is a continuous function on D. By
a solution ¢ to (5.3), we mean a function ¢ on D which satisfies (5.3) and all the derivatives
of which appear in Lg are continuous functions on D. Such a ¢ can be smoother, depending
on the regularities of both L and r. For instance, ¢ is C® if both both L and r are C*. In
our case, L varies C*~2 Holder with respect to base points and ¢ is mostly C* Holder in

general even in case r is smooth.
Lemma 5.2. ([Fr, Theorem 11, p.74]) Let L be given in (5.3) which is C*~2 and Hélder
continuous with exponent v. Assume r in (5.3) is such that

D'Dlr, 0<n+2<k—-21<l,
are Hélder continuous with exponent v, where DC means the b-th differential form with
respect to the a-coordinate. If q is a solution to (5.2), then

D'Dlg, 0<n+2<kl<l+1,

exist and are Hélder continuous with exponent t.

In particular, if r is .-Holder and ¢ solves (5.3), Lemma 5.2 shows that all the differentials
of ¢ up to the second order (where 0/0t is considered as second order differential) exist and
are (-Holder. The next lemma from [Fr| further shows these differentials have bounds
completely determined by the bounds of ¢ and r. For P = (1,z) € D, define

dP = Sup d(P7 Q)7
QeD(7)
where D(7) is the intersection of the boundary of D with the half-space t < 7. For a
function f on D and any non-negative integers n, j and for ¢ € (0,1), define

J J
|f‘n7j = Z Nn,l[f]7 |f|n,j+L = |f’n,j + ZNn,l+L[f]
=0 0
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where

Nualfl = Ysup {arDLi(P)|}

PeD

_ . n+l+c  m+l+e ’vaf(P)_Déf(Q)’
le_:,_b[f] = ZP?SED {mln{dp"" + ’dQ+ + } . d(P’ Q)L } ,

and the summation is over all the differentials of order .
Lemma 5.3. ([Fr, Theorem 1, p.92]) Let L be as in Lemma 5.2. There exists some

geometric constant k (which depends on v, |g|lc1) such that if |rl2, < 400 and q is a
bounded solution to (5.3) and all its derivatives appearing in Lq are v Holder, then

qlo2+. < K(lglo,0 + [7]2,0)-

(Both Lemma 5.2 and Lemma 5.3 were stated in [Fr] for domains in the Euclidean case.
They apply to the manifold case since (5.3) can be treated locally in coordinate charts.)

A companion notion of a solution to a parabolic equation is a solution in the distribution
sense. Recall that the distributions on the domain D are the linear continuous functionals
on the test function space C°(D) of compactly supported smooth functions on D. Given
a distribution g on D, one can define its weak derivative of any order «, denoted by D“"Vq,
as a distribution on D by letting

(D**q)(f) := (~1)lg(D[), ¥f € CZ(D).
Any locally integrable function ¢ € Llloc(D) can be identified with a distribution by letting

a(f) = fp afdt x dVol, ¥f € CF(D),

and hence its weak derivatives of any order always exist. Let L be as in (5.3). The L
distributional derivative of a distribution ¢ on D will be denoted by L%¢q. Using mollifier
and Lemma 5.3, we have the following classical result.

Lemma 5.4. Let g e C*(M) and let L be as in (5.3). Assume r € C%(D) for some 1 > 0
with |r|y, < . Then for any q € C(D),

LYgq=r = Lg=r.

As a corollary of the above lemmas, we have the following,.

Lemma 5.5. Assume there are locally L' integrable functions {¢}(T,z,y)} on

weM ,JTeR 4
M which are continuous in A-parameter and are continuous in (T,y)-parameter, locally
uniformly in X, such that, for any f e CF(M),

(1)
(5.4) ( [ 5w e deF(y)) ~ [ 1@ T ) Vo).
M by M

Then, Theorem 5.1 1) holds true.



64 FRANCOIS LEDRAPPIER AND LIN SHU

Proof. Let T € Ry and x € M. If (5.4) is true, then for any f € C2 (M),
| 1) (AT ) = P T )) aVl)
Jff (T, y)p N, 2, y)p () dVol° (y)dA

(5.5) :j&f@(L¢%ﬂ%y ) )R ) o)

where pj\ = dVOlX/dVOIO and the second equality holds by Fubini theorem. Note that if
a continuous function ¢ is such that {+ ¢(y)f(y) dVol(y) = 0 for all f € CF (M) and a

volume element Vol of a C? Riemannian metric, then ¢ is zero. Hence we can conclude
from (5.5) that

~

(5.6) PMT, 2, y)p M y) — p°(T,2,)p° J SL (T, y)pN (T, 2, ) (y)dX

since the functions appearing on both sides are all continuous in y-variable and A-variable.
Since A — p* is C*, (5.6) implies the existence of (p)‘)f\l)(T, x,y) for every y and

67 V(T ay) 0 @)+ N Tz, y) - () V() = 6M(T )N T, 2, 9)0" (1)

Then (5.7) implies that (p)‘)g\l)(',a:, -) is a continuous function on Ry x M since we have
the continuity in the (T, y)-coordinate of both p*(T, z,y) and ¢} (T, z,y) by assumption.
Shrinking the neighborhood V, of g if necessary, we may assume there is ¢ > 0 such that

pNT,x,-) e CF (M ) for all A. Since it is a local problem, for (7, y) € R4 x M, we can also
restrict ourselves to a bounded domain D containing (7T,y). Note that L*p* = 0. Lemma

5.3 implies [p* (T, z,-)|0.2+. < o on D. For each z € M, since (p’\)g\l)(T,:U,y) is continuous
in (T,y), its weak derivatives in (7, y) of any order are well-defined. So

(5.8) LA (N, ) = @YOYPNT, 2, ) = () VpNT, 2, ).

We can handle the equation locally. Shrinking the domain D to D; if necessary, we deduce
from [p*(T, z,-)|o.2+, < 00 on D that \(LA)E\I)pA(T,L )|2,, < o0 on Dy. Since (p’\)E\l)(T,x, )
is continuous, Lemma 5.4 implies that (5.8) holds true in the usual sense, i.e.,

(5.9) LTz, ) = — @) VNI, ).

Then we can apply Lemma 5.3 to conclude that |(p ) )(T z,-)]o,24. < o0 on D; and apply
Lemma 5.2 to conclude that (p )g\)(T,ZL‘,-) e C* (D). The norms of (p/\)E\l)(T,a:,-) in
C*+(Dy) are locally uniformly bounded in A by using (5.9), Lemma 5.2 and Lemma 5.3. So
the continuity of A\ — (p)‘)f\l)(T, x,-) in C’(M) is improved to the continuity in Ck’L(M). O
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For Theorem 5.1, it remains to find a candidate ¢} (7T, z,y) for Lemma 5.5. Let z € M
and let [ug]* € o? (M). Recall that the solution to the SDE

Z Ae odBZ( )

with initial value [ug]* projects to be the Brownian motion |x;]* on M starting from z and

the heat kernel function p*(T, z,-) is just the density of the distribution of w +— |x7]*(w)
under Q. Hence for any f € CL (M), we have

j F (T, 2, y) dVol (y) = E(f(|xz ] (w))

and the equality continues to hold if we differentiate both sides in A. Choose A +— |ug]* to
be a C¥=2 curve. By Lemma 4.17, for almost all w and all t € Ry, A — |u;]N(w) is C¥~2.
By Proposition 4.27, the differentials ([ut]A)g\J)(w), j < k—2, are L' integrable, uniformly
in A. Hence,

(E(quTﬁ(w))))i”
(5.10) E ((Vigp (F o M(lur* @), (L) w) ) )
(5.11) =f E (V3. Dr(lur) )y, | erP @) = v) -, 2.) dvol* ).
M

Note that (5.11) holds for every choice of |ug]* € ©%" (]\7 ) at A\. For some technical

considerations which we will mention later, we choose [ug]* in ©9" (M) at random with a
uniform distribution normalized to be probability 1 and then choose

[ = WM (W) ol Xe (—1,1),

where [ﬁo]}‘ is some fixed C* curve in F(M ) with [ug] e 07 (M). Write E for the new
expectation when the random choices of |ug]* are taken into account. Then

(5.12)

<Ef([XT] ) J (<V’\ ), D ( [uT] ( ) > ’ x| w) = y) -p’\(T,x,y) dVol)‘(y).
For any C* bounded vector field Y on M , let

(5.13) BAV)(w) = E (@4 (v.w)| [xr(w) = y) |

where

(5.14) ®} (Y, w) := (¥ (|xrMw)), Dr(lurM) (w)),.
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We will show the linear functional 51\ is such that Ei(Y) is C! in y variable, from which
we can deduce that

(5.15) 23 (y) 1= E ( Dr(lur )P ()| [xr 1 (w) = )

is a C1 vector field on M. Hence, we can apply the the classical integration by parts
formula to (5.12) and compute that

(B (lx ﬁ(w))))(”

J fly DIV)\ )‘1 <z y), VA In pMNT, z,y) >)\) (T, z,y) dVol*(y).
This gives a candidate of ¢} for Lemma 5.5 as

(5.16) oA, z,y) = <(D1v)‘ M) + <Z ), V:InpNT, z,y >>\)

To justify that (5.16) is well-defined, we need to show the C'* dependence of ai\(Y)(y)
in y-variable. Let V be a smooth bounded vector field on M and let {F*}r be the flow it

generates. To compare 5}\(Y)(F5(y)) with $§(Y)(y), our strategy is to extend every map
F* on |x7|*(w), the endpoint of Brownian motion paths at time T, to be a map F* on

Brownian paths up to time 7T'. Let @i denote the product of the probability P} with the
uniform probability on ©9" (]\7 ) for the choice of |ug]*. We will ensure the maps F* are
such that @i\ o F? are absolutely continuous with respect to @i. Clearly, for any bounded
measurable function f on M ,

(5.17) E(@3(Y,w)f(lxr*w))) =E (B301)()f ()
(5.18) ~ [BOIE I E T2 o) dVoP (),

where the first equality holds by the definition of conditional measures and the second
equality holds by changing the variable to F*(y). The left hand side of (5.17), after a
change of variable under F*  is equal to

=)
— dP, o F*
E @}\oFs,foFs.%O/\
P

—A
_ P o F
(5.19) :JE q)ioFS-d%oA
P

x| Mw) = y) F(FS(y))pN(T, @, y) dVol*(y).
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Since f is arbitrary, a comparison of (5.18) with (5.19) implies that

AV (F*(y)) =E (@} [xr*(w) = F*(3))

d@;‘ oF?
AP

T

pA(T,:E,y) dVol* )
p)\(Ta 5137F8?/) dVOlA o Fs Y

(5.20) =E<@§OF@

x| (w) = y)

Note that p*(T, z,y) and the volume element Vol* are C* in the y variable. So the differ-

entiability in the s parameter of ai(Y)(F *(y)) will follow from the differentiability in the
s parameter of

—A
— dP. o F*
(5.21) E(®)oF o=
dP,
In order to show this differentiability in s, we will show that our one-parameter family
of maps F* satisfy the following properties (see Proposition 5.23, Proposition 5.29 and

x| w) = y) :

Proposition 5.30), where all the integrals are taken with respect to @;\ conditioned on
[xr]M(w) = y.

i) @i o F? is absolutely continuous with respect to @i and the Radon-Nikodyn deriv-

ative d@i\ oF?/ d@i is LY integrable for ¢ > 1, locally uniformly in the s parameter,
ii) the differential of d@i oF*® /d@i in s is - (d@;\ oFs/ d@;\), where &5 is L? integrable
for ¢ = 1, locally uniformly in the s parameter, and

iii) ([uT]’\)g\l) o F? is differentiable in s with the differential stochastic process L9 inte-
grable for ¢ = 1, locally uniformly in the s parameter.

With these three properties, we will obtain

T s\ A s __y s
(@%\OFSW> :éioFSQM‘F(@%\OFS)/M
s

dP) dP) *dP)

T
and this differential is absolutely integrable, locally uniformly in the s parameter. Hence
(5.21) is differentiable in the s parameter and we are allowed to take the differential inside

the expectation sign. The uniform continuity of Z;’l(y) and Div)‘zé‘il(y) in T and y will
follow from (see the proof of Theorem 5.1 with k& = 3)

iv) the uniform continuity in 7" and y of

i)\ s
E( ®L||xr ] (w) = y) and E ((q>§ o F* . C”PZH;F)’O

x| (w) = y) :

The major part of the remaining subsections is devoted to the construction of F® and
the verification of its properties i)-iv) mentioned above, which will conclude i) of Theorem
5.1. We will discuss Theorem 5.1 ii) and iii) in the last subsection.
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Fix T > 0. For each y € M , we will construct a one parameter family of maps Fj on
Brownian motion paths starting from y up to time 7" with Fj  being its conditional map
on paths that will arrive at x in time 7. We will achieve this in two steps: one for the
SDE description of Fy and the other for its existence by Picard’s iteration argument. The

desired map F* will be the collection of all F5 .. But, we need to justify the meaning of

@} o F* and d]P’w oF?® /dIP’x since ®} and IP’x are associated with the diffusion paths from z.
This and the verification of i)-iv) will be done in Sections 5.4 and 5.5. Finally, in Section
5.6, we will show the assumption of Lemma 5.5 is satisfied and will give the estimations in
(5.2) by an analysis of za\Jl(y) and Div)‘zé‘il(y) using the SDE theory.

5.2. A description of F;. In this part, we fix T'e R". Let y € M and Bo € 02(1\7) For a
smooth segment ¢ — ay = (a1, , ) € R™, t € [0,T], with ag = o, let 8 = (Bt)te[O,T]
in ©9 (]\7 ) be the unique smooth segment with initial 3, satisfying the differential equation

— datz
VB, —g (Biei) - =

In the language of Section 4, this means that 3 is the transportation (or development) of
o in O9(M) with starting point 5, using the parallelism differential form (0, o). The Ito
map Zg : C°([0,T],R™) — C;([0,T], M) is given by

(5.22) Iz, (@) :=m(B) = B,

where 7 is the projection map from OZ (M) to M. It is invertible since « for (5.22) can be
uniquely determined by the equation

dO[t

(Bt) 1V%5t7
where ¢ ©O9 (M ) is the horizontal lift of 3 with initial value 3, i.e.,
— = =1
vQﬁt = H(Btaﬁt VQﬁt)-
ot ot
For g e C,r([0,T1, 1\7), its Z-preimage Z= () is called the anti-development of 5 in R™.
0

For a smooth segment (or curve) 8 = (8¢)¢e[0,7] o0 M, the classical parallel transportation

map //fht2 of tangent vectors along the segments (8;)e[s,; 1,] (0 < t1 < t2 <T) is given by

P i_l ~
141, (V) = By, 0 By, (v), Vv e Ty, M,

where 3 is a horizontal lift of 3. This definition is independent of the horizontal lift chosen
since if ﬂ is another horizontal lift of 3, then Bt B.Bo 66 for t € [0, T] and hence

BtQ o (Btl)_l = B1,80 Bo ° ((Bo)_lgogt_l ) =By, OBt_ll-
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The Itd6 map and the parallel transportation map can also be defined in the stochastic
case. Call an O9(M)-valued continuous stochastic process 8 = (Bt)iefo,r) horizontal if there
exists a R™-valued continuous stochastic process o = (o1, - ,at7m)te[07T] with ag = o

such that § solves the Stratonovich SDE

m
(5.23) dpy = Z H (B, €:) o day.

i=1
For a continuous stochastic process (Bt)se[o,7) on M , its horizontal lifts are those horizontal
processes 3 in O9 (]\7 ) projecting to it and its anti-developments in R™ are those « satisfying

(5.23) (cf. [Hs3)). For a fixed y € M and Bo € (92(]\«/[/), (5.23) is uniquely solvable for every
semi-martingale a and the It6 map

IBO(a) =7(p) =0
is well-defined. In the sprit of Section 4, IBO (c) is the projection process of a transportation

(or development) of a in O9(M) using the parallelism differential form (¢,z). The one-

to-one correspondence between «, 3, and 3 for semi-martingales is discussed in [Hs3].
For a semi-martingale 8 = (8)¢e[0,7] On M , its horizontal lifts 8 are uniquely determined

by the distribution of 3, (cf. [Hs3, Theorem 2.3.5]). Hence, for almost all w € ©,, we can

define a stochastic ‘parallel transportation map’ //tﬁ1 +, of tangent vectors along the path
segments ([¢(W))se[r,1o] (0 < t1 <t2 <T') by letting

J— 771 ~—
//tﬁ1,t2 (V) = Btz o Btl (V)7 Vv e T,Btl(w)M'

As in the deterministic case, this definition is independent of the horizontal lift 8 chosen.
Each //t'B1 1, is an isometry between Tﬂtl(W)M and T5t2 (w)M with the inverse map

—1 - —-—1 ~
(//fl,tg) (V/) = Btl © Btz (V/)7 VV/ € TﬁtQ(W)M
Moreover, the parallel transportation maps // t617t2 also satisfy the cocycle property

//g,tsz//i,tzo//tﬂlh’ Vostista<tz<T.

Let V be a smooth bounded vector field on M. For each Yy € M , we obtain a smooth

curve s — F5(y),s € R, with

W) v,

Let T' > 0 be fixed and let {(y, Ut) }se[0,7] be a stochastic pair which defines the g-Brownian
motion starting from y. The mapping w — (y+(W))e[o,7] gives the distribution of Brownian

paths up to time 7" in Cy ([0, T'], M), where we use w to differ it from w for |x¢]*. We want
to construct a one parameter family of mappings F; on Brownian distributions (Yt)te[O,T]
so that

vi(w) := (Fy(vjo,r(w))) (t), ¥t e [0,T7,
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is differentiable in the s ‘direction’ for almost all w with initial restriction dy{/ds =
V(E*(y))-

Choose a C* function s : [0,7] — R, with

(5.24) s(0) =1,s(T) =0 and lim

t .
t—»TT—tS()<OO

For almost all w, we obtain a vector field along the paths y[o rj(w) with
Tvy(t) :=s(t) for(V(y)), te[0,T],

where N
Jt142(v) i= 0, 0 U, 1 (v), ¥ e Ty, ()M, 0<ty <t2 <T.

Our desired maps Fy on (y:(w))e[o,7] are such that (y;(w))eo,7) satisfy the equation

S
(5.25) Ciy;(SVV) = Tvys (1),
where
Tyys(t) :=s(t) - [5.(V(y5)), t€[0,T],
and //* denotes the parallel transportation map for the process y°. The length of tangent
vectors remain unchanged under parallel transportations. Hence

Ty s @) = s(t) - IV(yd)] < s(t) sup{[V ()]},
which tends to zero of order (T' —t) as t — T by our choice of s. So, if the processes y*
exist, the ending points y7 remain in yr.

Remark 5.6. In [Hs3|, Hsu introduced a class of maps for the Brownian motion starting
from some point y on a compact manifold: in our notation,

Ty ys(t) = Ou(h(t)),

where h is a fixed R™ valued curve from the Euclidean Cameron-Martin space, i.e., the
completion of the space of smooth paths h : [0,T] — R™ starting from the origin o with the
Hilbert norm |h| = (Sé |h(t)|2)% In his construction, the initial point y{ remain unchanged
since h starts from o and hence the equations of all y* can be transferred back to R" using
a single [t6 map at y. In contrast, in our construction, our manifold is non-compact and we
use a vector field V on the manifold instead of a Euclidean Cameron-Martin space element
h to generate the random vector field Ty ys. Our ends y7 remain unchanged for almost
all paths since s(¢) tends to zero as ¢t goes to T'; while the initials y§ changes as s varies
so the Ito transfer map of y* to R™ also changes with s. The C! requirement of s(t) is
stronger than the L? integrability of the differentials of h(t). This is to guarantee that we
can obtain a continuous version of the resulting process y; (and all other related processes)
in the parameter (¢,s) (see Theorem 5.17), which is not true for general h.

We will solve the SDE (5.25) by identifying the anti-developments of = 1581 (yi) using
Picard’s iteration method, where Uj is the parallel transportation of Ug along the curve
(F*(y))ser. In many places, the transferred equations using V only differ in notations from
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that for the case of h in [Hs3]. But, technically, we have to write every steps in details
since the construction is different, the footpoints of the It6 maps are shifting, and we need
more regularity of y; and also more information of the associated random structures.

We first consider (5.25) for smooth paths. Let y € M and Bo € 0 o (M ) be fixed. For
B = (Bt) € C([0,T], M), the equation

(5.26) Ly := s0) Ju(V(F*)), 5= 5,

where [/§, =/ g St, is always solvable. Consider o = Z%sl (B7), where B(S) is the parallel trans-
b K 0

portation of 3, along the curve s — F*(y). Then (0caf/ds)|,_, differs from Bt_l(Tvﬂo (1))
by an integral of curvature term, which can be determined by a standard calculation exactly
as in [Hs1, Theorem 2.1]. We give the proof for completeness.

Lemma 5.7. Let V be a smooth bounded vector field on M. For 3 € Cr([0, 71, ) let 3°
be the solution to (5.26) and let B° be its horizontal lift in OF(M) with initial point By.

i) The differential (o), := daj/0s is given by

(05, = Ty e (t) 1= f S/ (1) B L (V(B]) dr - fo Ky e (7) da,

0

where

Kvae(r) = [ B REGE) Ty s ) de

ii) The differential (Bf); = Vgﬁf satisfies the equation

Vo (0(B})L)) = &' 0F) "V (Fy),

O o (=(@N) - B R (B, BB sV (E) B

Proof. For i), we have

0 (dof\ 0 (daf\
&(63)_&9<6t>_v55(9(v£ﬁt)>

Using the exterior differentiation formula in covariant derivative (cf. [GHL]) and the
structure equation (4.3) for 6, we obtain

Vo (025)) = Ve (0(V2B) +a0 (V25 V 5 5))

S
oo

=&/ ()(B0) " (V(B) — w(V2h)) (7).

We continue to compute that
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where, by using the exterior differentiation formula, Ker(w) = HT'F (]\7 ) and (4.4),

Ve (w(V28) = Ve (2(V ) + d= (V2. V2 57)
- (#EL G (B 6 Ve )
(5:29) = 3R (B Tva () ) B

For (5.27), the first equation is true by the construction. The second equation holds by
(5.28) since Ty gs (1) = B, (Bo) ~'s(T)V(F*y). O

For every smooth segment a = (Oét)te[OVT] in R™, consider the associated flow maps

{F

1,t2

(0, @), where F ,, : .7-"(]\7) — .7-"(]\7); BZ — BZ with (Bta)te[tm] solving the equation

Yoty <to<7 for the transportation of « to M using the parallelism differential form

— dOét

V%B? - (/Bt ) )

Each Fy} ,, is a C*=1 diffeomorphism since H is C'k_1 and « is smooth. Let DFf,, be the
tangent map of Fy} ;. It can be read in the (0, w@)-coordinate as follows.

Lemma 5.8. ([Mal2, Proposition 3.2]) Let a = (au)e[o,r] © R™ be a smooth segment.
For any t1 € [0,T] and v € Tge ]:(]\7), let vi* := [DFtol"t (737W)] v forte [t1,T]. Then
1

vy satisfies the equation

(5.29) Vo () = (VO H(E)
In the (0, w)-coordinate, we have
4 (008)) = =(v8) 5, .
4 (@(vi) = B R (B %5, 37 (0(v2)) ) B

day
dt

Let @® = (af)e[o,r] be a one parameter family of smooth segments of curves in R™. For
any t1,t with 0 < t; <t2 <7, s — DI}, ,, := DFtol‘ft2 is said to be C! in s if the image
curve s — [DF}  Jvi is C! for any C1 curve s — vi, € TBZ F(M).

Lemma 5.9. Let af = %Sl(ﬁf), where B° are given in Lemma 5.7. The tangent maps
(DFf 4,)o<ti<to<r are C' in's. Let s — v§ € TBZ]:(M) be C'. Then the differential
(v§)s := Vpjosvi, where vi := [ DF} (Bj,w)]vfl for t € [t1,t2], solves the equation

Vi, (B1)s)

(5.30) Vo ), = (VR H(EL ) B s s
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where
—s 50zt

O, (B1),) = (i, (B H,, SoD)+ VW) (B Ty )+ R (1B S50, B, ) v
In the (8, w)-coordinate, we have
{ngmmﬂmm%+M@@mmy
Vo (@((v)) = (B R (B35 Fio(wi)h) ) i + = (@(vt, (BD)L) )
Proof. Using (5.29), we obtain

s 0
VpVpy; = vath+R< (3, O‘t)(t)>

— (V((v))H(F:- )) +®( 2 (B

Using (5.30) and the structure equation (4.3) for 6, we continue to compute that
s oo s /S
VL O(00) = (750) (000 +0 ((TWDHE) 5 ) +0 (04 F1))
—s 60& s s /a8
~ as (H( o, <vt>;> 0 (@(vt, @)
0

— (1)) o+ 0 (@, (1))
Similarly, using (5.30) and the structure equation (4.4) for w, we obtain
—s 00 l s (RS\/
v% (w((vts);)) = dw (H( to %)’ (Vf)s> +w@ (®(Vta (Bt)s))
—8\ _ —s 00 —s / —s s /S\/
= (B)'R (ﬁtjg,ﬁﬂ«vf)s)) B + = (@i, (B)L))

We will solve (5.25) by identifying the anti-development of o of y* in the set

t t
A:: {Oét :\f OTdBT'i_J gr d7—7 te [07T]}7
0 0

where O; is an O(R™) valued Fr-adapted process, g, is a R" valued Fr-adapted process
with |g| < Const.sup |V| and {F;}scr+ is the filtration of the Brownian motion in R™. We
see that A is a complete infinite dimensional Banach space under the norm

= \/lglZ. 1 + [OI2, .

where

g% =E sup |gif*, |03 =E sup [O*.
te[0,T] te[0,T]
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Let V and s be as above. For o € A, let § be a horizontal process in (’)5(]\7) with
projection 3 = IBO(a) on M. For t € [0,T], put

Ty s(t) :=s(t) - /4, (V(Bo)) = BBy [s(t)V(5o)]-

We define , ,
—1
Tyal®)i= | (3 (V(3) dr — | Kvalr)edan,
0 0
where o denotes the Stratonovich stochastic integral, and
(531) Kvalr) = [ B R (Bilodag), Ty,a(0) B

Lemma 5.10. For a € A, the Ito forms Oflva, Kv o are

Tyalt) = | B0 OV (0] = Ric (Ty (r)) } dr = | a6y alr).dar)
(532) =: RV,a(t) - J;)<KV,O¢(T)7 da7'>7
where Ric was defined in (4.12) and

(5.33)
Kyalt f B.7'R (B,dar, Tv.4(r)) B, + f 5.7 (V(B.e)R) (Boci, Yv.5(r) B, dr.

Proof. Using It6’s formula, we can identify the It6 integral expression of Ty , as

Ty (t) = f /() {(V(By)) dr — fo (v o(r), dayy - ;jowcv,a(f), odos,

0

Let oy = o 1€1 + -+ - + Q¢ mem, Where {eq, -+ , ey} is the standard orthogonal base of R™.
Since o € A, we see that (oday ;, odoy ;) = 2dt. So, using (5.31), we obtain

1(* _
3 [[rvatrcdar = 1[G R lodar). Tualr) Broodar)
= j B; R (B, Yv (1)) Brei dr
0

¢
_ f Ric (Ty 5()) dr.
0
The It6 integral expression for Ky o(t) can be obtained similarly using Ito’s formula. [

We want to solve (5.25) with y? being the Brownian motion on M starting from y.

Lemma 5.11. Let V be a smooth bounded vector field on M with the associated flow
{F*}ser. Forye M, let (U] € O%Sy(M))seR be a solution to dU5/ds = H(U§, (05) 1V(F5y)).
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i) Let o® = §,O2dB; +§, g dr € A be a one parameter family of stochastic processes
with o = By. Then of solves daj(w)/ds = Ty s (t) iff

(5.31) O —1d —J Ky (102 dy,
0

(5.35) g = Of—L [02]17 {(Ug) " ['(1)V(F?y)] — Ric (GL(TY) " [s(r)V(Fy)]) } dy.
i) Let o® be as in i) and let U° be its horizontal lift in 0‘7(]\7) with initial Of. Then
U® is differentiable in s iff the following SDE is uniquely solvable with initial (G§),:

{ dO(Yy) = w(Yy) o daf + od Ly 4,

5.36 S S\ — S S S S S
(5.36) dw(Y7) = (07) "' R(5} o daf, Bi6(Y;)) U

iii) Let a®, 0% be as ini), ii). Then s — y* = Zis3(a®) has the differential process Ty ys.

Proof. By analogy with the deterministic case (Lemma 5.7), we have y* solves (5.25) iff o*
solves daj(w)/ds = Xy ,s(t), which means

s g0 f J () [ () (Fy)] dng—f f<KW ), dad> dy
—f f Ric (GL(53) " [s(r)V(F'y)]) dr dy
f J W) [ (FV(Fy)] dr d]—J f Ric (GL(53) " [s(r)V(F'y)]) dr dy

_J J Kv,ai(7)gl dr dy _J J Kv o (1)O dB7 dj.
0 Jo 0 Jo

Note that oY = B; and hence O° = Id, g = 0. So a comparison of the above expression
with the the assumption that af = S(t) 03dB, + S(t) g3 dr gives (5.34) and

g = | @) OV - [ Rie @) sV &y [ K (r)gh d.
0 0

0

Hence by the variation of constants method (i.e., Duhamel’s principle), we obtain (5.35).

Let o’ be as in i) which solves daj(w)/ds = Xy ,s(t). Then U* is differentiable in s iff
the following SDE is solvable with initial (U§)%:

(5.37) dYy = (V(Y?)H)(UF, oday) + H(U}, (oday)y).

Writing (5.37) in the (0, @)-coordinate, we have
d(0(Yy")) = df(edBy, ") + 0(H (Uf, (oday)y)) = w(¥y') o daj + odXy 4,
d(w(Yy")) = Q(H (0}, oday), H(U;,0(Yy))) = (UF) ' R(U; o dai, G0(Y,)) ;.
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Let o®, 0% be such that i), ii) hold true. For iii), it suffices to check the equality
Vpjos(m(U%)) = Tyys. Let Z] := 0 ((55))). By (5.36),

t T
Zg:’rvjaj(t)—rv,aj(onf (f (61 R0, o dod,, 1, 2 )@1,) o das.
0 0

Write Z} := Z] — SS(U%)_I[S,(T)V(F]y)] dr. Then we have

t T

zg:J (J (VL) 'R(V2, 0 da,, U, ZJ)UJ> odal.
0 \Jo

Using It6’s formula for | - |2 = {-,-) or the isometry property of Brownian motion, we can

find some constant C'(sg,T") depending on R, so, T such that

t

B(E)P) < Cls0.T) | B((2DP) dr.

This gives Z] = 0 by Gronwall’s Lemma (see Lemma 5.16). Thus (y*), = Ty ys. O

Corollary 5.12. Let U° be as in ii) of Lemma 5.11. Then Y* = (G®) is given by

dO(Y) = s ()(B3) "1V (Fy) dt,
(5.38) { do(Y?) = (0F) LR(BS o dat, s(03(B5) 1V (Fy)

whose Ito form is
do(Yy') = ’(t)(U) 'V (Fy) dt,
(5.39) dw(Y?) = (0F) ' R(Uidaf, s(t)U5 (55) 1V (F5y)) U;
+(U7) TN (V(Bie) R) (Ujes, s(t)U7 (B3) 'V (Foy)) Uf dt.

Proof. Note that U° is a horizontal lift of y°. Reporting this and (y®);, = Ty ys in (5.36)

shows (5.38). Then (5.39) follows by applying the It6 formula. O
For a = (a1, , um) € A, consider the associated flow maps {Fy ;, bo<t; <t,<7, Where

Fp .y, F(M) — F(M); By, > By, with (B} )seft, 1] solving the Stratonovich SDE

(5.40) B, = H(B; ,oday).

By Proposition 4.3, F ,, are C*~2 diffeomorphisms for almost all w and the first order
tangent map DFY; ;, satisfies the following (see also Lemma 4.4).

~

Lemma 5.13. Let a € A. For almost all w, any t; € [0,T] and v € TBH}—(M)’ vt =
[DFtOLt (Bﬁ,w)]vf‘l,t € [t1,T] satisfies the Stratonovich SDE
avi = (V) H) (B} oday).
In the (6, w)-coordinate, we have
d(0(vf)) = @(v§) o day,
)~ e (3 e 3 (0
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and its Ité form is
dO(v§") = w(v)day + Ric(B; 0(v)) dt,
deo(vi) = (B7) 'R (Bl das, B} 0(v) ) B + (B) 'R (B en wolvi)es ) BY dt
+ (B UV (BrenR) (Bres B o)) By d.
Let a® € A be a one parameter family of random processes. We abbreviate
By =B, , F,, =FY,, and DF}, ,, := DF, .

The maps {DF? , }o<t, <t,<7 are said to be C! in s if, for almost all w and any (v$ , Q3 ) €
P t1,to SOt <to< t1 t1

TBs}"(M) which is C1 in s, [DF} ,,](vf, Qf)) is also C' in s. The following can be formu-
lated using Lemma 5.13 and It6’s formula by analogy with Lemma 5.9.

Lemma 5.14. Let o,y and U° be as in Lemma 5.11. Then {DF}  }o<t, <to< are C!
in s iff for any vi, € Tis;. .7:(]\7) Clin s, there is a unique (Uf)iept, 1,), continuous in (t, s)
with vi, = Vp/asVi,, that solves the SDE
(5.41) v =(V () H) (U}, odaf) + ®(vi, (T7)5),
where
®(vi, (B7)s) =V (v}, (57),) H (T, odaf) + V(v H (UF, 0d Yy s (t))
+ R (H(G;,0da}), (05),) v
In the (0, w)-coordinate, (5.41) is
d(0(v7)) = w(vf) o dai +0(®(v, (B7);))
(5.42) { a(=(vF)) = () 1R (U} o dat, 530(u5)) Of + = (@(v, (B3)L))
The Ito form of (5.42) is
(5.43)
d(0(v§)) = w(vf)daj + Ric(U56(vy)) dt + 6 (@1(vt, (B7)L)) + @4 (vi, (B7)L),
d(w@(vi)) = (U;) 'R (Ujdaf, U560 (v§)) U; VIR (Gie;, Uiw(vi)e;) U3 dt
+(05) YV (Ue;)R) (U €i, USG(Ut))US dt
+o (@1(vf, (07))) + @F (vi, (57)5),

where @1 (v§, (07),) is ®(vi, (UF)}) with ode replaced by the It infinitesimal dog,
®9A (Vf> (65);) =2w (®(Vf’ (Uf);v el)) €; dt + 0 ([H(va ei)v ®(Vf7 (Uf){m 61)]) dta
@R (v, (B7);) =2(0) "R (Ve;, UB30(® (v}, (U7)5, €4)) ) U3 di
+@ ([H(U], e0), ®(vi, (U5, e4) ]) dt,
@(Vf, (6?)/57 ei) :V(Q)(Vf, (Uf)E))H(Utv 6i) +R( (Utv 6i)7 (Uf);)vf —i—V(Vf)H(U?, [(V,OéS (t>ei) .
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5.3. The existence of Fj. In this part, we prove the existence of the mapping y — FZ(y)
By Lemma 5.11, it suffices to solve daf(w)/ds = Yy 4+ (t) in A with o® = B. We will do
this using the classical Picard method as in [Hs1, Theorem 3.1]. In the meanwhile, we will
also show the existence of the differential processes of U* and DFy, ;, in s. The tool we will
use to obtain a continuous version of a two-parameter process is Kolmogorov’s criterion.

Lemma 5.15. (cf. [Ku, Theorem 1.4.1]) Let {V;(W)}ie(0,1],se[—s0,50] D€ @ One parameter
family of random processes on a complete manifold. Suppose there are positive constants
b,b1,ba, with by,be > 2, and Co(b) such that for all t,t' € [0,T] and s,s" € [—so, So],

E “yts — yf/l b] < Co(b) (|t — t/‘bl + s — 3/|b2) ,

then Y7 has a continuous modification with respect to the parameter (t,s).

Besides Burkholder’s inequality (Lemma 4.7), another useful tool to estimate the L%-
norm of stochastic integrals is Gronwall’s lemma:

Lemma 5.16. (c¢f. [Elw, p. 13]) Let ¢, ¢1 be real valued Lebesque integrable functions on
the interval [0, s] such that for some C > 0,

]
o)) < 610) + C fo o) df, Wy e [0,s].
Then

J /
o(7) < o1(y) + CJ el )gbl(j') dy, for almost all 7€ [0, s].
0

We are in a situation to state the existence theorem of the maps Fy.

Theorem 5.17. Let V be a boundedN smooth vector field on M and let {F*}ser be the flow
it generates. Forye M, let (U € O%Sy(M))seR with dG§/ds = H(G§, (B5) LV (F%y)) be a
fized horizontal lift of the smooth curve (F*y)ser.

i) There exists a unique family of stochastic processes a® € A such that for almost all
w, s — af(w) is differentiable with

(5.44) aj(w) =w+ J Yy oot w) dy, Vte[0,T].
0

The process Xy ,s(t) has a continuous modification in the parameter (t,s).

i) Let U° € (’)5(]\7) be a horizontal lift of y* with initial Of. There exists a one parame-
ter family of Fy-adapted stochastic processes (Y )ie[o,1) with Yy (w) € Tiss (w) (O9(M))
for almost all w, which satisfies

VaQUf(W) =Y (w), Vte[0,T].

The process Yy® has a continuous modification in the parameter (t,s).
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iii) Let y* = Tiss(a®). Then s — y*(w) is differentiable for almost all w with
(5.45) Vagyf(w) =Ty ys(t,w), Vte [0,T].

The process Yy ys(t) has a continuous modification in the parameter (t,s).

iv) For almost all w, (DF} )o<t,<t<r are Ct in s. For v € TUfIJ:(M) C' in s, the
process vi = [DFy, ,]vi, is differentiable in s and the differential process v has a
continuous modification in the parameter (t,s).

Proof. For simplicity, we will use C' to denote a constant depending on |g||cs and the norm
bound of V and use C(-) to indicate the extra coefficients it depends on, for instance,
C(s0,T) means C also depends on sg,T. These constants C' may vary from line to line.

We first show i). For any sp € R, we use (5.34), (5.35) for Picard’s iteration and show
the iteration converges to a one-parameter family of processes a® (s < sp) in norm | - |07

Let g*° = 0,05 = 1d, o*® = B and let G*° be the horizontal lift of Zys3 (B) in O9(M)
with US’O = U§. Assume g¥" 1 0"~ and a®"~1 are obtained for some n € N. We write
0*" ! for the horizontal development of o*™~! in O9(M) with Ug’nfl = U§ and put

t
Ky o1 (1) = fo (G R (O3 day™ ™ B (65) " s (1 V(Fy)]) 53

t
+J (O T V(O e R) (03" ey, B2 HT3) " [s(1)V(Foy)]) U3 dr,
0

Ry et (1) = (03) [/ ())V(F*y)] = Ric (07" (©5) " [s()V(Fy)] ) -
Then define g*", O*™ a®™ as the processes determined by the following SDEs:

O;" =1d = §§ Ky qsn1 ()07 dj,
g = 07" R[OF" Ry g1 (1)

ay™ = §, 03" dB; + §;g¥" dr.

When n = 1, the definitions of g*°, 0%, g®! and O*! show that

S S
oyt — 070 = —fo Ky oo (DO dy, gt — g = 03 ) [OF'] 'Ry oo (t) dy.
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Abbreviate | - |7 as | - |. There is some C' such that
t 2
v sl < 26 sup | [[@530) 7R (0308, 53200 sV () 02| + T2,
te[0,T] 1JO
T 2
<4 | [ (030 R (0008, 52005 s V) 55| + T,
0

T
<mf|w?ﬂRwﬁ%mﬂwr%wW@%mU?2w+0ﬂ
0

< C(T +T7),

where the second inequality holds by Doob’s inequality of sub-martingales and the third
inequality holds by Lemma 4.7. Hence there is some C(T") such that

HOS’l _ OS,O

S
< [ 1y ool ds < s
0

There also exists some C' such that ||g=! — g*°

obtain some Cy(T) such that

| < CUs since Ry 4.0 is bounded. So we

Has,l o as,O

< CO(T)S.

If we can further find some constant C1(T") such that
S

(5.46) Ja>" — a7l < €y (T)f Ja?" =t — o272 dy,
0

we will obtain

sm s,n— 1 n.n
o™ = a1 < —(Co(T) + C1(T))"s™,

which will imply the existence of the limits

g’= lim g>", O°= lim O%".

n——+0o0 n—+00

Then of = Sé O: dB; + Sé g5 dr will be our desired process for i) by Lemma 5.11.

For (5.46), let us analyze |O*™ — O*"~!|| and |g®™ — g®"~!||. Since each O*" is O(R™)
valued and is invertible, we have

O™ — Os,nfl = 5" (Id o (Os,n)flOs,n71>

_ SN Si s,ny—1s,n—1
-0 Lds[(o )-10sn1)

— _ s ° i s,ny—1
-0 L(ds[(o )]

dy

$=]

i d

7,n—1 7,1
O + (O7™) I

§=]

[0

) dy.
5=)
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By the inductive defining equations of O*"~1, O%", we obtain

d s,n—1 n—1
% [O ’ ] - —I(\/'70[j,'rz—20‘77 P
=]
d S,n\— ny— d s,n ny\— ny—
SO =0T (0] (00 = (09 Ky e
s=3 s=3

Hence
S

Os’n - Os’nil - _OS,TLJ (O'Ln)il (KV,Oé]’n_l - Kv7aj,’ﬂ—2) O']’nildj.
0
Using (5.33), we conclude that there are some constants C, C" such that

S S
(5.47) |O®" — 0" 1| < C’L |Kv o1 — Ky qan—2| dy < C’JO ot — a2 dy.

For ||g®™ — g®" 1|, we can use the inductive definitions of g*" and g*"~! to compute that

S

g =g = (01" =01 ) | 01" Ry o (6)

#0p ! [10r (0 = 01 [0 Ry (1)
0

01 [ 1081 Ry s (1) = Ry ona (1)

=: (a), + (b), + (c),-
Hence
lg™" — ™" < ()] + [(B)] + [ ()]

Since V is bounded on M and s is C* on [0, 7], Ry qn-1(t) is also bounded. So there are
some constants C, C’ such that

S
@) < Csaf0* 071 < Clsg [ oot — 00721
0
s S
IB) < C f jorm=t — o dy < f Ja?n=1 — a3n=2| gy,
0 0
For (c), we also have
s S
OIS Cf IRy asm-1 = Ry asn-2| dj < C”f |57t — g2 gy,
0 0
where the last norm is measured using the distance function on 09 (]\7) Recall that

t m
5.48 oM =00" + HUY, e;)oda?™, 0 <t < T,
t 0 0 T T
i=1

where /"¢ i = 1,---,m, denotes the i-th component of a/". Embedding (9?7(]\7)
into some higher dimensional Euclidean space R! and extending all H(-,¢;) to a small
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tube neighborhood of O9 (]\7 ), we can consider (5.48) as a Euclidean SDE and compare
|prn=t — 537 =2| with [|a?""! — a?" 2| using the Euclidean norm. By (5.48),
t
ot i = f (H(W2" 1 e;) — HUZ" 2, ¢;)) o (02" 1dB,)'
0

t
+ J H(Ug_rn*Z’ ei) o ((O‘]r,nfl o Og_,an)dBT)i
0
t
i f (H©2 ! o) = HO 2, e0)) g Vidr
0

t
+ | HE )@ - g
0
=: (D¢ + (I)¢ + (IID); + (IV),.
Using (4.22), we obtain, for f € [0, 7],

- 9.2
E sup |U§" ! - o 2| <A4E | sup |(I),5|2 + sup |(H)t|2 + sup |(IH),5|2 + sup |(IV)t|2 )
te[0,2] te[0,2] te[0,] te[0,] te[0,]

For (I);, we can consider its It6 form and then apply Doob’s inequality of sub-martingales
and Lemma 4.7, which gives

’2 dr.

£ £
E sup |(I):]* < CIEJ 2t — 52 dr < Cf E sup |07" " —0"?
te[0,?] 0 0 tef0,7]

The same argument shows there is some C' such that

&
E sup |(I1);]* < CEJ ozt — Oi’”_z‘g dr < CT |a?" " — a]’"_QHQ.
te[0,f] 0

Note that |H(-,e;)|| and |g&"~!| (for all s and n) are bounded. Hence

t ¢
E sup |(IID),|* < CfEJ o2t — 50 ?)? dr < CTJ E sup
te[0,f] 0 0 te[o,7]

For (IV);, we have

E sup |(IV),5|2 < Ct? Hg”’"il — g”’"72H < CT? Hoﬂ’”*1 — oﬂ’"*2||2.
te[0,1]

Altogether, there are some constants Cy(7"), C3(T) such that

U],n—l U],n—2 2 d
t — O T.

t
E sup ]Ui’”‘l—Ug’”‘2}2 < Co(T) |a?m 1= aj’"2|2+C'3(T)f E sup |Ug’n_1— Ui’n_2|2 dr.
te[0,1] 0 t€[0,7]

Applying Lemma 5.16, we obtain some constant C(T") independent of j such that

|u7n =t — 52 < O(T) |o?™ 7t — o)



THE REGULARITY OF THE LINEAR DRIFT IN NEGATIVELY CURVED SPACES 83

So,
)l < Cf [t = dy < 0<T>j [t — @t dy.
0 0

Putting together the estimations of |(a)|, [(b)|| and ||(c)|, we conclude that
S
Hgs,n _ gs,n—IH < C(T)j ||a],n—1 _ a],n—2” d].
0
This and (5.47) imply (5.46). Hence the limit

lim o®" =f (0 dT-l—J g, dr =:a°
0 0

n—0o0
exists and o satisfies the equation (5.44) by i) of Lemma 5.11.

The {a®} obtained by the above iteration is the the unique parameter of processes in
A satisfying (5.44). Assume {&°} < A is another parameter of processes solving (5.44).
Then, by using (5.34), (5.35) for a® and &, respectively, the above argument shows that
(5.46) holds true by replacing a*", a*"~1 by o, &*, respectively, for all s, i.e.,

S
ot —a*] < C(1) | or @] dy
0
This implies a® = &° by Gronwall’s lemma.
We proceed to show
(5.49) E[Ty o () = Ty e (B)] < CO, 50, T) (|t’ — 42 4|8 — s|b)

for any b > 4, t,¢' € [0,T] and s,8" € [—sg,S0]. This, by applying Lemma 5.15, will
imply that Yy ,«(f) has a continuous modification in the parameter (¢, s). Without loss of
generality, we assume t < t’. Using (5.32) and (4.22), we compute that

E‘I\/,asl (t/) - IV,ozS (t) ‘b

t/ t! t
< 5b71 ( IE| J Rv,as/ (T) d7'|b + 1E| J <KV,aS’ (7—)7 daf'/>|b + E| f (RV,as/ - szas)(T) d7—||7
t t 0

| [ (R o — Koo ) (s + B [ (o elr). e aiw)

=:5"71((d) + (e) + () + (g) + (h)).
To conclude (5.49), we will show
(5.50) (d), (e) < C(b, 50, T)|t' — 2" and (£), (g), (h) < C(b, s0,T)|s’ — s|.

Clearly,
(d) < C ¢ =t < (CT) ¢ —t]2°
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for some C' which bounds |Ry qs|. For (e), we have

t/ t/
_ s b s b
2'7(e) <E| | (K o (1),05dB;))| +E\f (Ky oo (1T),85 ) dr|” =1 ()1 + (€)a.
t t

By Lemma 4.7, with the constant C;(b) there,
tl

t/
() <COE| | Ky (M dr]?’ < Cl(b)(J E([Ky oo (7)) dr) - [t — ]2,
t t

Using (4.22) and Lemma 4.7, it is easy to deduce that
b

T

E(|Ky 40 (1)) < 377 <E

L )7 R (6£05B,.. 5% (63) sV (F )] ) 0%

b

B[ 5) R (05 B2 ) sV (P )]) 6
0
T b
|| ) AT B (B BLO)) sV (E ) B )
0
(5.51) < 3710(r2" + 7).

Hence there is a constant C'(b, T') such that
(1< CODI — 12"

Since |g?| is bounded by some constant depending on sg and sup |V|, using Hélder’s in-
equality and the estimation in (5.51), we obtain

tl

@2 (| BUKy 0o )P) dr) - =t < COTI P
t 7
Thus,
(&) <271 ((e)1 + (e)2) < 27H(T2" + 1)COB, Tt — 2" = OB, Tt — t|2°.

Using Hoélder’s inequality and Burkholder’s inequality, the conclusion in (5.50) for (f), (g)
and (h) holds if

E|(Ry oo — Rv.ae)(0)'s E|(Ky oo — Kva) ()], Elaf —aif < CO, 50, T8 — /',
which can be further reduced to verifying
B0 —0:|, Blgd —gif, BjUY — 03| < C(b,50,T)|s" — s
By (5.34) and (5.51), there is some constant C'(b,T") such that

/ b
E’Oﬁ/ - Of.‘b =E j Ky oo ()0 dy

(5.52) <C0,T)|s — s
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Using (5.35), (5.52) and Holder’s inequality, we obtain some constant C'(b, sg, T') such that
b

Elgd —go| <2 ' E(l05 — 03P .|f0 [02] Ry o(7) dg) + E f [02] ™ Ry s (7) dy

(5.53) < C0,s0,T)|s — s|.
Recall that each O° satisfies the SDE

=0g +f Z H(U(w), e;) o da’(w), V7€ [0,T].
0 =

As before, we can treat it as a Euclidean SDE. Hence,

b

m
E[of —vs) < 3! (\Ug’ ~ 3" +E| JOT 2 H(B%,e;) 0 d(al’ — )

+E’f H(GS), e;) — H(U,, e;)) o dail/’i b)
=371 + () + (K).
Clearly, (i) < C|s’ — s|” for some C' depending on sup |V| and . For (j), we have

J)éE’J ZH(Ui,,ei)o(O - 0%) —i—E’J U2, e)(gs — g5 dT|
=1

=: (j)1 + (§)2-
where we use the superscript i to denote the i-th component of a vector. For (j)1, we can
transfer the integral into It6’s form. Note that all H(-,e;) are C! vector fields on O9(M )

with bounded first order differentials. Hence, using Lemma 4.7, Holder’s inequality and
(5.52), we can conclude that there is some constant C'(b,T) such that

T, b
(ih < C(b,T)(IE(J 05— 052 dr')? + E( J 05— 052 dr'))
0
< COTYTH L 4+ 1071 f (E|OS, — 0%, + E|OS — 0%%) dr’
0
< C(b,T)(2s0)|s" — s]".

For (j)2, we can use Holder’s inequality and (5.53) to conclude that

(j)2 < C(b,so,T)Tb|s’ — s| .

For (k), the same argument as for (j) gives some constant C(b, sg,T") such that

(k) < C’(b,so,T)J E[0%, — 0%, dr’
0
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Altogether, there is some constant C(b, sp, T') such that

E[5Y — 55" < C(b, 50, T) <|s’ — s + f E|US, —
0

The inequality also holds for supz¢(g IE|U — 02 | Hence we can apply Lemma 5.16 to
conclude that there is some constant C (b, s0, T') such that

(5.54) E[5¢ — 02| < C(b, 50, T)|s" — s,

This finishes the proof of (5.50) and hence (5.49) holds true. By Lemma 5.15, we can

obtain a continuous modification of Yy ,.(¢) in the parameter (,s).

Let o®, U° be as above. By (5.54) and Lemma 5.15, U® has a version such that s — U*(w)
is continuous. By Lemma 5.11, to show U? is differentiable in s, it suffices to show (5.36)
is uniquely solvable with Y = (U3)%. Let Y*? =0 and let Y*" (n > 1) be such that

do(Y;") = w (Y odag + 0dYy 4,

dw(Y;") = (0F) 7 R(U; o doj, Bi0(Y;")) B}
For a R™ x F(R™) valued process (0, Q)c[o,7, let

[(0, Q)] := +/Io]]* + [Q[2, where [o]* =E sup |o,*, [Q[* =E sup [9/*
te[0,T] te[0,1]

(5.55)

We show the sequence (6,w)(Y*™) converges in norm | - ||. Clearly,
(5.56) [(0, @) (Y*!) — (0, =) (Y*?)| < CT||o”).
We continue to estimate [(6,w)(Y*™) — (,)(Y*" )|, n > 2. By (5.55),

{ Ao — 0" ) = (@) — w(¥" 7)) o dag,
d(w(Y,") — 0, ") = (U5) 7 R(T o dog, B3 (0(Y;") — 0(Y;" 1)) U3

Following the above discussion on HUJ’"_I — UJ’"_QH, we can use Doob’s inequality of sub-

martingale and Lemma 4.7 to conclude that
(5.57) IEsupte 0] | (0, (Y57") — (G,W)(YS’”_1)|2
< C(so, T SOEsupte[O . ‘(9,@)(}/5’"’1) — (0, @) (Y“”’"fz)‘2 dr.

Iterating this inequality for n steps, which, together with (5.56), imply

E sup [(6,)(Y*") — (6,)(Y*" )P < 2(CT + C(s0, T))"F".
e[0,7] n!

In particular, when ¢ = T, this is
1
|0, )(¥*") ~ (6,%) (V") € 21(OT + Clso, T))"T".

Hence (6,w)(Y*™) converges in | - || with some limit (6, w)(Y®) which solves (5.36).
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Such a solution Y is unique. Assume )* is another solution to (5.36) with V5 = (U7)%.
Then the same argument as for (5.57) shows that

t
E sup |(6,@)(Y7) — (0,@) (V)" < Cls0,T) f E sup |(6,w)(Yy) — (0,@) ()| dr,
te[0,f] 0 te[0,7]

from which we can conclude Y® = Y® by Gronwall’s Lemma.

By Corollary 5.12, the solution Y* to (5.36) is actually given by (5.39). Hence, to show
the process Y;® has a continuous modification in the parameter (¢,s), it suffices to show
both U; and w(Y;®) have a (¢, s)-continuous version. Let b > 4, ¢,¢' € [0,T] with ¢t < ¢’ and
s, 8" € [—s0, s0]. Using (5.54) and applying Burkholder’s inequality and Holder’s inequality
to the difference Uj, — U, we obtain
2 E[GY — ;) < E[UY — " + B|U5 — ;" < CO, 50, T) (|8 — 5" + [t —t]2°).

So Lemma 5.15 applies and shows that there is a version of Uf which is continuous in the
parameter (t,s). Since w(Yy) = 0, by (5.39),

w(V}) = fo (02) L R(Bdas, s(r)05(05) "V (F*y)) 5%

| 0710 R) (U361, 571020 V() B dr

Again, by Burkholder’s inequality and Holder’s inequality, it is easy to deduce that
' b
E‘w( i) —@(Yy)

t/ t/ t/
< C(s0,b,T) (E|J o — asf? d7|3 +E;f 08 — 03] dT|% + EJ g — 62| dr)
0 0 0

t/
< C(s0,b,T) f (Elad — a2 + E[US — U dr
0

< C(b,s0,T)|s — s
and
Bl (V) = @) < Clso,b.T) (|t =43 + |/ = t]) < Cso,b, T — 3.
Hence
2'Elw(Y) — w(¥y)| < Elw(¥y) — w(Y)| + Elw(Y) — w(¥y)]
< C(b,50,T) (|8 —s|” + |t/ — t]2"),

which implies that w(Y;®) has a (¢, s)-continuous modification by Lemma 5.15.

Now we have shown i) and ii). Hence we can use Lemma 5.11 to conclude that y® =
Tisg (@) is differentiable in s and satisfies (5.45). The differential process

Ty ys(t,w) = s(O)0F (U5) TV (F*y)
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has a (t, s)-continuous version since U; does.

Finally, by Lemma 5.14, for iv), it suffices to show for vi € szfl }'(]\7) Clin s, (5.43) is
uniquely solvable with initial (v§,);. Again, this can be done by Picard’s iteration method.

Let v = (9,@)65(6’,@)051 (v§,)s For n > 1, let v;" with initial (v§,), be such that

d(0(v]™) = w(vp™ ") dag + Ric(B30(v; ™) dt + 60 (@1 (v, (07)L)) + &% (vi, (T5)L),
d(w (V™) = (03) 7 R(Gidag, B30 (0p™ )05 + (07) " R(Gser, Gy (vf™ V)e: )03 dt
+(0) "M (V(Uje) B) (Ties, B30(v" ™)) dt
@ (@1(v}, (67):)) + @R (vi- (B7)5),
where v§, ®r1(v§, (05)%), @4 (vi, (U7),), ®F (vi, (U5)%) are as in Lemma 5.14. We will show
(0,)(v;™") converges in norm ||, where, for any R x F(R™) valued process (v, Q) 1],

[(0, Q)] := /ol2 + |Q[2, [o]*=E sup [|ve* and |Q* =E sup |Q[*.

te[tl,tz] tE[tl,tQ]

Clearly, we have

H(G, w) (vt — (H,w)(vs’O)H < C(s0,T) +

fﬂ@@ﬂmm%

1

t t
u@mwm [ﬁ@@%

=: C(SQ,T) + (A)l + (A)Q + (A)3 + (A)4

Using Doob’s inequality of submartingale, Lemma 4.7 and Holder’s inequality, we see from
the expressions of @ (v, (U7),), ®4 (v, (7)) and ®F (v§, (U5),) that

(A)i < Cs0, T) (0, @) ()| + 10, @) ()P - [IBF)]), i =1, 2, 3, 4.
Note that the process v; satisfies the SDE

d(0(vi)) = w(vi)deg + Ric(U56(v§)) dt,
(5:58) § dlw(v) = (©F)  R(O1dad, 50(v)T; + (07) R (Bes, Biw(vi)es)f
+(07) 7 (V(Oie) R) (Bfei, Bi6(vi)) U dt.

So, using Doob’s inequality of sub-martingales and Lemma 4.7, we compute that

[ =@ @)

1

+ +

7
E sup |(0,w)(v§)||7 < C(So,T)f E sup |(9,w)(vf)|b dr, b =2, 4,
te[t1,i] t1 tet1,7]

which, by Gronwall’s lemma, implies
(5.59) 16, =) (v, (8, ) (v)[*]| < C(s0,T).

With a similar computation, we conclude from (5.39) that ||(15{)%]?| is also bounded by
constant C(sg,T'). So,

(5.60) H(G,w)(vs’l) - (9,w)(vs’0)|| < C(s0,T).
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For n > 2, the difference (0, @) (v*™) — (0, w)(vs’"_l) satisfies the SDE

d(O(vy™) — O(vy™~ 1)) = (w(vy" Y —w(vf™ 7)) dog + 1Rlc(us(e( SN =0 Y)) dt,
d(w(vf™) —w(y™™h) = (©7)~ IR(USdat,US(ﬁ( S (o %)Uf

+(U3)~ 1R(U§ez,65( (v} i h- w(u;;’”‘ )e;)U; dt

+(07) V(O R) (Bges, U3 (00" = 0(67™ ) ) U5 .

As before, we can use Doob’s inequality of sub-martingales and Lemma 4.7 to obtain

IEsupte ~]| (0, ( s’") — (6, w)(v{f’"flﬂ2

(561) s,;n—1 s,n—2\ |2
< C 307 St ESUpte[O 7] }(6,@) (Ut ) (H’W) (Ut )‘ dr.

Iterate this inequality for n steps and then let £ = t5. This, together with (5.60), implies

|6, @) (o) — (6,) (") | < - Cls0, T)'T™

Hence (6, w)(v*™) converges in || - | with some limit (0, w)(v*®) which solves (5.43). We can
also use (5.61) and Gronwall’s Lemma to conclude the uniqueness of such v;.

For the existence of a continuous version of vj in the (¢, s) parameter, we use Lemma
5.15. Let b > 4, t,t' € [t1,T] with t < ¢’ and s, s’ € [—s0, s9]. Using (5.58) and Lemma 4.7,
we deduce that

t’

E|(0,w)(vi) — (6, @)(v})[" < C(b,50,T)(Is' — s + f E|(8, @) (v2) — (8, @)(w2)| dr),

1

which, by Gronwall’s lemma, implies

E|(8, ) (v§) — (6,@)(v5)|” < Cb, 50, T)|s" — s’

Similarly, it is true that

E|(6, ) (v5) — (6,)(v))|

< C 0,50, T)(1 (0 @) ¥ + 16, @] + 16, @] - [P D (1~ 112+ ¢~ o)
C(b, 50, T’ —t]2°

where, to obtain the last inequality, we first show H|(Us)’s|%b\| < C(b,s0,T) by (5.39) and
then argue as for (5.59) to show H|V|%bH, |||U5|%bH is also bounded by some C'(b, sg,T). Thus,

21| (0, @) (v})) — (0, @) (v})[” <E|(0,@)(vi)) — (0.@)(v5)] + E|(0, @) (vf) — (6, ) (v})]"

<C(b, 50, T) (\3' —sP |- ty%b> .

By Lemma 5.15, there is a continuous modification of (6,w)(vy) in the (¢, s) parameter.
Note that (6, )y varies continuously with respect to Uf, which is also continuous in the
(t,s) parameter. So, we can also obtain a (¢, s)-continuous version of the process vi. O
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Remark 5.18. As we will see in the proof of Proposition 5.19, for almost all w,
a® o a®(w) = a®' %2 (w), for all 51,52 € R.

Hence, intuitively, {a®}scr introduced a one parameter family of ‘low’ maps on Brownian
paths starting from the o € R™. Consequently, {F*}sr also behaves like a one parameter
family of ‘low’ maps which satisfy the cocycle property F¥1oF%2 = F*1752 for any s1, 59 € R.

5.4. Quasi-invariance property of F;. Let y* = Fjy be as in Theorem 5.17. We
continue to study its distribution using the classical Cameron-Martin-Girsanov formula.

Let (y, U¢) be the stochastic process pair which defines the Brownian motion on (]\7 ,9)

starting from y up to time T, ie., y¢ = w(U;) and U; € (95(]\7) solves the Stratonovich
SDE

m
ds, = " H(Uy, ;) o dBj(w), Vte [0,T].
i=1
By an abuse of notation, we continue to use P, to denote the Brownian distribution in

~

Cy([0,T], M) (i-e., the distribution of (y¢)e[o,7]) and use Q to denote the distribution of
(Bt)te[o,r] in Co([0, T],R™). Using the It6 map, we have the relation

B = (T5,) " '(y) and Py = Qo (Tys,) "

~

Similarly, let Pgs, denote the Brownian motion distribution on Cps, ([0, 7], M). Then
Ppay = Qo (Tss) "

Let y* and o® be the one parameter family of stochastic processes on M and in R™,
respectively, that we obtained in Theorem 5.17. They are related by the identity

o = (Tis) ' (y*).

Let P, Q° be the distributions of y*, a®, respectively, where Q = Q. Then
-1
(5.62) P = Qo (Zgy) "

To compare P* with Pps,, it suffices to compare Q° with Q°, which can be understood by
a simple application of the Cameron-Martin-Girsanov formula.

Proposition 5.19. The distribution Q° is equivalent to Q° with

(5.63) ;zg; (w) = {35 @@ (). aBi(w)=4 (F lgf(a* )I? ar}

Consequently, the distribution P® is equivalent to the Brownian distribution Pps, with
dPs dQ?® _ ~

(5.64) (8) = gop (@)™ (8)), B Crey((0,T), M).

d]P)Fsy
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Proof. We follow the proof of [Hs3, Theorem 3.5]. Clearly, (5.64) follows from (5.63) by
using the identity (5.62). For (5.63), recall that Q° is the distribution of (o )[o,r], Where

o) = [ 02w) aBow) + [ g2(w) .

The process Sé O? dB; has the same Brownian distribution as B; since O® are orthogonal
frames and the distribution of a Euclidean Brownian motion is invariant under orthogonal
transfers. So a® only differs from a Brownian motion by a drift term Sé g’ dr. Let

M (w) i {8 55¢8 ().03 (W)aBr ()= les (wI? dr)
and consider a new distribution QS on Cy([0,T],R™) which is given by

dQs .
a0 (w) = Mqp(w).

Since |g®| is bounded from above by a multiple of s-sup |V|, the Novikov’s condition is sat-
isfied. Hence the classical Carmeron-Martin-Girsanov Theorem says that the distribution
of a® under Q° is the same as Q, i.e., for any measurable subset A of Cy([0,T],R™),

Qfwe A}) = OF ({o*(w) € 4}),
which, by a change of variable, gives
Q(fwe 4}) = Q (M (a~"(w)) : we A}).
Since A is arbitrary, this means Q and Q° are equivalent and
dQ?® 1
aQ ™ " M)
Note that the process M; satisfies the equation

(5.65)

AN = — M (g3 (), OF (w)dBu(w)
So, by Ito’s formula,
(5.66)  —dInMj(a™(w)) = %<gf(078(W))a 07 (a*(w)) da;*(w)) + ilgf(Ofs(W))l2 dt,
where the second term of the right hand side of (5.66) has coefficient 1/4 since «; ° has
variance 2t. On the other hand, we have
(5.67) a’oa*(w) =w = B(w), for almost all w.

(Because of (5.65), the composition a®*oa®?, s1, s9 € R, is well-defined and has a continuous
version in the parameter (si, s2) using Kolmogorov’s criterion as in Theorem 5.17. So, by
the uniqueness of the o® family and its continuous in s, we must have a®! o a2 = 1752,
In particular, (5.67) holds true.) Now, from (5.67), we deduce

Of(a™%(w)) da™%(w) + gi (o™ °(w)) dt = dB(w).
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So, (5.66) is also of the form
S(—S8 1 S —S 1 Cy—
—dInM;(a™*(w)) = {gi(a"(w)), dBi(w)) — - |gi (a™*(w))[* dt

and hence
L (AT, dBi(w)— 1 T lei(a () at)
M7 (a=*(w))
O

Proposition 5.20. The probability Prsy o ¥y is absolutely continuous with respect to P,
and the Radon-Nikodyn derivative dIP’FsyoFZ/d]P’y conditioned on yr = x is LY integrable for
every q = 1, locally uniformly in the s parameter. Moreover, dPFsyOFZ/dPy 18 differentiable
in s with differential E3(dPps, o F;/dPy), where &5 conditioned on yr = x is also L9
integrable for every q = 1, locally uniformly in the s parameter.

Proof. For P, almost all path 5, let w = Igol(ﬁ). Then Iggl (FZ(ﬂ)) = a’(w). As a
corollary of Proposition 5.19, we have Pps, o F} is equivalent to P, with

dPps, o F5 Prs Prs 0
P02 gy - L - &y = T (arw),

dP, T dPy o (Fy) L cE ) = " 2 FVB) = s

Note that da®(w) = O*(w)dB(w) + ¢*(w)dt. So, by (5.63) and (5.35), we have

M(ﬂ) — A3 5@ (W), dBr(w)+5 5 85 (w)[? dr}
dP, ,

where

g (w) = LS[OHI {(G9) 7 [ (n)V(Fy)] — Ric (BL(Gy) " [s(r)V(Fy)]) } dy.

Put
& (w) = el =3 L@, dB- )+ T lE (I dar} vy ¢ [0, 7]

For ¢ > 1, we estimate EP;%T |E(w)[9. Let by be the Brownian motion with respect to the
bridge distribution (from y to z in time T) as in Lemma 4.15 such that

dB,(w) = db.(w) + 20 'V Inp(T — 7,y,,z) dr.
Then conditioned on yr = z, |£5(w)|? has the same distribution as

ol—3a80 @ (W), dbr(w)+5aly 83 (w)? dr—q (] &3 (w),07 ' VInp(T—7.y7.2)) dr}

So, by Holder’s inequality and the Cameron-Martin-Girsanov Theorem,

1
Epx _|E5(wW)|? </p(T, z,y) [Epy =35 0@ (), dbr(w)—a? (g lg () df}] 2
y,x, T &

1
. [EIP’* (=24 10 @07 ' VInp(T—ry7.2)) dr+(5a+a?) §g (8512 dr}] 2
y,x,T

1
(5.68) <\/p(T, z,y) [EIP* {2410 (& 07 VInp(T—ryr.2)) dr+(3a+4%)§; [g51 dT}] 2

y,z,T
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Let us continue to use C' to denote a constant depending on ||g| s, m and the norm bound
of V and use C(-) to indicate the extra coefficients it depends on. By our choice of s (see
(5.24)), for s € [—s0, s0], |g2(w)| < C(so,T) for some C(sp,T). Apply this in (5.68) and
then use (4.32) and (4.33). We obtain some C(q, sg,T), 5(q, 50, T) such that

~ 1
Bps  |E5(W)|7 < Clg,50,T) [Bpr | eClasoD s IVapT—ram)] dr
Yz,

y,z, T

which, by (4.34), shows that dPps, o F*/dP, conditioned on yr = x is L? integrable for
q = 1, locally uniformly in the s parameter.

Note that & (w) satisfies the SDE
dgr(w) = £ () (5@ ). aBw) + GBI WP dt).
The differential process (£5(w)), = (d€](w)/dy)|,—s exists and satisfies the Ito SDE
e ) ~(€0w) (5w, dBw) + SlEP at)
1) (@) B ) + (LW B ) dr )

Hence the Radon-Nikodyn derivative dPps, o Fy/dP, is differentiable in s with differential
(€%)%(w), which, by using stochastic Duhamel principle (or It6’s formula), is

(&), = 6%~< f (@B + 3 [ (. g ar)
= & (5 [ aneamon g [ @ f(w)>dt>
— & B

Conditioned on yr = x, &7 has the same distribution as

]‘ T / 1 r / T / 1
-5 | @+ | e dr - | (@0 Vinp(r — ryw)) ar

where both [g7| and |(g)}| are bounded by some constant C(sg,T’). Hence, by Hoélder’s
inequality and (4.22), we compute that
2q

T
jo (@) dbyy| + (Cl(s0.T))™

= 2 —

+Ep

y,x,T

T
f (@) BV Inp(T — 7,yr,2)) dr
0

)

—: 3%1 (@+@+@) :
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Since b is a Brownian motion with respect to P, . 7, by Lemma 4.7,

T
< 0120) [ Bo,.., (@)% dr < Cla,0,T),
0

where C; is from (4.21). Using |(g2),w)| < C(so,T) and (4.34), we obtain

- T
(I11) <C'(s0, T)QquyyzyT ( J IVInp(T — 7,y-, )| dT)Qq
0

C(s0,T)Ep, , et?a% IVInp(T—ry-o)] dr}

C(s0, T) ¥ (p(T, x,y)) e UFd@w),

N

N

Putting all the estimations on (I), (II) and (III) together, we conclude that &3 conditioned
on yr = x is LY integrable for ¢ > 1, locally uniformly in the s parameter. ([l

Consider the distribution of P, on Cy([0,T], M). Let (x,u) be the stochastic pair which

defines the Brownian motion on (M, g) which starts from x. The distribution of (x¢)se[0,7]
is independent of the choice of ug. Hence P, ), which is the distribution of (x;)se[o,7] With

a initial frame ugp, coincides with P, on C,([0,T], ]\7) and P, )7 1= Epwuo) (~|XT = y)

coincides with P, , 7 on Cy ([0, T], M). This means
o = [ [ Prmor T0.0) a¥ol(s) avoitu) (= [ BT, avol(uo) avol() )

- JJP(Ivuo),y,T -p(T, x,y) dVol(ug) dVol(y),

where dVol(ug) is the uniform distribution on 05(]\7 ). For any y € M, the Brownian bridge
process connecting x and y in time T has the following symmetric property.

Lemma 5.21. Let (X, Ut)t€[07T] be the pair of stochastic processes for Brownian bridge
from x to y in time T.

i) Under Py 1, the process (X1—t)iejo,r) has the law Py . 7.
i) If Uy is chosen randomly with the uniform distribution in 0%(]\7), then Ur is also
uniformly distributed in Of(M).

Proof. 1) is [Hs3, Proposition 5.4.3]. (It is true since by (4.36), the finite margin of X, or

the joint density function of X, -+, X;,, 0 =1y <t;1 <--- <ty <tnpy1 =T, is given by
1 n
_ tiv1 — ti, T, Tiy1), where rg =z, =
p(T,x,y) E)p( 1+1 1y L z+1) 0 n+1 Y,
which is the same as the joint density function of )N(T_tn, e ,)N(T_tl of the bridge X from Y

to x in time T'.) For ii), we consider (4.37). Note that the distribution of the R™-Brownian



THE REGULARITY OF THE LINEAR DRIFT IN NEGATIVELY CURVED SPACES 95

motion b; is invariant under rotations. So if (Uy)seo, 1) solves (4.37) with initial frame Uy,
then for Uy = Upv with v e OR™), (U, = Uv)se[o,] solves (4.37). This implies ii). O

Let F; be as in Theorem 5.17. It induces a map from C, . ([0, 71, M) to Crsy2([0,T7, M).
We define F* on C,([0, 77, M ) conditioned on the value of Sr by letting

F*(8) := Fp.(8).

By Lemma 5.21, a uniform random choice of ug at z will result in a uniform distribution
of up at y for the Brownian bridge connectmg x and y in time 7. Therefore, to analyze
P, o F*, we can choose the initial Uy € Og ( ) with a uniform distribution to define Fj_

Lemma 5.22. For P, almost all 3 € C,([0,T], ]\7),

dpm oF* dIPFS,BT oF?
5.69 —(p) =
(5.69) o i

dVol(F*Br)
dVol(Br)

(8) -

Proof. Lemma 5.21 implies that the distribution of uz is uniform if ug is. So if we disinte-
grate P, according to the value of (x7,ur), we obtain

ff (@u0),7 “P(Tsz,y)dVol(ug)dVol(y) JJ (w,00),7-P(T, z,y) dVol(Bg) dVol(y),

where dVol(Uo) is the uniform probability on o7 (]\7 ). For any measurable subset A —
C.([0,T], M), by the change of variable formula,

F, (F*(A)) f f By ey ooy (F(A)) - p(T, 2, F*y) dVOl(F*B) dVol(F*y)

= s s \dVolo F*
| [ Barnivnr ) ol o) B2 ) avol@s) avoly).

By Lemma 5.21, the distribution of P, (s, psi5e)r 00 Ca, sy ([0, T, ) Crsy,2([0,T1], )
can be identified with that of P(psy pst5)) .7, the Brownian bridge from F*y to z in time

T with the initial frame F*Uy € O%, (N) Hence

(5 70)

s dVol o I'$
JJ (Fy,ps50),a,r (F(A)) - p(T, F yﬁ)w(ﬂ) dVol(Ug) dVol(y).

The absolute continuity of P, o F* with respect to P, will follow if P(psy psvg) e © F*
is absolutely continuous with respect to P, 5,) .7 and the Radon-Nikodym derivative
dP(Fsy,Fs50),2,T © F?/dP, 150),2,7 s integrable. Since the bridge process from y to z in time
T is just the conditional process of y on yr = x, Lemma 5.19 implies that P s, pst5y) 2, 70F*
is absolutely continuous with respect to P, :50) 2,7
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As to (5.69), we see that for any measurable set A ¢ Cy (0,17, M),
(5.71)

s dPps, o F* dP sy o F®
Ppey o F*(A) = Py (XA ‘ df;y) = ny,z,T (XAZ B, )p(T, y,2) dVol(z),

where /L is the collection of elements w € A with wp = z. On the other hand,
Prey o FS(A) = f Preyr o F*(x 1) - PPy, 2,T) dVol(2)
dP sy » Fs
65:72) ~ [P (v oL 1y avolce)
y,z, T
Since A is arbitrary, we conclude from (5.71) and (5.72) that
d]P)Fs%Z,T o F¥ . dPFSy oF¥ p(T, Y, Z)
dP,.r  dP, p(T, Fsy,z)

Reporting this in (5.72) and (5.70) shows (5.69) for P, almost all 3 with Sy =y € M. O

An immediate corollary of Proposition 5.20 and Lemma 5.22 is

Proposition 5.23. The probability P, o F* is absolutely continuous with respect to P, and
the Radon-Nikodyn derivative dP, o F*/dP, conditioned on xp = y is L7 integrable for
every q = 1, locally uniformly in the s parameter. The differential of dP, o F*/dP, in s
exists and is of the form (6? - (dP, o F*/dP,,), where (S_Csp conditioned on xp = y is square
integrable, locally uniformly in the s parameter.

Using (5.69) and the proof of Proposition 5.20, we can deduce that 5(-% differs from &

by the differential of dVol(F*y)/dVol(y) in the s parameter, where &5 can be understood
as a backward stochastic integral on the bridge paths from x to y in time 7.

5.5. The extended map F*. In order to show the properties iii), iv) of F*® in Section

5.1, we need to clarify (Dﬁ([uT]’\)g\l)) o F* for ®} o F*, where ®} is as in (5.14). We will

achieve this by extending F* to the process ([uT]A)E\l) and letting

(Dw([uT]A)g\l)> oF®:=Dr (([uT])‘)g\l) o Fs) .

The rough idea is that the maps F* on orbits extend naturally to their tangent maps for
the parallel transportations and hence can be defined for the objects they make.

We first deal with ([ur]*){” o F5. Let A — [ug]* € 09" (M) be C*=2 in F(M) and let
([ € 07 (M))tefo,r) with initials |ug]* be the unique solution to

(5.73) dlug]* = i H(|u |, e;) 0 dB(w), Yt e [0,T].
=1



THE REGULARITY OF THE LINEAR DRIFT IN NEGATIVELY CURVED SPACES 97

By Lemma 4.17, there is a version of {|u;]*} such that A — |u;]*(w) is C*~2 in A for almost

all w. By Lemma 4.20, the differential process ([ut]k)(()l) is given by
(5.74)

T
() =[PP oo )] (ol + | [DF run )] (1196 w.ex) 0 aBiw),

where u = [u]® and {D?;,Z}Ogg <i<r are the tangent maps of the flow maps {?ﬁ}oﬁ <I<T
associated to (5.73) at A = 0 (the arrow is to indicate the time is recorded starting from x).
By Lemma 4.4 (see also Lemma 5.13), the {D?tj} are determined by the paths (x,(w) =

m(ws(w)))refo.ry (or its anti-development in R™). Hence (5.74) shows that (Jur]*)S" (w)
are objects completely determined by (x-(w))refo,7r], ([uo] )81) and (H /\)(()1).
(1)

By symmetry of the Brownian motion, we can describe the distribution of (|uz]*)y’ con-
ditioned on xr = y using (yt, Ot)e[o,7], Which is the stochastic pair deﬁning the Brownian

motion on (M g) starting from y. The two path spaces Cy ([0, T, ) and Cy([0,T], M )
can be identified. Moreover, the distribution of y conditioned on yp = x coincides with
x conditioned on xy = y. This means for almost all such path (Yr)refo,r) (W) =: B, it

is associated with a path (x¢)e[0,7)(w) = (Br—r)refo,r) = B. So the stochastic parallel
transportation of u; along ? is well-defined and is given by

= Ur—4(Ur) Mo,
For any element X € Ty, F (]\7 ), let
(0, @) X = (X!, X?).
Note that the orthonormal frames u; and Op—; have the same footpoint x¢(w) = yr—¢(w).
Hence X also naturally corresponds to an element Y(X) =Y in Ty, ,F(M) with

(0, @)5r Y = (OpLw(X1), Ad(U7Lu) (X)) .

We see that X and Y(X) are just the same vector expressed in different frame charts.
Denote by Y this map which sends tangents X € TuTF(M) to Y(X) € TUT,T]:(M) for any

€ [0,T]. Let (Fi, t,)oxts<to<r and (DFy +,)o<t, <to<7 be the invertible stochastic flow
maps and tangent maps associated to y (cf. (5.40)). The following is true.

Lemma 5.24. Let 8, X, Y be introduced as above. Then for almost all 5, we have
(5.75)  Y(DFpr(u,w)X) = D(Fyr—t(To, w)) 1Y (X)) = [DFOVT_t(UO,w)]fl(Y(X)).
Proof. By Corollary 4.2, for almost all w, the maps Fy (-, w) are C¥~2 diffeomorphisms.

So for almost all w, the tangent maps D(Fy1—+(Uo,w))™* and [DFy (0o, w)] ™! exist
and are equal. For (5.75), it suffices to verify the first equality.

Write (6, @)X =: (X}, X?) and let
(X3, X3) i= (6,@), ! DF 1 (g, w)X, V7€ [t,T].
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It is true by Lemma 5.13 that

(5.76) dX! = X2 0 dB;(w),
(5.77) dX2 = (u,) 'R (u; 0 dB-(w),u,X}) u
Let

(Y2, YD) := (0,@)5, Y (0, @), (X3, X3)) .
Note that (Or_,) tu, = (Or) tug. So (5.76) gives
dY; = (Or—7) " 'urdX; = (Ur—7) " 'u- X7 0 dB; (w)
= —(Or—r) "W X2 (Or—r) " uy) T o (Br—r) urd By (w)
= —YZ2odBr_-(w),

where o?t(w) denote the backward Stratonovich integral. Similarly, using (5.77), we
obtain

4Y2 = (O7—7) " )dX2(G7_r) ) !
= (Or_,) 'R (uT o dB;(w),u.X T) Or_-,
—(Ur—+)"'R (UT# odBr_-(w),Ur_, )UT T
Altogether, we have
dY! = —Y20dBr_,(w),
a2 = ~(Or-) 'R (Or-r 0 dBrr(w), OrY}) Or-s

and the solution (Y7}, Y7) is exactly (0, @)s, (D(Fo,r—+(0o, w)) 1 (Y(X))). O

As a corollary of (5.74) and Lemma 5.24, we have

Corollary 5.25. Conditioned on xp =y, the distribution of ([uT])‘)((]l) given by (5.74) is
the same as, conditioned on yp = x, the distribution of

- T .
(lurM)S? = [DFor (B0, w)] " (luo] ) — fo [DFo, (B0, w)] " (HNS (B, ¢) 0 d By (w),

where odﬁt(w) is the backward Stratonovich infinitesimal.

Proof. Consider the mapping
(HNGY (g, ) = (HN (Or-(07) o, )
from T,R™ to Ty, F (]\7 ). We have
(HNS (g, e) 0 dBi(w) = (HY)S (uy, 0d By (w))
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and its correspondence at TUT%]:(]\,Z) is —(H’\)gl)(UT,t, odBr_i(w)). So, by Lemma 5.24,
| DF (o, w) | (BN (w0, 0dBy(w) = ~[DFosr- (B0, w)] ™ (BN (©71, 0d By (w))

and the conclusion follows by taking the integral with respect to ¢ on [0, T]. O

Let a®,y® and U° be the processes obtained in Theorem 5.17. Let (F} ;) )o<t; <to<T be
the parallel transportation stochastic flow of y* and let [DFY, ;, (U7, w)] be the associated

tangent maps. By Proposition 4.1, [DF,(Uf, w)] is invertible for almost all w. Hence the
inverse maps [DFg,( 5, w)]~! are well-defined. Corollary 5.25 shows the distribution of

(lurM) Y (w) is the same as (Jur|){” (w). We define

(lurM§ (w) o F* := (lur)$Y (w) o F* = (Jug )5 (w),

where

T .
(g = [DES (65, w)] (luo M) — fo [DFS, (G5, w)] " (HN)S (05, €5) 0 @} (w).

So the differentiability of (|uz|*){" oF* in s will follow from the differentiability of (|ug )"
in s, which is intuitively true by the differentiability of (in s) of o, Uj and [DF (5, )]~

We will justify this and formulate (([uT])‘)(Ol) oF*)’ in the remaining part of this subsection.

Lemma 5.26. Let of, O}, g, Ly o, and Of be as in Theorem 5.17. Fiz Ty > 0. For any
s0>0,q>=1and T > Ty, there are constants cy (which depends on sg,m,q,s and ||g°|cs)
and ca (which depends on m,q,T,Ty and |g°||cs) such that

(5.78) sup Eps  sup |A]7 < ¢ er (T @),

se[—s0,50]  ¥™7 te[0,T]

where A = of, (07)%, (81)s Ly asr (UF)s or (0,@)((07)5)-

S? S

Proof. By our construction, «f = S(t) O:dB; + g& dr, where O° € O(R™) and |g°| <
csgsup |V| for some ¢ that bounds sup,cpo r{ls|, [s'[}, sup{|Ric|}. So,

q

21 IR L + coTy ™ (csoT sup [V])2ect+T)

y,x, T

t
sup |af|? <Epx  sup f OidB;
te[0,77] v T yefo,1] 1 Jo

—:(I) + ¢oTy ™ (csoT sup [V|)2e00+T),
where ¢, co are from (4.32). Let b be the Brownian motion in Lemma 4.15 for Py , 7, i.e.,

(5.79) dB, = db, +2(0) 'V Inp(T — 7,y%, ) dr.
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Then,

q
(I) = Epx  sup
v yef0,1]

JOS db, +205(B) "'V Inp(T — 7,¥%, ) dr

JO db;

For (I),, by successively using Doob’s inequality of submartingale, Holder’s inequality and
Burkholder’s inequality, we obtain

q
< 297 Ep sup

T
|V Inp(T — t,y?,x)” dt
te[0,T7] 0

+ 22q_1E]P>*
y,z,T

T
2179(1), < C(q)p(T,:L",g,/)IE[p>MYT||J0 0% db, |

N

T
< clp(Tan) (B, | 0 an )

< T "C(q)Ci (@) VT e,
where C(q) = (¢/q¢ — 1)? and Cy(-) is as in Lemma 4.7. For (I),, by Proposition 4.14,

21=24(1), < E]P’* (eqSOT |V Inp(T—t.y{ )| dt) < ectd(z.y)

where c is as in (4.34). Putting the estimations together, we obtain (5.78) for A = of.
Next, we consider (5.78) for (Of)%, (gf)%. By (5.34) and (5.35), we have

(8)s = —Kv.as(r)gi + (05) ' [s"()V(F°y)] = Ric (G3(55) "' [s()V(Fy)]) »

where

Ky elt) = | (027 R (0300, 55(05) 7 [s(r)V(F*9))) O

T

+ L (63) "V (B2 R) (B, DAY~ [s(r)V(F*y)]) Uldr.

Since 0% € O(R™), |g®| < cspsup |V], and all the |s|, |s’| and |V| are uniformly bounded, it
is clear that (5.78) holds for (Of)., (gf), if it holds for Ky 4s(t). Using (5.79) and (4. 22)
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we obtain

EP* sup |Kv,qs(t)|?

T tef0,17]
q
< 397 ' Eps sup

2
v T tel0,7]

L (52) 1R (G203db, B53(53) " [s(r)V (F*y)])

q
+ 32—t (2sup | R|sup | V) Epx

y,z, T

T
j IV Inp(T — t,y0, )| dt
0

+ 39 (sup |VR| sup |V|soT)?,
which has the same bound type as in (5.78) by a computation similar to the one for (I).

To verify (5.78) for Xy ,., it suffices to check it for K; := Sé<KV,aS (1),dat) since

Ly as(t) = f (63) ' [s' (N V(F*y)] = Ric (03(07) ~ [s(r) V(F*y)]) — K.

0
By (5.79) and (4.22),

317Epx  sup Kyl < Epx sup

f(KV ws(7),08 de>

Y,x TtE[O,T] Y, T, T
q
+ EP* sup J (K s(1), 207 'V Inp(T — 7,y%, x) dr)
te[OT
q
+ Ep+ sup J (Kv s (1), g5 dr)
v tel0,T)

=: (I); + (II)2 + (II)s.

For (II)1, it is routine to apply successively Holder’s inequality, Doob’s inequality of sub-
martingale and Burkholder’s inequality, which gives
2q

((11)1)2 <p(T7 z, y)EP* sup
T te [0,1]

J (Ky s (1), 05db,

2q
<C(29)p(T,z,y)Ep, ,

Jo (Kv,as(1), O5dbs)

T
<C(29)C1(2¢)p(T, z,y)Ep, , , . [(Ky 05 (7), O

<C(29)C1(20)TEpx u | Ky s (1))
0 T€e|0,

q

For (II)g, it is true that
2q

T
(()2)° <¥Epe  sup Ky ()2 - Eps j IV Inp(T — 7.0, 2)| dr
ve T Lel0,7] v T | Jo
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For (II)s, a routine calculation shows

(ID3 < (csosup [V[)ITEpx ~ sup |Kv a0 (T)]%.
¥E re0,1]

Putting the estimations on (II);, (II)e and (II)3 together, we conclude from Proposition

4.14 and the estimation for Ky ,s that (5.78) also holds true for K;. This shows (5.78) for
IV os”

Finally, to check (5.78) for (U5)}, (6,)((U5)), it suffices to consider the latter, which
holds true by the above conclusion for Ky s since, by (5.39),

0(Y;") = s(t)(T3) "'V (F°y), w(Yy) = Kv,as(t).

Lemma 5.27. Let o® be as in Theorem 5.17. Fort,t, 0 <t <t <T, we abbreviate
[DEF;(07, w)] == [DF (U, w)],
[(DFE)(05, w)] = (6, w)s; [DF;, (07, w))(0, )55
Let Ty > 0. For any so >0, ¢ = 1 and T > Ty, there are constants cp (which depends on
s0,m,q,s and ||g°|c2) and cp (which depends on so,m,q,s, T, Ty and |g°|cs) such that

swp Bps sup [[DER@3 w7 sup [[(DFg)@;w)]

se[—so,50] 5T 0st<t<T 0<t<t<T

(580) < QFeCF(1+d§>\ (mvy)).

Proof. For (5.80), it suffices to consider the second estimation. Let s € [—sp,s0] and
t,t €[0,T] with ¢ < t. For (vo,Qo) € ToF(R™), let

(Vt—7'7 Qt—T) = [(DF:,t)(O(S)v W)]il(voﬁ QU)? VT e [L t]'
Then Lemma 5.13 shows that z, := (v, Q,) satisfies the It6 form SDE

m
Q7 (W) = 3 (MO0 (w) 37 (w) + [M (0320 (w) dr) + N(O)zpr (w) dr,
j=1
where M, N are given in (4.25), (4.26).The remaining estimation for (5.80) can be done
by following the proof of Proposition 4.16. ([l

—_——

Lemma 5.28. Let o® be as in Theorem 5.17. Then ((DF§7t)_1)t€[07T], ((DF§ ) iefo.r)
are C' in the s parameter. Let Ty > 0. For any so >0, ¢ =1 and T > Ty, there exist T
(which depends on so,m,q,s and |g°||cs) and g (which depends on so,m,q,s,T,Ty and
1g°cs) such that

— —_— q
sup Epe sup [([(DF3 ) @5 w)] ", sup |([(DFg ) @5, w)] ™),
se[—so,50]  ¥™7T te[0,T] te[0,7]

(5.81) < Qi;eC/F(1+d§*(x’y)).




THE REGULARITY OF THE LINEAR DRIFT IN NEGATIVELY CURVED SPACES 103
Proof. The C! regularity of s — (DFOS,t)_l follows from that of s — (D/ITSJ)/*I since
1 e -1
[DF(it( 87 W)] = (97 w)Ug [(DF(Sg,t)( 87 W)] (97 w)“f

and s — (0, w)z}l is C1. By Theorem 5.17, (ﬁo?t)( s,w) is Cl in s for almost all w.
Hence [(DF(ft)( s,w)]~t is also C! in s by the identity

[(DES ) (U5, w)] ™" o (DF,) (U5, w) = 1d.

For (5.81), it suffices to consider the second estimation. For zg € T, F(R™), let

Zf—T = [(DFg,tfr)(U(%v W)]_IZOa VT € [07 t]a Vs € [_50, 50]'
It satisfies the SDE

dz;_( Z J(03)z5_ (w) d@s? (w) + [M (037 (w) dr) + N(U3)z;_,(w) dr,

where (M)1<j<m, N are given in (4.25), (4.26). For (z}), := (dz]/ds)|,, its SDE is

= 20 (MO, ) (w) dT (w) + [M(O) (7, ) (w) dr) + N(U3)(z)_, )} (w) dr
j=1
2 = (My(03) dasyd (w)) 28, + (5 [M; (0] + N(©3)), 2, dr.
j=1 j=1

Let O° = ((OS){)jylsm, g = (g%7)j<m. They are differentiable in s by Theorem 5.17. Let

>
e
i

M=

(@202 + My (O),) i < m

<.
Il
_

>
»

=
[

NgE

(M@ (e, + (IMBDI),) + (N@)), —2 ) M )02 (A0):

,
l,j=1

<.
Il
_

By Duhamel’s principle, we have

(2]), = [[(ﬁawa,w)rljo [(DFE,) (5, w) ] (AN (w)[(DFE,) (U5, w)] 4B,

| (OFg @5 w1 [ 1DFE) @2 0] (A [(DFE) w5 )] dr | 0

t

0
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This means

([(DF @3] "), = | [(DFs) @5 w)] " (AP): (W) [(DFE) (62, w)] B,
0

L [(DFg (@5 w)] ™ (A®Y? (w)[(DEZ) (52, w)] ' dr
=: (I); + (IT);.

For (5.81), it suffices to show the same bound type is valid for
(I):= sup Ep sup [(D)f]?, (II):= sup Ep=  sup |(IT)].
s€[—50,50] Byar te[0,T] s€[—s0,50] Pyar te[0,T]
This will follow from Lemma 5.27 and Proposition 4.14. Clearly,
= 2 2
B ()70 ey s 01 sup [(ODLI™, sup (20
2T Pyor te[0,T te[ [

) )

where ey depends on the norm bounds of {M;} and their differentials. Hence by Lemma
5.26, there are constants c, (which depends on sg,m,q,s and ||¢°[|cs) and ca (which
depends on m, q, T, Ty and |¢g°|cs) such that

(5.82) Epe . Sup H A(z ) (w )HQ<QAQCA(1+d§A(x,y)).
yz
Let
s -1 s e -1
) = | (DR @50 (A ) [(DFZ) @] T,

! s s LA ys s \(758 o1 0 !
V)i = | [(DF@8w)| (A");00) [(DEE) @ w) | (7 V(T = 7,0, ),
where b; is the Brownian motion in Lemma 4.15 for P, ; 7. Then

Egr sup (D77 <29 B sup [(IIDF|7 + 2% 'Egs  sup [(IV)7]7.
¥ T 40,7 ¥2T 4e]0,T] ¥:2T 4e]0,T)

As usual, we can use Holder’s inequality and Doob’s maximal inequality of sub-martingales
to deduce that

E- q
(s, o [ <o) 52

P (D,

Let C1(+) be the constant function in Lemma 4.7. We continue to compute that
N s 1129
. (s

q

—_— —_— 2

J, lieT e w>J”(A§”>i<w>[<DF:,T><zs:,w>]’1H ar

0

C1(2q)Esx

11m@uﬂv,T

C1(2Q)T (E * sup H[DF;t(Uf, 1H8q E* sup H H ) ’

WT0<t<t<T - szTeoT
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which has the same type of bound as in (5.81) by Lemma 5.27 and (5.82). Similarly,

3

_ - ) »

(B g VO B DFS 01 s [0
7 te[0,T] T 0<t<t<T vz,

3q

- \ [ 19 mp(r 730,201 ar
0

which also has the same type of bound as in (5.81) by Proposition 4.14, Lemma 5.27 and
(5.82). Altogether, the same type of bound as in (5.81) is valid for (I). This is also true
for (IT) by Lemma 5.27 and (5.82) since

)

__ —_— 2q __ 2q
(Ber JOD517) < TEpe | sup [(DFL)@7w)] 7| " Ber , sup |(A2)2(w)]

v T 0gt<t<T vl efo,7)

O

With Lemmas 5.26-5.28, we can deduce the differentiability of (D ( [uT]A)(()l)) oF*in s.

Proposition 5.29. Fiz Ty > 0. For any q = 1 and T > Ty, there are cp (depending
on sp,m,q,s, ||go||C2 and ”‘XOHC'l) and cp (dependmg on so,m,q,s, T, Ty and ”.90”03) such
that

(5.83) sup IE * K < QFeCF(H‘dg(fcvy)).

s€[—s0,50] FByar

(Dr(Jur]M)g?) o F*

The one parameter family of processes {(Dﬂ([uﬂ/\)(()l)) o F*} is differentiable in s. Let

VivaDr(lur)g = ((Dr(lur)) o Fs)’ ,

s

For any ¢ =1 and T > Ty, there are cp (depending on so,m, q,s, |¢°|cs and |X°|c2) and
e (depending on so,m,q,s,T, Ty and |g°)|cs) such that

(5.84) sup  Eg * HVTVSDW([uT]’\)(()l)Hq < cpeF(Hds(@y)),

i
Proof. Recall that
(Dr(lur ") o F* = Dr((lur | 0 F*) = Dre((ug )5 ).
where
(W00 = D3 0 I (ol [ DR 1 () O ) o e o),

Let

—~~
—
o)
ﬂtn
_
>
~—
o~

w) 1= (0,0)o; ((tuSTmé”(w)) C (g = O (M) -
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It is easy to obtain the following [t6 form expression:

(s M8 (w) =[(DE5 ) (B3, w)] L (lug M)

T 1 1
—fo [(DEg ) @5, w)] (e (HN (7, e0))es dt, () (07, dw () ) -

For Proposition 5.29, it is equivalent to show the differentiability of s — ( [u;}]’\)(()l)(w) and
estimate the conditional LY integrals of its differential process and itself.

The estimation in (5.83) is valid since

q
sup Bge |(D(lur] ")) o F°

s€[—s0,50] Fyar

< sup E*
z,T

s€[—s0,50]

(Lug ) (w)

9

where the second term has a bound in (5.83) by following the argument of (4.45) in Propo-
sition 4.27 and using Lemma 5.26 and Lemma 5.27.

The processes o®, U* and [DF[‘)S (U8, w)] ™! are all differentiable in s by Theorem 5.17.
Lemmas 5.26-5.28 show that aj, Ty 4., (07),, [(DFg,) (U5, w)] ™! and ([(DE,) (65, w)] ),

all have bounded sup L7 (¢ > 1) norm with respect to P, , 7. Hence s — ([u‘}]’\)él)(w) is
also differentiable in s and the differential is

(EARIICHN
= ([(DFg )65, )]~ )S(M )5
! / 1) 75s M) mes  jes
_L ([(DFg) (w3, )] ), (= () (5. e0))er dt, o () (57, i (w))
T 1
_J [(DFOt) (w( Ut,eZ ) e; dt,
0

1 s s 1 s
w«m)g (©7,)) LT () + @ () (07, dTy 00))
=: I(s) + II(s) + III(s).
This process has a continuous version in s by Kolmogorov’s criterion (or by continuity of
a’, B%, Xy s, (07)5 and [(DFOSt)( s, w)]~! in s using Theorem 5.17).
For (5.84), we do the corresponding conditional estimations for I(s),II(s) and III(s).
Clearly,

Bes,, )1 < Bge - sup [(((DF5)@3w)1 7" [ (ual 5[

Pyer v T 1e[0,T]
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which, by (5.81), has a bound as in (5.84). Put

T
L (s) = — f ((DFS) @5, w7, (= (D05 e0)es dt, = ((HY)S) (05, g5 (w)ab)) )

0

T
Ma(s) =~ [ (DR w1, (0.2 (BN (0, 0dBi(w) )

0
For I1(s), we have

—1 ™ B
. II(s)| < 2 <}E@;I’T ()| + Bpr |112(s)|‘1) .

As before, we can use Holder’s inequality, Doob’s inequality of submartingales and Burkholder’s
inequality to obtain some C(g,T) depending on sg,m, q,s, T, |¢°|cs and |X°|c2 such that

Epe | [1I(s)|" <C(q, T)T5 ™ (E sup ([(DFg )5, w)] 7).+

¥:2T 4e]0,T]

B s [((DF5 (@3]

S
¥:2T 40,7

1
"B 25 IVt df})2> ,
y x, T

which has a bound as in (5.84) by Lemma 5.28 and Proposition 4.14. The same argument

applies to ITI(s) and we obtain some C’(g, T') depending on sg,m, ¢, s, T, [¢°]cs and | X°] 2
such that

2q
L) <C(q, DTy ™ (Epe - sup |[(DFg,) (5 w)]”
z Pye, te[0,T]
{ + (B (2050 |V Inp(T—7.y9,2)] dr})%.

y,z,T
e

g )\(1) /2q 1 — T 2q 1
IR <t,ez>>ei>s\ 0+ By [ v

dt) 5) }

f (@)D ©5,)) e

which also has a bound as in (5.84) by Lemma 5.26, Lemma 5.27 and Proposition 4.14. [

)%.

y

We can define (Dr([ur]? ) (1) ) o|F*]* for all A\. Let V, ¥ and s be as in Section 5.2. For
y e M, let (|72 (W), |0 (w ))te[o 7] be the stochastic pair in (M o7 (M )) which defines

the §*-Brownian motion on M startmg from y. Followmg Theorem 5.17, we can extend
the map F* on y to be a map [FZ] on paths (|y:|*(w W))sefo,7] SO that

i w) = (151Nl g (w)) (@), Ve 0,71,
and its horizontal lift ([Uf])‘(w))te[oﬂ with (|G§]*)% = 0 are such that

d%(lyﬂA(W)) = Ty () = sOIGTMATFI) V(S ().
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Accordingly, we denote by |af]* the anti-development of |y]* and let (| be

N <<t

dp, = H/\(Bta od[af])‘(w))

with tangent maps (D[Ftsﬂ)\)0<g<f<T~ We will omit the upper-script at s = 0. For z € M,
we define |[F*]* on C,([0,T], ]\7) conditioned on the value of S, i.e.,

[F1N(B) = [F3, 1NB), VB e Cu([0,T], M).

Let (|x/]*(w), lut])\(w))te[O,T] be the stochastic pair in (]\7, ng(ﬁ)) which defines the §-

~

Brownian motion on M starting from x. The correspondence rule in Corollary 5.25 shows
that conditioned on |x7|* = y, the distribution of ( [uT]A)g\l)(w) is the same as, conditioned
on |yr]* = z, the distribution of

(lur )Y (w) :=[D1Fo 1 (B0l w)]~ (Luo]™) S

T
- fo (DI Fos MGl w)] L HM Y (|6, 0d By (w)),

where od?t(w) is the backward Stratonovich infinitesimal. Then we define

(Dr(lur)V) o [F*1 := Dr(([urMSY o [F*1Y) = Dr((lus M) (w),

where
(s (w) = [DIES AT w)] (el

T
S S - 1 S S
(5:85) - || DU ABP ) (071 edlof )
The proof of Proposition 5.29 works for |[F*]*, which gives the following.

Proposition 5.30. For each A, the one parameter family of processes {(Dﬂ([uT])‘)g\l)) o

|F*)*} is differentiable in s. Moreover, (DW([uT])‘)g\l))o[FS])‘ and the differential stochastic

process
/

8, 1 1 s
Vi Dr(lur])y = ((Dr(lur)y) o [F1)
conditioned on |x7| =y are L (q = 1) integrable, locally uniformly in the s parameter.

For later use, we list and reformulate some differentials related to VTN’SDW([uT]/\)E\l).

The upper-scripts A in V*, R*, Ric?, #*, @ and (6,w)* are to indicate the metric §* used.

Lemma 5.31. We have the following for almost all w and for all t € [0,T].
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i)
(10f1 = T.5(0)
= fo (([Uo]/\)*l(s’(T)V(y)) — Ric? (T\My]x(T))) dr — L<K\/>,B(T)a dB,),

where Yy |y (1) 1= s(T) |G (|Co]M) MV (y) and

K.5(7) = | (0B ({082, Ty 0 () 1071
[ 1O B P B (0P Yoy () 0512 7

i)

(0, @) 5,2 (071N = (s ([Bo]) ™V (y), K3 5(1))-
iii) For s — vj € HTlUf]A.F(M), let vi := [D|F: MO, w)] i, 7 € [0,t]. Then

(vi)o = J: (DL (160l w)] ™ (@ (v (15519))

where
@& (v, (1051)) =V (vor, (15511)6) HX(|0-1*, 0dBr) + VA (v H (|61, 0d XYy (7))

(5.86) + RMNHM|U-1Y, 0dBy), (521N vr
The Ité form of (vg)g in (0,w)-chart is
/ t T - -1
(8. @)%, (v8)) = fo | DLE M (B0, w) | {6, 2 @ (vr, (1551)5)
(@ (v (15310), 85 (v (155190)) }

where @ (v, ([BE1N)5) is & (vr, (|U2]Y)h) with the Stratonovich infinitesimals od By,
odT{\,7B(7') replaced by the Ito infinitesimals dB;, dT{‘,7B( ),

& (vr, (01)) = = (@(vrs (1531 €4) ) €5 dr 0 (| H (D, e0), @ (vr, (10519, )| ) i,

O (vr (1031M0) = (15,1 R (10,1, [0 120N @ (vr, (153 0)) ) [0 P
+ o ([HA([U] cei), @ (vr, (|02 )O,ei)D dr, and

®" (vr, (1031 e0) = VO (v, (B30 AT, ) + B (0,1 €0), (10712)0) vr

+ Vv ) HN([U:, K3 ge).-

Proof. Without loss of generality, we can consider the case A = 0. The i), ii) are straight

forward consequences of Theorem 5.17 reporting o = B in the formulas in Lemma 5.12
and Corollary 5.10. For iii), a comparison of the SDEs (5.41), (5.43) in Lemma 5.14 with
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that of the tangent maps [DFp .| L, [b?/oﬁ]_l shows that we can use Duhamel’s principle
to formulate (v{)g, (6, @), (v§)( as above. O

Proposition 5.32. With all the notations as above, then
— / T )

<(lu8TP)§ ><w>)0= fo [DLE (1, w)]~ { @ (1615, (1631))
(5.87) —(VBER) EN (O ) 0 dBr = (HYY (16,1, 0d L (7)) }
where @A(([UT])‘)E\D, (B2)4) is as in (5.86) replacing v, by ([UT]A)&U and

(1515 (w) = [DLFrr (B0l w)] ™ (Luo )3

T
| ILE P w0 ED D (0 dBiw).

In (0,w@)*-chart, we have the Ité integral expression

(@ (P ) )

T
= |, [P sl )] {0,290 @8 (0P8 16:1%)

(oY, (B0 &5 (B, (15519)

+ (@)i’

Proof. Differentiating (5.85), we obtain

((tum&l)(w)) — (DL B3 )Y (o)

0

T
— fo [D[Fo N (B0l w)] (AT )6 (H) V(1B ) © dBy(w)

T
- fo [D[Fo, N (Bo]Y, w)]HEY D (16, 0d XS (t,w))
=: (I) + (II) + (III) + (IV).

By iii) of Lemma 5.31, we have

T
(1) - fo [DLFo (B0, w)] ™ @ ([DLF-r P (1ol )] (o), (155195
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ForO<7<t<T, put
Vi = [DIF PG, w)] T EY D (160, 0d By (w)).

We continue to compute that

T rt 1
(= - fo fo [D1Fo- (B0 w)] ™ @ (Ve (1551)
T T

—— [ 1R P w7 @ ([ v (5.

-
Altogether, we obtain
T

(D) + (1) =L [DLFo -1 (B0, w)I Tt @ (151, (1531)-

Hence (5.87) holds true. The It6 form integral expression of ((6,w)s; (([u%]/\)(()l)(w)))g can
be obtained using the It6 form in iii) of Lemma 5.31. O

As a corollary of Proposition 5.32, we can further express the differential
!/

((Lur )5 o 1B = (M) ()

0

using (|u¢]* (w))sefo,7] and the tangent maps {[D[?Lg])‘([uﬂk, w)]}o<s<i<r Of the flow maps
{[fl’ﬂ)‘([ud)‘, w)}o<y<i<r associated to (5.73). We only give the Stratonovich form. Let

K{\/”?B(t,w) =

| Qars )R (g B ). g P ) sV )] Lar—o

0

# | Q1) (P Pe) B (e L1 lar ) sV ) Lo o7
Yyl(r) =

T—7 T—1
| () @ v) - Ric (o) sV () - fo (K (1 w), dBy).

0

Then IQ;%(T) corresponds to I{\/, (T — 7) and they have the same distribution. Put

(L3 = O.) s (ST =) (Lar) V), KT = 7).
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Corollary 5.33. With all the notations as above,

(Y @),
T
~ [ PP ] {2 (L (0 P0)

H(P ) END P (a1, ) 0 dB (w) + (BN (Jur ], 0d Ty (1)
where
@ (LS, (1s.r1M6) = = VA (N, (13 21M0) HA (a1, 0d By (w)
= VA () A ([ 1 odr“m)
— RMH(Jur]*, 0dB-(w)), ([usr]M)5) (lu

In (0,@)*-chart, we have the It6 integral expression

(0, =) (LM (w)
T
= f [DUF P (Lo 1 )] {0,2)* @ (LMY, (13 1)5)

0
+ (B (LMY (132 16), 85 (e M, (32 100) )
+ (2 (P ) (NS (e ) es i,

& (VM3 6 EH Y (1 dB) + 2 (D (Lo 1 d2y () ) |-

/

Proof. Note that (([ufp])‘)g\l)(w))g conditioned on |x7|* = y is the same as (([ui}]A)g\l)(w))O
conditioned on |yr]* = 2. The formulas follow by Proposition 5.32 using the correspon-
dence between

[DIF 1M ([ug] w)] and [DIFr_; 7 |01 w)]
]

5.6. The differential of A — p*(T, z,-). We will show Theorem 5.1 in two steps, namely,
the kK = 3 and k > 3 cases. We begin with the k = 3 case. As we sketched in Section 5.1,
the strategy is to show zi_\p’l defined in (5.15) is a C! vector field, then derive a conditional
path-wise formula of Div)‘z%’l(y) and use it to give the estimation in (5.2).

Lemma 5.34. Let)\e( 1,1) = g € M3(M) be a C3 curve. Let x € M, T € R,.. The
map 5; Y — <I>>\( ) defined in (5. 13) is a locally bounded C* Jfunctional on C* bounded
vector fields Y on M. Consequently, {ZT (y)} is a C* wvector field on M.
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Proof. Recall that
=1 = 1
TA(YV)(v) = B (¥ (ber ), Dr(url) ) ), | [xal ) = y) = V), 2 ).

Hence,

2O < [ @] <Eey | Jlur)F @) = ——Epne () @)

Twy)

By Proposition 4.27, there are ¢} (depending on |g*|c2 and [X*|c1) and ¢} (depending
on T, Ty and |g*|cs) such that

ra I = Mm@ 1 e} (+dya (@),
[2:00)] < p(T,x,y)E@QZi‘,TH(luT] W) < p(T,w,y)%e '

where the last term is locally uniformly bounded in the y-coordinate. This shows the map
Y — 61 (Y) is locally bounded.

To show 6; is C1, it suffices to show for any flow F** generated by a smooth bounded
vector field V on M, s — Ei(Y)(Fsy), y € M, is differentiable at s = 0 and the differential

BV F)y = S BA)(F)

s=0

varies continuously in y. Let |F*]} be introduced in Section 5.5, which extends F* to

Brownian paths starting from x up to time 7" using the auxiliary function s. By Proposition

5.23, @i o |F*]* is absolutely continuous with respect to @i. So the change of variable

comparison in Section 5.1 works, which gives (5.20), i.e

A s
T,\(Y)(Fy) = Epn (‘Pi(Y,w)OLFSV' ot O—[F] )
.13 vy, T d]P)x

p (T, z,y) dVol*
pMt, @, F3y) dVol* o Fs

(¥),

where
O (Y, w) = Y ([xr]*(w)), Dr(] (w)),-
By Proposition 5.30, the process ®1(Y,w) o [F*]* is dlfferentlable in s with
(5.88)
(@} 0 [F1Y), = (g Y (15510, DM, + Y (1310, Vi D (ur]) ),
and this differential is LY integrable conditioned on xp = y jf)r every q = 1, locally uniformly
in the s parameter. By Lemma 5.22, for g € C, ,([0,T], M),

A =X . \ .
dPx o [FS]A (ﬁ) _ dPFsyac T © [F ])\ (ﬁ) ) p)‘(T,x, F y) ) dVO]A oF (y)
P P, , 7 pMNT,z,y)  dVol

By Proposition 5.20, d@;‘s o |[F*]}/ d@ - 18 differentiable in s with

y,x, T

(dPstTO [F°] /dIP’WT) (dPFsWTo[FS] /dPWT) &
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where
ST——J< ), dBi(w)) + 5 f<gt w), & (w)) dt,

and both (d}P’FsyxT o [FS]’\/dIP)ym r) and &7 are LY integrable for all ¢ > 1, locally uni-
formly in the s parameter. Using Holder’s inequality, we conclude that

(q>; o |[F*] - (dP) [FS]A/dﬁi));

is also LY integrable for every ¢ > 1, locally uniformly in the s parameter. ThlS allows us
to take the differential in s under the expectation sign of the expression of ® )\(Y)(F 5y).
In particular, this shows s +— af\(Y)(F Sy) is differentiable at s = 0.

Let us derive a formula for (Ei\(Y)(Fsy))g. Note that |g°]* = 0 and
(g 1Ma(w) = (1Bl [8' OV ()] = Ric* (|18l (V)]

Using the correspondence between |U;]*(w) conditioned on ya =z and |ur_]*(w) condi-

tioned on XT y, we have the distribution of €T under IP’ »7 18 the same as

T
Trve = fo (&' @=1)(lur )7V (1xr ) = Rie(lw* lur 1) s(T—=)V([xr]Y), d By ).

under IP’wyT, where s is given in Section 5.2. So, by (5.20) and (5.88), we have

@OE ) =Ep  ((Fuqerm Y2 Dr(lur]5), + ¥ (1), Vi o Dr(fur S0,

+ <Y XT A),DW([UT )g\l)>)\?T,V,s)

(5.89) =B (B V) (w)),

where we omit the upper-script 0 of x,u and Vv s at s = 0 for simplicity.

To show (6}\ (Y)(F*y)); is continuous in y, we compare it with its value at nearby points.

Choose another smooth bounded vector field W on M and let "F be the flow it generates,
where we use the left upper script to indicate the parameter associated with W. As before,
we can extend "F to be a one parameter family of maps |"F|* = {|"F,]*} on §*-Brownian
paths starting from z up to time 7. Let ["a]*,|["O1Y, ["g]™, "] [7y]Y, [7O]* and (|"G]Y).
denote the corresponding stochastic processes of |"F]* in Theorem 5.17. Then a change of

variable argument for (5.89) with |"F]* shows that for z = "F(y),

. dP) orFV) PMT,z,y) dVol®

U\ (Y,V)o
(A( T e ) @ aver o
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Since p* and Vol are continuous in y, for continuity of (ai\(Y)(Fsy))g in y, it remains to
show the conditional expectation of the following difference tends to 0 as r goes to 0:

A dP o|"F]*

dP

= (V) o 'FP - w1, V))
=:"(D1-"(D2 + ")y - (I1),.

For this, it suffices to show

WA(Y, V) o 'FI* - — (Y, V)

dP) o ['F) N (d[P’i o'F]

— ——— — 1] ¥ (,V)
dP P ) *

(5.90) limE,  ["(I):]> = 0 and lmEy | (1> =0

r—0 ]P)z,y,T —0 z,y,T

since E_ B " (I)2|? is locally uniformly bounded in r by Proposition 5.23 and E_x  |(II),]?
y, T

Px,' ,T
is bounded by using Proposition 5.20 and Proposition 5.29. !

Note that |Y],|VyY| are locally bounded at y and the difference between Y (z) and Y (y),
VvY(2) and VvY (y) under parallel transportation along (2 = *F(y))[0,- is bounded by
a multiple of r. Using this, (5.89) and a standard split argument by Holder’s inequality,
we see that to conclude the first property in (5.90), it suffices to show

") = By [Erve o 'FP - € 4) -0, -0,

()i By ([oru ) o FP - Dr(lur ) — 0. r -0,

V)= Ep vT,V,SDw(luTP)&”orFV—v%,v,squuTV)&”f)aoaHo.
Let

gy o'FP =~ T<<VUOV>*1[S'<t>v<y>] — RN ("B TG0 s (VW) dl el

2 f CUPHw), dra)).

For "(III), we have

2.7(I) = 2-E, T(E‘}OUF]*—EOTF)
< E@@ §<T(lEfV)6( ) (rom—ld)dewH[?md@f
E@ (g Po(w), dBu(w)|
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For "(III), the usual argument using Lemma 4.15 and Burkholder’s inequality shows

2
373.7(10), U Ot _IdH I"( ik H dt
4
*E@;w fo 2" (g 1Mo (w1701 = 1 [V I pN(T — ¢, [ye 1 (w), )] dt
B [ i llis ] a

Note that there is some constant C' which depends on |¢*|c, s and sup{|V|]} such that
g 1MW), [ (187 1M)o(w)] < Cr
Hence

37%-T(I), < (Cr)°T* + (Cr)'T?Epn  sup || ot —1d|*
va.T 4e[0,T]

D=

+ (207_)4 (EPA sup H Ot _ IdHS B 68&7; HV)‘lnp/\(T—t,lYt]/\,x)H dt)
v-=.Te[0,T] vz T

By Lemma 5.26 and Lemma 5.28, for any ¢ > 1, there is some C1(q,T') such that
q
o = o' < Ci(a, T,

]E@ sup
v T 4e[0,7]

Using this and (4.34), we conclude that "(III); — 0 as » — 0. Similarly, using (4.37),
Burkholder’s inequality and (4.34), we obtain some Cy depending on T, d(z,y) such that

T 2
am, < By ([ 1P - Pl )
T 4
#Bp | (0P = () 2060 P T — il )
< OF, <sup (1% — (16l + sup HT(tgﬂ*)a—(tgfmaHS)-
Py z1 te[0,T] te[0,T]

The argument in Lemma 5.26 shows there is some C3 depending on [g*| s such that
Ep sup ["(1g51M)0 — (1&1M0]" < Cs - Epn sup [I"04* = (6]
ot iefo1] v T te[0,T]
< Csr?  sup EP)\ sup (" ’||q.
€[—ro,ro] YT te[0,T)

This immediately implies that lim,_o " (III), = 0. For "(IV), we have

14>.

"(IV) < Const. - Ep < (rarl)§ = (e

sz
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Note that
- o T o
(0,05 (Tur S = (DI Fo (17001, w)] 7 ([uo]) +f0 (D" FoM("Gol*, w)] !

(@ (DU e)es dr (N B dlal) ) -
By Lemma 5.26 and Lemma 5.27, for any g > 1,
(DL Foa (6o, w)] 71| < ree” e ),

_ q
sup E_»  sup H "]} ‘
re[—ro,ro] ¥ ®T t€[0,T]

)

where "¢ depends on 79, m, ¢, s and ||g*|| o2, and "¢ depends on 7o, m, q,s, T, Ty and ||g*| cs.
Moreover, by Lemma 5.26 and Lemma 5.28,

Ep sup [l = o < cart,
va,T te[0,T]

B s [[DI R Mol w)I ™ = [DLR (ool w)I ™! < o,
v:2.T 1e[0,T

where the constants Cy, Cs depend on |g*| 2. Again, a standard split argument using these
estimations and Holder’s inequality gives lim,_,o "(IV) = 0. To conclude that lim, o " (V) =
0, we see from (5.87) that it suffices to show for any ¢ > 1,

5 sup HAto TF AtH < Cprt
v:2,T te [0,7]

for some Ca depending on Hg HC37 HXHCQ? T and d(.fC,y), where A; = (lgt] ) (lOt] ) 0’
(15515, (18IS or [(DFos)(180]*, w)] L. Using Lemma 5.11, this can be be reduced to

the cases that A; = |}, |U¢]* or [D/[F\/MA([UO]/\,W)]*I, which were shown as above.

Let C’ be a bound of [dVol* o "F/dVol* ()| for r € [—rg, r]. By using (5.69), we obtain

2 2
A ITRIA 2
-1 <20/ E_. Mfl

]Py,z,T d]P)Z)J\

dP) o |"F]* _ dVol* 0" F

dVol*

=
IPuy,av,T

(y) —1

—: ¢’ ("(VI) + "(VII)).

Clearly, "(VII) — 0 as » — 0. For the second property in (5.90), it remains to show
"(VI) — 0 as r — 0. Following the proof of Proposition 5.20, we obtain

A o F N 5
d]P)ZdPE); ] 6{ (w), dB- (W)>+4SO g, (w)] d’T} —. TgT(W)
and
T T
rert), = et (=3 [Py + 3 [ aPim el )
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The usual argument using Lemma 4.15 and Burkholder’s inequality shows that for every
q=1, Ex |7"5T(W)|q is locally uniformly bounded in r. Hence "(VI) — 0 as r — 0.
y,x, T

Altogether, we have shown the map ¥V — 5}\ (Y) is a C! locally bounded functional on
C* vector fields Y on M. Hence there exists some C' vector field Z;’l on M such that

A
= <Y(Z/)72T1(y)>)\-
This shows zi"l(y) = zT '(y). Thus {ZT (y)} forms a C! vector field on M as claimed. [

Lemma 5.35. Let A€ (—1,1) = g € M3(M) be a C? curve. Let x € M, TeR,. For
any smooth bounded vector field V. on M, let s, V%V < (‘?T,V,S be as above, then
(5.91)

Vo’ @) = B (yaDr(lur) P (w) + Dr(lur) (@) € rv,e(w)| e (w) = y)
As a consequence,

Div*zy! (y)
T
_E <u~ (v - v;ﬁv,sm([uﬂk)g”) —~{Dr(lurMY, %[uﬂ)‘ J s(T—r)dB,),

T
+<D7r([uT]/\)E\1),% L s(T—7)ur](|u 1Y) 7 (Rich, 1)~ dB L), ||

Proof. Let Y be a C* bounded vector field on M. By Lemma 5.34,

—1
(5.92) 8,(YV)(y) = Y (9), 27 (1)),
where all the variables 6; (Y),Y and Z%’l are C! in y. Hence
—1
(5.93) V@AY () = (VY (), 275 (), + Y (), Vg (),

Let {F%}¢er be the flow generated by a smooth vector field V. Then

/

V@MW) = (BO)(FY))

0
It was shown in Lemma 5.34 that

—1 s / —

(BOFD)). = E (P eV DL, + Y (lxr ), Vi Dr(lur ),
(5.94) O (1), Dr(lur ), Erye Ixrl ) = y)
Applying (5.92) for the C*~1 vector field VY (instead of Y) gives

(<vA Y. Dr(Jur]® “>A‘ x| Mw )=y) = (VY (). 27" (),




THE REGULARITY OF THE LINEAR DRIFT IN NEGATIVELY CURVED SPACES 119

Report this in (5.94) and then compare it with (5.93). We obtain

Y (), Vaz ' (),

= E (1), Wy o Dr(lur ), + Y (), D (lur ), E e el (w) = )
= (Y, E( Vv Drllur M) () + Dr(lur ) (@) E ryow)] e w) = ) ) -

This implies (5.91) since Y is arbitrary.

The divergence (Div)‘zg‘p’l(y)) is just the trace of the mapping V(y) — Vv(y)zT Y(y). Put

1

1 (T -
Erve =3 | =l V(lsrl). 4B,

2

Trve = f " (Rich, (L P (L)) (@ -V (), 4B
TV,s 2 0 [u-]> T T T XT y T ).
Then
(D2 (1) = E (tr (V = Vi y o Dr(lur M) (w)) +

2

>t (Voo Dr(lur ) (@) €y (w) )

i=1

lxr M (w) = y) :
Take V1,---,V,, to be orthogonal at y in the metric §*. We obtain

tr (Vo Dr(lur ) ) E o)) = Z<D7r (a0, Vi), E (o)

T
::<quuﬂkg”@@,—;uTJ‘s%T_Tyﬁi>w
0

Note that |u,]*(|uz]*)~! is the backward parallel transportation along [X]E‘T 71 (w) which

preserves the inner-product. Using (4.12), we obtain

Frve =y [ Vst ol o) i B,
and

tr (V = Dr(lur) (@) E gy o(w))

= 3 (Or(ur) P (w), Vi) - E gy, a(w)

= (D (e (w), § 5y s(T =) [ur] (a1 Ric L d B,
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Proof of Theorem 5.1 (k =3). Let z € M and T € R,. Let ([ ¢, [us]*)ier, be the sto-
chastic process pair which defines the Brownian motion on (M g ) starting from x. By
Lemma 4.17 and Proposition 4.27, it is true that for any f e C%(M),

(J fly T x,y) dVol/\ > J <V/\ )‘1 (y) -p)‘(T,z,y)>>\ dVol)‘(y).

Since {ZT’ (y)} is a C* vector field on M by Lemma 5.34, the classical integration by parts
argument in Section 5.1 shows that

(J F)pN(T, z,y) dVol* (y )>(1>

A
- f fly DlV)‘ Al(y)) MT, z,y) +<z y), Vo NT, z, y) >)\> dVol* (y)

- fﬁf<y>¢A<T,m,y>pA<T,x,y> Vol (y).

The function ¢} (T, z,y) is continuous in y, uniformly in A (see Lemma 5.34). Hence its

1
§iz )P\ (T, ) dVol (), for amy
f e CX(M), which is true by (5.10) and the convergence in A of |x7|(w) and |ur]|*(w) in
the L%-norm for every ¢ > 1. So the first part argument in the proof of Lemma 5.5 works,
which shows that A — p*(T,z,-) is C!, the differential (p’\)g\l)(T,:c,y) is continuous in y
and

continuity in A follows from the continuity in A of (

PN (Toa,y) - 0 0) + 2N Tosy) - (0N ) = SM(T 2 )P (T2, 9)0 ():
This gives (5.1) since p* is non-zero for V, small.

Next, we show (5.2) with [ = 0. For this, it suffices to show the same type of bound

holds for the L9-norm of ¢}(7T,z,y). Note that, by Lemma 5.34, z%l( ) is such that
<z y), Vn (T, x RN —E<<D7T(UT] )( )( ), VA InpNT, 2, | x| >)\’ |x7]* = )
Using this and the formula of Div)‘zi)}’1 in Lemma 5.35, we obtain

(5.95) AT, 2,y) =B (3M(T. 2, w)| xr(w) = ).

where

~ T «—
(f)}\(T,m,w) = —tr(V — Va\ﬂ’\/’sDﬂ([uT])‘)E\l)) + <D7T([uT])‘)E\1), ;[uﬂ)‘fo S/(T—T)dBT>)\
T
(5.96) —(Dr(lur), ;L s(T—7)[ur|M([ur ") 'Ricy, | d Br ),
— <D7T([UT])\) ,VA InpN(T, z, |x7] >)\
=: (T, z,w) + (I)(T, z,w) + (III)(T, z,w) + (IV)(T, z, w).
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So,

|6A(T, 2, )|, = JM ‘E(gi(T,%w)HXTWM) = y)‘qu(T,w,y) dVol* (y)

< JME(|‘(Zi(T7 Z, w)”q‘ lXT])\(w) = y)p)\(T; x, y) dVOl)\(y)
<47 (E|@))7 + E|AD)]7 + E|TID)]? + E|(IV)]) -

Hence we will obtain (5.2) with [ = 0 if (I), (II), (III) and (IV) all have the same type of
L? bounds. This actually follows from Proposition 4.11 and Proposition 4.27. For (IV), it
is true by (4.44) and (4.33) since
— 2 — 2q — 2q
EIVI* < E|(ur™P| ™ B[V np T 2, x|
Using Holder’s inequality, we obtain
2q

E )’ < E (o -EH;LTS(T—T)luTV(luTP)‘lRicl;ﬁdeT

Using Proposition 4.27 and Lemma 4.7, it is easy to show that E |(III)|? has the same
bound type in (5.2) with [ = 0. The term (II) can be handled in the same way. For (I),

it suffices to estimate the L%-norm of (([u%]/\)f\l)(w))g for V with norm 1. Split the Ito
integral of ((0, w)([u;}])‘)g\l)(w))g in Corollary 5.33 with infinitesimal increments dB; and

dr, respectively, as
T

M= (O w)) = [ DT Pl w)] (Or(ryw)dBr + D))

0
Then it is standard to use Burkholder’s inequality and Holder’s inequality to deduce that

LT ) !

T

|| DIF )] () dr
0

Using Corollary 5.33 and (4.44), we can continue to estimate E [(I)1]|*, E|(I)2|?? as in

Proposition 5.29 and show they have same bound type in (5.2) with [ = 0.

2
dr

el = (8] 1o

q

+E

To complete the proof of i), we apply Lemma 5.5. It remains to show (pA)g\l)(T, x,y) is

continuous in the (T, y)-coordinate, locally uniformly in A, which is true if we have
1) the continuity of y — (p’\)g\l)(T, x,y), locally uniformly in 7" and A, and

2) the continuity of 7" — (p)‘)g\l)(T, x,y) for every z,y fixed, locally uniformly in A.

For 1), it holds if the continuity of y — (In p’\)g\l)(T, x,y) is locally uniform in 7" and A,

where the latter is true if y — (5}\ (Y)(F*y)), is continuous, locally uniformly in 7" and .
Since all the bounds in Lemmas 5.26-5.28 are locally uniform in (y,7) and A, the limits
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for continuity of y — (ai(Y)(F *y))p in proof of Lemma 5.34 are all locally uniform in T
and \.

We proceed to show 2). Simply denote by (x*,u*) the stochastic pair which defines the
Brownian motion starting from x. Then for any smooth function f on M with support

contained in a small neighborhood of ¥,

~

T T .
) = () + j A F(2) dt+j0 HMw), ) (F(w))) dBi.

Taking expectations on both sides shows

T
B(f(h) = | B(aV6) ab
Hence for TV > T,
T/
B(f(h) ~E(F0) = | B(A/6) at.

Differentiating both sides in A\ gives

fN 1) (V@ 2.2) — I (T2, 2)) Vol (2)
M
TI

- | 16) (P02 = 2 T0,2) (N ) Vol ) + |

T

E((a)) at

T/
@@l e ) avore),
T M

where, as T — T, the first term tends to zero since pA(T ,x,z) is continuous at T > 0,

locally uniformly in z, the second term tends to zero since E((A* f)E\l)(xf‘)) is uniformly

bounded for ¢ in a small neighborhood of T" and the last term goes to zero as well by using
that the bound in (5.2) with [ = 0 is locally uniform in ¢. In summary, we have

lim J f(z (1 2, 2) — (pA)S)(T,x,z)) dVol*(z) = 0.
T'>T
Since z +— (p)‘)f\l)(T, x, z) is continuous, locally uniformly in 7" and A, and f is arbitrary,

we must have limT/HT(p)‘)g\l)(T/, x,y) = (p)‘)g\l)(T, x,y), locally uniformly in A. This shows
2).

Finally, we show iii). By symmetry, the mapping x — (p)‘)g\l) (T, z,y) is continuous
for all T,y, locally uniformly in y. Therefore iii) holds for any bounded function with
compact support. Fix ¢ > 1. Any uniformly continuous and bounded f e C(M ) can be
approximated by a sequence { fn}neN of continuous functions on M with compact support
in such a way that
(5.97) lim | F(y) = Ju(w)|

n—0o0

-
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locally uniformly in z. Property iii) follows by using (5.97) and (5.2) with { = 0. O

Proof of Theorem 5.1 (k> 3). By Theorem 5.1 i) of the k& = 3 case and Lemma 5.5, we
deduce Theorem 5.1 i). Hence V) (lnp)‘)f\l)(T, z,-), | <k —3, are well-defined. By taking
the gradients of the identity (5.1), we obtain that v(l)gf)i(T,SL‘, ), I < k — 3, exist as well.
For (5.2), it suffices to show the same type of L?-norm bounds hold for V(Z)QS%\(T,:J:, s
I<k-3.

The I = 0 case was treated in the previous proof of Theorem 5.1 with &k = 3. We proceed
to consider the [ = 1 case. Let W be a smooth bounded vector field on M and let {"F'},cr
be the flow it generates. Then

d
Vv A(Tr) = 2| (6M(T2,"F ().
r=0

We will look for a conditional expectation expression of V;‘V(y)d&(T ,x,-) and use it to
estimate |V} (T, z,-)|. For this, we adopt the idea we used in analyzing the regularity of

5§(Y) (see Section 5.1). Let f be an arbitrary bounded measurable function on M. By
the definition of the conditional expectation and the change of variable formula under " F’,

E (33(Tzw)f(xr ) ) = E (E( (T, w)| [ (w) = ) £(9))
= f¢i(T7w, y) f () (T, z, y)dVol* (y)

= J(bi(T, z,"F(y)) f("F(y)p (T, 2," F(y))dVol* (" F(y)).

Let |"F]* be the extension of "F to C,([0,T], M ) constructed in the previous subsections.
By Proposition 5.23, all probabilities @i o [’"F])‘ are absolutely continuous with respect to

P,;\. Hence, using the change of variable formula under |"F]*, we obtain

iA r
E (3 f(bal) =F (5& SIFP - S o FP M)
dP;,

—A
—[~ dP, o |"F*

[xr|* = )f ("F())p\(T, 2, y)dVol* (y).

Since f is arbitrary, a comparison of the two expressions of E((Z}\ - f(lx7]")) shows

7)\ r
A dIPa: o [ F]A
dP)

A P (T, z,y) dVol*
[XT] =Yl : hy Y)-
p T, z,"F(y)) dVol*o"F

(T2 Fly) - E(& oIF]
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So differentiating both sides in r at r = 0 gives

/

VAT 2.) = X(T.a,y) (np (T2 Fy)g + (e CF )y )
i>\ r !
+ <E($;orw-dpf LER | )) .
0

dP
It was shown in Proposition 5.23 that d@i o|"F* /dIP’A is differentiable in r with

x

x

(dP) o |"F|/dP,)’ =& - (dB) o |'F|}/dP))

xT

and both "€ and (d@i o [”F])‘/d@;‘) conditioned on xp = y are L? (¢ = 1) integrable,
locally uniformly in the r parameter. Using Holder’s inequality, if we can further show
*) qz}\O[TF])‘ is also differentiable in r with both gzNS}\OLTF])‘ and (%\O[’"F])‘)L conditioned
on xp = y are L? integrable, locally uniformly in the r parameter,
we are allowed to take the differentiation under the expectation sign:
—\ / —\ /
—(~ dP, o |"F]} —( [~ dP, o |"F]*
<E <¢i o lrF])\ ) mfl)\] [XT])\ _ )) — E((qﬁ}\ o lrF]A . xl/\]> [XT])‘ = y>
0 d]P)x 0

dP
(Lo - 1)

xT

Altogether, we will have
Vv ATz, ) = 6A(T, z,y) (vm) (Inp*(T,x,-)) + Vi (In m)
(5.98) +E (350 I'FP); + % - | Ixr ] = o)

and we can use it to show that a L%norm bound as in (5.2) is valid for VA ¢} (T, z, ).

We show %) first. Consider the processes
5,1 o= (G o "FP, [DIEd M0 w)] = [DIE (01 w)] 7 o [TFT

They are well-defined by Theorem 5.17 and the corresponding estimations in Lemmas 5.26-
5.28 (for |"F]") are valid. Note that DW([uT]’\)E\l), V%V,SDW([uT]’\)&l) can be expressed
by stochastic integrals using |U,]* and |F]* (see Proposition 5.29 and Proposition 5.32).
Their images under |"F]* can be defined by applying |"F]* to each components in the

integrals. So 5&\ o |"F]* is well-defined. By using Lemma 4.13, Proposition 4.27 ii) and
(5.96), it is easy to obtain

T o TR 1 1 \o c(1+dy (x.))
E@:;Thb/\ o|"FIY < ¢ ((ngA (x,y) + ﬁ) + 1) e gy
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for some constants ¢ (depending on s, 7o, |¢*|cs and [X*|o2) and ¢ (depending on T, Tp
and |g*|cs). By Propositions 4.14, 5.20 and 5.23, we may also assume ¢, ¢ are such that

(Eppe "E7")? < W (y)Jee=! o).
.Y,

To justify (5.98), it remains to check the differentiability of r + A o |'F]}, for A =
(I), (1), (III), (IV) in (5.96) and show the differentials (A o [TF])‘)/T are L? integrable, uni-

formly in the r parameter. We begin with A = (IV). By Proposition 5.30, (DW([UT])\>(>\1)> o
|"F]* is differentiable in r. Let r € [—7g,70]. As usual, we write

PP = P o R, Pl = [ o PRI, Wiy Dr(lur) = ((Dr(rur)))

Then (IV) o |"F]* is differentiable in r with differential

(V) o ["F1Y), = = (Vg s Dr([ur )Y, VA Inp (T, ")),
— (Dr(|"ur| )(1) V/\ W ]A)V’\lnp’\(T,x, [TXT])\)>>\.

By Proposition 4.27, we can obtain some ¢’ (depending on s, g, |¢*|cs and [X*|o1) and
¢’ (depending on T, Ty and |g||s) such that

(EPA,* HDW([TuT H > < Wy o (1Fdga (@)
x,y,T

By Proposition 5.29, we can obtain some ¢” (depending on s, 79, |¢*]cs and |X?|c2) and
" (depending on T, Ty and ||g*|cs) such that

zyT

1
’ 2 C ~
<E X, ‘}vf,){iv,sDW([uT])‘)f\l)‘} ) < [W(y)|c"e "(1+dga(z.y))

Using (4.33), we further obtain

(Eas, (V) V"FP);!?)é

chT
1
. 2
< (Baag 193 e ) 199 P
1
2
<E v |D(| uTP)&”nQ) IV @V (T2, " F1 ()]
2
c (T 1 [
< W (y)|e"e T o) Z g LEP@) + =)

n "

where ¢” (depending on s, g, ||g*| s and |X*||o2) and ¢” (depending on T, Ty and ||g*||s)
and this bound is finite and is uniform in r. For A = (II), (III), the same argument shows
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the C! regularity of r +— A o |"F]* and

1
_ /12 2 Lo
<Ep;;;T}(AO "F1Y), | ) < [W()|epecs dan @w)
for some ¢, (depending on s, 7o, |¢*|cs and [X*|o1) and ca (depending on T, Ty and
Hg/\HC?))' It remains to analyze (I) o lTF])‘- Recall that for any smooth bounded vector field

~

Von M,
Vv e Dr(lur){ = Dr((lus) P (w)0,

where (([ufr])‘)()\l)(w))g was formulated in (5.87). Hence the regularity of 7 + (I)o|"F]* can
be reduced to the regularity of each component of (5.87) under |"F]*. Applying Theorem
5.17 to |"F]* shows r — |"U; |, [D|"F-]M|"0,]*, w)| ™ are C'. Lemmas 5.26-5.28 also
hold true for |"F]*. Using these properties and the fact that A — ¢* is C*¥ in M* (M) with
k > 4, we can deduce the regularity of the components of (5.87) under |"F]*. Moreover,
by a routine computation using Lemmas 5.26-5.28, we can obtain some ¢; (depending on

5,70, | g*|ca and |X*|os) and ¢ (depending on T', Ty and [¢g*|s) such that

(EPQ:;T
Altogether, we have the differentiability of A — ggio[TF]A and also obtain some ¢ (depending
on s, 79, |9} ca and |X*|os) and ¢ (depending on T, Ty and |g*|cs) such that

(Mo I"FTY),

1
N
>2 < HW(y)HQIGCI(Ierg)\(m,y))'

1
2\ 2 c - 1 1
) < W wlee D (o) + 0 41

(EPQZ;T ’ (qz}\ °© [TF])\)Q) JT

Now (5.98) holds true. Using Holder’s inequality, it is easy to deduce

B q q
71 AT 2| <N Tw, ) ([T o @, D[, + [T )
11120\ 5 (0 082129\ 5 o (T o r N |19
+ (E[ox]™)* (E"er[™)> +E] (63 0 I'FTY)
=: D1(q) + D2(q) + Ds(q)-
By (4.33), (4.31), we see that, for the i-th covariant derivative V¥ Inp?(t, x,-), i < k—2,
there is ¢(i) (depending on m, q, Ty and | g*| ci+2) and c(i) (depending on ||g*|¢s) such that

o)
L24

(5.99) VMOl p\(T e, -)Hiq < ¢(§)ec®+T),

Using this and the L9 estimation of ¢} (7, z,-) in the proof of Theorem 5.1 for the k = 3
case, we obtain D1(q) < ¢,(q), where c,(q) depends on m,q, Tp, T, |g*|cs and [|X]|ce.
With the L?? estimations of %\(T, z,-) and °&r for Theorem 5.1 with k = 3, we can also
conclude that Ds(g) has the same type of bound as Di(gq). For D3(q), we check the LI-

norms of (Ao [’"F]/\)E) for A = (I), (IT), (III) or (IV) in (5.96), respectively. Using Holder’s
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inequality, (5.99) and Proposition 4.27, it suffices to estimate the L?-norms of

() (P erer)

This, by using Lemma 5.31 and Proposition 5.32, can be eventually reduced to a mul-
tiple of a constant depending on m,q, Ty, T, |g*|cs and |X*|cs with a combination

/

r=0

of some L7 norm estimations (with ¢ > 1 depending on ¢) of supy<i<r H([ut]/\)E\I)H and

SUDPg<t<7<T I [D[?z’g])‘([uﬂA, w)]||. Hence, by Proposition 4.27, we conclude that D3(g) has
the same type of bound as D1 (q) with ¢, (q) depending on m, q, To, T, |g*|ca and | & ¢cs.

For the L?-norm estimation of V?)¢} (T, z,-), we continue to differentiate (5.98). Let
Wo be another smooth bounded vector field on M. Then

Vi Vv AT, ) =6X(T.2.0) (Vi) Vi) (00 (T2.) + Vi) Ty (n")
F DA 1) (T PN (T2, ) + Ty (0 Y))
+ Vi (B (G P, + 348 b = )
=:(a)y + (b)y + (c)y-
Using the previous estimations of ¢}, Vi, ¢}, (5.99) and Hélder’s inequality, we obtain

(b)y] 0 < [Wa@)IW (1)l cape®T,

HCVA 7%

where c, 1, depends on m, g, lgM ¢y | X s and ca 1 depends on m,q, T, Ty and ||g|¢s. For
(c)y, we can follow the above argument for Vf/‘v(y)(ﬁi(T ,x,) to ‘exchange’ the differentiation

V%,Q ) with the conditional expectation sign and obtain

% (..

SE (@R oFP), + 8- E0) e

((Ghol Y, + 3408 o 1*F"21)

el =) .

[xr]* = y)

where |2FW2]*, OE%V 2 are the corresponding objects |?F]*,%& for Wy. In addition to the
terms involving a single differentiation of |2F"2]* or ["FW1]*, we have the differentiation
of (¢} o [TF]’\)E) under |*F"2]*) which involves V%,Q(y)va,(y)v)‘lnp’\(T,x, -) and multi-
stochastic integrals using the tangent maps [D|F-;]*(|0-]}, w)] and geometric terms with
bounds determined by |¢g}||cs and [|X*| 4. So, a routine calculation as above using Propo-
sition 4.27 gives
T
(@)l < W)W () e

where ¢, depends on m, ¢, |¢*|cs and |X*| ¢4, and ce depends on m,q, T, Ty and |g|cs.
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Continuing this argument, we can obtain the estimations in (5.2) for all [ < k — 3. We
stop at [ = k — 3 step since V(l)qﬁ}\(T,x, ) involves VU+1 (Inp*) (T, z,-) and the bound
estimation in (4.33) is only valid for VW (Inp*)(T, z,-), I < k — 2, in general. O

In proving (1.4), we also obtain the following coarse estimation, which will be used in
the inductive argument in the next section.

Corollary 5.36. For alll, 0 <1 <k — 3, there is ¢, (1), depending on m, lg* | ciss and
|XN iz, and MOV | depending on 1, m,q, T, Ty and |g*|cs, such that

A\ (T.,y)|

_ 1 1 (111 (1) N
< (p)‘(T,x,y)) 12,\’(171) ((ngA(IIJ',y) + ﬁ) + —+ 1) .e (1+dg>\( 7?/)).

VO M N(T, 2, )|, | VO

6. HIGHER ORDER REGULARITY OF THE HEAT KERNELS IN METRICS

To conclude Theorem 1.3 for all ¢, 2 < @ < k — 2, we use an inductive argument based
on the proof of Theorem 5.1 to identify the differentials (p)‘)f\z) (T,z,-), 2 <i<k—2, using
the SDE theory in Section 4. The estimations in (1.4) and (1.5) will be obtained using

the conditional stochastic expressions of {(In p)‘)g\i) (T, xz,-)}. In the following, we first pick

out the properties of (p’\)g\i) (T, z,-) necessary for an inductive argument, then verify these
properties for the ¢ = 2 case and the ¢ > 2 case, respectively.

6.1. A sketch of the proof for Theorem 1.3 with i > 2
Lemma 6.1. Thei) of Theorem 1.3 holds true if there are locally absolutely integrable func-
tions {¢4 (T, x Y)Y et Ter, i<k O M, which are continuous in the A-parameter and are

continuous in the (T,y)-parameter, locally uniformly in X, such that for any f € 020(1\7),

(7) ,
(6.1) (j F)P (T, y) dVol () )A - [ HAT ) Vo)

Proof. Assume (6.1) holds true. We show the differentials (p )(Z) (Tyx,"),i=1,--+ k=2,

exist as continuous functions on M and satisfy

i ,
©2) 3 < ) (T, ,9) (M) ) = GUT, 2, ) (T, 0,0 ), G =1, k=2

The j = 1 case was handled in Lemma 5.5 and we know that (pA)g\l)(T, x,-) is a continuous

function on R, x M. Assume (p’\)g\i) (T,z,-), i < jo <k — 2, exist, are continuous, and
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satisfy (6.2) for j < jo. Using this, a comparison of (6.1) for ¢ = jy and jo + 1 gives

f <z5” T,2,y)p (T, z,y)p* (y) — ¢%°(T7x,y)pO(Tmy)pO(y)) fy) dVol’(y)

- [ ([ o @ ) s0) avorw), v € o2 ()
M \Jo
Since both sides are continuous functions in y-variable, we must have

(T, 2, y)p (T, 2, )™ (y) — (T, 2, y)p° (T, 2, 9)p° (y)

- . N
- fo ST, 2, y)pN (T, ) (y)d

Consequently,
jo . ) ‘
(Z () oA ”<y>> — T, ) (T2, )0 ),

=0 A
which implies that (p )(JOH)(T ,x,y) exists for every y and satisfies (6.2). Then we can
conclude from this and the inductive assumption on the continuity of (p’\)f\l) (T,z,-), i =

1....

Y

, Jo, that (p )(]OH)(T x,-) is also a continuous function on R x M.

Now, the differentials (p’\)g\l) (T,z,-),i=1,--- ,k — 2, exist as continuous functions on

R, x M and hence their weak derivatives in (T, y) of any order are well-defined. Taking the
differential of the heat equations L p* = 0in X gives the following identities in distribution:

LAY (p) Z () DT, ) =0, i=1, k-2,

where (L})U)% is the weak derivative of the j-th differential operator (L)‘)(Aj). We can
use Lemma 5.4 and Lemma 5.2 inductively to improve the regularity of (pA)E\Z) (T, z,-).
Shrinking the neighborhood V, of g if necessary, we may assume there is ¢+ > 0 such that
pNT,z,-) € CH*(M) for all A. Since it is a local problem, for (T,y) € Ry x M, we can
also restrict ourselves to a bounded domain D containing (T, y). By Lemma 5.5, there
is some domain D; c D such that pM(T,z,-), (p’\)E\l)(T,x, ) e CHY(Dy). Assume for all
i < jo < k — 2 there are domains D; containing (7', y) such that |(p)‘)(;) (T, x,)]02+, < ©

on D; and (p)‘)g\i)(T,x, ) € C*(D;). Then

Jo+1 /.

Wi +1 s Go+1=3

YA T = 3 (07T ) @I e
Jj=1

Jo+1 ) :
(63) ) (") e e,
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Shrinking Dj, to Dj,+1 if necessary, we can deduce from |(p)‘)g\i) (T, x,-)|0,2+, < o0 onD; that
|IMD NPT, 2, )], s finite for all j < jo + 1 on Dyy4q. Since (p*) (T, z, )
is continuous, Lemma 5.4 shows that (6.3) holds in the usual sense. Then we can apply
Lemma 5.3 to conclude that |(p?) JOH)(T, x,-)|0,24. < 00 on Dj 41 and apply Lemma 5.2 to
conclude (p )(JOH)(T z,) € CF4(Dj,+1). Accordingly, the continuity of A — (p ’\)(1)(T x,-)

inC(M ) can be improved to be the continuity in C**(M ) by using the parabolic differential
equation (6.3), Lemma 5.2 and Lemma 5.3. O

The ¢} satisfying (6.1) was identified in Theorem 5.1. We continue to pick up a candidate
¢3 for (6.1). Let ¢} (T, x, ) be as in (5.96) such that (5.95) holds. Then, for any f € C(M),

(1)

60 ([ fr e Vo) =B (P @) @),

A

If we can show \ — ggi is differentiable, and both 5}\ and the differential (%\)E\l) are L9
integrable for some ¢ > 1, we are allowed to differentiate under the expectation sign of the
right hand side term of (6.4). This will give

(f F)pNT, z,y) dVol* (y )>(2)

A
j FWE (GO (T2, 0) lea N (w) = ) (T, 2,9) dVol ()
(6.5) +E (<leT1A(w)f<LXTV(w>>, AT, w) - Dr(lur]) (w), )

We can deal with the last expectation term in (6.5) as we did for gb}\ in Section 5. Define
D3 (Y, w) := (Y (|xr|MNw)), $5(T,z,w)- Dr(| (w)),,

where Y is any C* bounded vector field on M , and consider the linear functional

By Y o B (@Y, 0)| [xrMw) = y).

If we can show Ei is such that Ei(Y) is C'! in y variable, we can conclude that
=[x 1
(6.6) E (5T, 2,w) - Dr(lugl) P (w)| [xr1M(w) = ) = 22 ()

is a C1 vector field on M and satisfies

AV = (V) F ). 27 ().
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Using the classical integration by parts formula, we obtain
E ((V g (el (@), (T2, w) - Dr(lur M) (w)),)
- <ka T2 )2(0), Vol ()
f f(y D1V ZT +<’\2 , VA Inp( Tacy>A> (T, z,y) dVol*(y).

Therefore, a candidate of ¢3 (T, ,) for (6.1) is

A(T,2,y) = E ((5&)‘”<T,x,w>|txmw> —y)
(6.7) (DlvA 2 (y) + <z ), V:InpNT, z,y >/\)

Once we show ngi(T ,x,y) fulfills the continuity requirement of Lemma 6.1, we can conclude
the second order differentiability of A\ — p*(T, z,) in C*¥* for some ¢+ > 0. It follows that

(InpM) (T, 2,) = 3 (T, 2,y) — (6T, z,y) — (n ") P (y).

Note that the gradients estimations of (Z)}\ were already handled in Theorem 5.1. Hence
(2)

the gradients estimations of (Inp*) )y can be reduced to that of (ﬁi, which can be analyzed
following the proof of Theorem 5.1, if we can find some controllable ¢3 (7, z,-) such that

A(Tx,y) = E (BT 2. 0)| el (w) = v).

We will follow this line of discussion to find all the candidates ¢4 for (6.1). Put
5(/{(T,a:,w) = 1 and let <Z}\(T,:1;,w) be as in (5.96). For i, 2 < i < k — 2, define

6.8) (T, z,w) = (T, 2,w)) ) —(V3 T, 2, w), Dr(lur) | (w))
—s—&f\_l(T,m,w)%\(T,x,w),

where the ‘path-wise gradient’ VE\F’SQXA(T ,x,w) will be specified later. We will show each

(6.9) OA(T,2,) = E (3T, 2, w)| [xa 1 (w) = y)
fulfills all the requirements in Lemma 6.1. The stochastic expression (6.9) will be used for
two purposes: one is for the gradient estimations of ¢4(7,z,-) and (Inp )(l) (T,x,-); the
other is for obtaining ¢} (T, z,y) as we exposed above for ¢2 (T, z,y) (see (6.7)).

Let us highlight the necessary steps to undergo an inductive argument for Theorem 1.3.
Assume for all i < j < k — 2, the ¢ defined in (6.9) are such that Lemma 6.1 holds true,

(p)‘)g\i) (T,z,-) € C’kv‘(]\’\f), is continuous in A and (1.4) holds for (Inp )( )(T x,-). We also
assume the following coarse pointwise estimation holds true for all 7 < j.
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0) For all [, 0 <1 < k—2—1, there is ¢, ;) depending on oMl cisivz, XA irier and

M) depending on (1,7), m,q, T, Ty and |g*|cs such that
VO (T2,y)] . [TOG (T, 2.y)]
; 1 1 i MLy o (x
(6.10) < ONTow.9) e <<ng (o) + ) 1) L (g,

For the existence of (p’\)g\j)(T, x,-), the very first step is find some measurable candidate
satisfying (6.1), which can be done once we show the following.

i) The function ¢ (T, w) is differentiable in A for almost all w € © and both
qu YT, z,w) and ((;5] 1) (T, z,w) are L7 integrable in w for all ¢ > 1.
ii) For any C* bounded vector field Y on M, let
(Y, w) = (Y (fer ). 64Ty, w) Dar([ur ) (w))
Then the linear functional
B0 Y o E (@, w0)| Il (w) = )
is bounded with 6§ (Y)(y) varying C! in the y-coordinate.
Claim 6.2. Assume i), ii) are true. Then (6.1) hold with some ¢\ (T, x,-) fori = j.

Proof. By the inductive assumption,
G-u

(6.11) (J F)p (T, z,y) dVol (y )) - E(f([XTP)(Zg—l(T,x,w)).

A
If i) is true, we can differentiate under the expectation sign of (6.11). This gives

(j F )P N(T,2,) dVol(y >)U): E (f(xr P @)@V (T2, w)) + E (@4(Vfw))

A
The property ii) implies

(6.12) 27 () = B (37T, w) - Dr(lur) ()| [xr (w) = y)
is a O vector field on M such that

)W) =Y (), 27 ().

In particular we have

E (#)(Vf.u j (V2 ), (T, 2, 9)7) (), dVol (y)

- jﬁf( )(Dlv’\ )‘J +<z y), VAnpNT, z,y >)\> (T, z,) dVol*(y).
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This means a measurable candidate gb{\ for (6.1) at i = j is
oa(Tzy) =E ((HHVT, x,w>\ e (w) = y)
(6.13) <D1VA M (y) + <z ), V:InpNT, z,y >/\)
(|
We will show ¢, (T, z,-) given in Claim 6.2 coincides with d)i(T,ZL‘, -) defined by (6.9).

For any smooth bounded vector field V on M , let {F*}er be the flow it generates. As we
did for Ei in Section 5 (see Lemma 5.34), we will prove the following in verifying ii).

iii) For any y € M, s — Ei(Y)(FSy) is differentiable at s = 0 and the differential
(®L(Y)(F*y)), varies continuously in y. Moreover,

(@) E)
= BAVA)() + E (O (1)), Vi o (37T 2, 0) D (L) () ),
+ (e (), (71T, w) Dr(Lur ) () ), Ty (w)] Ixr 1 (w) = )

where the path-wise differential VTV S((bg\_l(T, x, w)DW([uT])‘)g\l)(w)) will be clar-
ified later and it satisfies

Vi (65 (T2, w)Dr(lur )y (w) = (Vo8 (T2 w)) - Dr(lur )} ()
+ (T w) - (Vi Dr(lur )Y ().

Claim 6.3. Assume i)-iii) are true. Then ¢,(T,z,-) = gzﬁf\(T,x, ).
Proof. By ii), both 5§(Y)(y) and z%’j(y) vary C! in y. Hence
=7 s =7 AJ A,
(BAE ) = THEBI)() = TV (). 75 ), + Y (0), Tz (),
Comparing this with the expression of (5& (Y)(F?y )) in iii) gives

VA’ 1) = E (Ve (3 (T e w) - Dr(lur M) (w))

(6.14) HA T, w) - Dr(lur ) (@) € rve(w)| Ixrl w) = y) -
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Following the argument in the proof of Lemma 5.35 and then using (5.96), we obtain
Div)‘zg’j(y)
—E (tr(V = Vv (8 (T 2,w) - Dr(lurM) P (w)))

+ 37Tz, w) - (Dr(ur )Y (w f ) Ric! L dB Y,
+ 37T w) - (D] ><“< ) %luﬂ* j (=B, [l w) =)
—]E(<VTS¢J 1(T x,w), Dr(| uT >’ XT (w —y)
—E (310 0) (AT w) +<Dw [ar ), VA (T, e Py b ) = )

Note that
(23 (y), V Inp (T, 2, y))a
= E (71T 2, w)(Dr(lur ) (w), V¥ inp (T, 2, Lo (), [x21(w) = ).
Reporting these two expressions in (6.13), we obtain
A(T.2,y) = E (& (Ta,w)) ) =(V2,08, (@2, w), Dr(lur) (w))
+ (T2, )3 (T2, w)| [ (w) = )
= (T, z,y).

To study the continuity of ¢§\(T, x,y) in (T, y), we first show the following.
iv) For all z € ]W, TeRy,
= 1
y—E (GO 20| xr] w) = y)

is continuous, locally uniformly in 7" and A. Moreover, there exist ¢, ; (depending
on ||g*|ci+2, | X |ci+1) and &M (depending on j, T, Ty and ||g*|cs) such that

(@0 aw)

zyT
—J 1 1 ] M o\ (z
< (pA(TaIay)) ]Q)\yj ((Td§>\ (ZL‘,y) + ﬁ)] —+ 1) .e ](1+dg>\( ’y))‘

v) For all = € M, T € R,, the mappings y — zi_\p’j(y),y — Div)‘zg‘p’j(y) are con-
tinuous, locally uniformly in 7" and A. Moreover, there are g’/\’j (depending on
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lgM iz, [ X ci+r) and e depending on j, T, Ty and |g*| s such that
277 (W), |Div*az (y)
< (p(T,az,y))_jg’M <(;dgx(a:,y) + \/IT)] i 1> & (kdgs ().
vi) There is ¢, (o ;)(q) depending on j, m,q, T, Tp, |lg*|ci+2 and | X*||s+1 such that
(6.15) (AT < enoa) Va1

Claim 6.4. Assume i)-vi). For every x € ]\7, (T,y) — d){\(T,:U,y) is continuous, locally
uniformly in \.

Proof. To conclude the continuity of <Z>§ (T, z,y) in (T,y), we verify the following.
1) For all z € ]\7.7, TeRy, y— @) (T,x,y) is continuous, locally uniformly in 7" and .
2) For each z,y fixed, T — ¢} (T, z,y) is continuous, locally uniformly in .

By the inductive assumption, all (p*)® (T, z,y), i < j, exist, are continuous in (7T, y)
and satisfy the bound estimation (1.4). By i)-iii),

T2y =E(GH (T w)\ LxTP(w) =)
(6.16) = (D (y) + (i (), V¥ I p (T, ), )

satisfies (6.1). By iv) and v), for each z € M, we have that the mapping y — gbi(T, x,y)
is continuous, locally uniformly in 7'.

For 2), we follow the proof of Theorem 5.1 for the k = 3 case. Simply denote by (x*,u*)
the stochastic pair which defines the Brownian motion on (M, 57)‘) starting from z. Then,
for any f e C¥(M) with support contained in a small neighborhood of y and 7" > T,

T/
B(16) ~E(f6ch) = | E(AM ) ar
Take the j-th differential in A of both sides and use (6.1). We obtain
L 7(2) (¢§(T', z,2) — $L(T, x, z)) NI, 2, 2) dVol(2)
M
+ wa(z)(ﬁi(T,x, z) (p)‘(T’, z,z) — pNT, z, z)) dVol*(z)

J f Zo< > (DY (P, Z)pk(z))(;_i) dVol®(2) dt.

Using (6.15), we deduce that

Tl/iLnT MﬂZ) (qbi(T/,x, z) — qbg\(T,x, z)) pNT', x, z) dVol*(z) = 0.
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Since qﬁg\(T, x, z) is continuous in z and A, locally uniformly in 7, and f is arbitrary, we

must have limp/_,p gZ)i(T/,x,y) = d)i(T,x,y), locally uniformly in A. This shows 2) and
finishes the proof of Claim 6.4. U

Claim 6.5. Assumei)-vi). Then for any x € ]\7, TeRy, \—pNT,z,-) is C7 in C’k"(]\7)
for some v > 0. The differential (p’\)E\])(T,x, y) satisfies the equation
(6.17)

(N (T, 2,y) = 64T, 2, 9)p (T, 2,y) Z ( ) (T2, ) (0N ().
Consequently, gi)g\(T, x,:) € C”“(M) as well.

Proof. The function qﬁi(T,x,y) is continuous in y, uniformly in A by using iv), v) and
(6.16). So, it is continuous in A\ if for any f € C(?O(M), we have the continuity of

()
A <J F)pN(T,z,y) dVol* (y )> = A;(\ T, ).

A
Note that

1
AT ) = E ((Fh a0 (F o ) ([P (@), ([ur ) (@)) ).
Differentiating A1(A, T, x) in A for j — 1 times, we get a similar expression A;(\, T, z) of
a combination of inner products involving {V® f};<;, {(|xr]*)@}i<; and {(luT])\)g\Z)}ig‘j.
Following Proposition 4.27 i), we can derive the L7 (¢ > 1) convergence of (|x7]*)® and
([uT]/\)g\z) in A\. As a consequence, we obtain the continuity of A\ — A;(\, T, x).

Now, by vi), the continuity of qﬁi (T,z,y) in XA and (T,y) and the induction assumption,
we can apply Lemma 6.1 to conclude that \ — p*(T, T, )is C7 in C* L( ) for some ¢ > 0.
The equation (6.17) holds by comparison and hence ¢} (T, z, ) € C**(M ) O

With i)-vi), the gradients {V® (Inp )( )(T z,Y) }1<i<k—2—; are well-defined. To conclude
Theorem 1.3 ii) by induction, it remains to show (1.4) for ¢ = j. With the identity (6.17)
and vi), it remains to show the following.

vii) Forall [, 1 <l <k —2—j, ¢ > 1, there is ¢, ( j)(¢) which depends on (I, j), m,q,
T, To, |g*|ci+s+2 and | X441 such that

(6.18) HV”%{){\(T, z, ')HLq < o)(@)-

For (6.18), we will use (6.9) to formulate VOV, 1y, .. ;@3 (for any smooth bounded vec-
tor fields Wy, Wa, - -+, W;) as some conditional expectation and use it for evaluations as in

the proof of Theorem 5.1. For this, we need the bounds control on qﬁj (T, z,y) from iv), v).
Note that in showing iv), v), we need a bound control of {|V® (Inp )( )(T z, )| h<i<j—i-
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So, to continue the inductive argument, we also need to verify 0) at ¢ = j, which can be
obtained in showing vi) and vii).

Theorem 1.3 iii) will follow from ii). Indeed, for i = 1, (1.5) is true by Theorem 5.1 for
the k = 3 case. For i > 2, by (6.17),

(pA)(z‘)(T,;p,y)_ ; = (PN I(T, 2,y) i)
ZMMW)—%mawﬁﬁwngﬁwmmnwhfwy

So an inductive argument using (6.18) and (1.4) will conclude (1.5) for all i < k —

Finally, consider Theorem 1.3 iv). By symmetry, the mapping z — (p* ) ‘ (T ,x,y) is
continuous for all 7', y, locally uniformly in y. We conclude using (5.97) and (1.5) as in the
proof of Theorem 5.1 iii).

In summary, to carry out the above inductive argument for Theorem 1.3, all we need
to do is to verify the properties i)-vii) at each step. We first consider i), followed by iv)
and then check ii), iii), v), vi) and vii). The ideas to show these properties at each step
are similar. So we only check them for the j = 2 case in details and indicate the necessary
modifications to make them work for the general case.

6.2. Proofs of the properties concerning qbi. Let A e (—1,1) — g* € MF(M) be a
C* curve (k = 4). Assume all the properties i)-vii) in Section 1.3 hold true for Nf\, § and

(p )E\), i < j < k—2. We continue to verify the conclusions for gj ) ¢§ and (p’\)g\j).

Proof of properties i) and iv) in Section 6.1. We first show i) and the estimation in iv).
We begin with the case j = 2. For i), it suffices to consider the differentiability and L?
integrability of each term in (5.96). We add an upper-script A to (I), (II), (III) and (IV) in
(5.96) to indicate their dependence on .

For (IV)?, it is differentiable in A by Lemma 4.17 and Theorem 5.1 for the k = 3 case.
Denote the differential by ((IV)* )( ). Then

(VMY = = (Dr(ur]) P, VP Inp (T, Ixr1),
—{Dr(lurH)® v%mp%RTxL 71",
— (DM, o VMM (T, 2, [x7]Y)),
= (IV)} + (IV)3

By an abuse of notation, we use c(q) to denote a constant depending on T, Ty, m, q, |g*| ¢4
and |X|cs, which may vary from line to line. Using i) of Proposition 4.27 and Lemma
4.13, we obtain ¢(q) such that

xS
+(IV)) + (I )

E|@V))? <E|(lur™P - B[V pN T, 2, x| < ela)-
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Similarly, by i) of Proposition 4.27 and Lemma 4.13, we can derive that

E[aV)3]")* <E[(urV )™ - BV mpM T2, [ < ela):
Using i) of Proposition 4.27 and (5.2), we obtain

(E[aVR[")* < E|(lur)5 - E[VA i p) (T, e[ < cla).
As for the conditional expectations, by ii) of Proposition 4.27 and Lemma 4.13, we obtain

Bpvs [AVR]+ Epus V)] < By [(Lur)P] - [97 1 p\(T, 2, )]
z,y, T z,y,T x,y,T
FEpe [(ur) - [V mpNT, 2, )]

< ¢ <(71'1d§/\ (33, y) \/1T)2 —+ 1) 66(1+d§>\ (m,y)).

By Corollary 5.36, for some different ¢, c,
A A oAy (D) 1 1 12 c(1+doy (2,9))
MLz, y) [V Inpt), (T, z, )| <C<(Td§>\(l’,y) + ﬁ) + 1) oC+dyr (@)

Using this and ii) of Proposition 4.27, we conclude that the same type of bound is valid
for the term p*(T, z, Y)Epa |(IV)3]-
z,y,T

By Lemma 4.17, A — (III)* is also differentiable in A. Its differential is given by
1 2y 1(7T -1 S
(@M = (D (lur)?, 5 fo s(T—7)[ur*(lur1*) " Ricp, . d B ),

T
+ (Dr(lurM)y, ; f s(T—7) (lur M ([u-1Y) " Ricp, ') VdB ),
0

T
+(Dr(lurH), % fo s(TfT)[uTP([uTV)‘lRicEPdFTXD
—: (II1)} + (II0)3 + (IID)3,

where the last term denotes the differential of the inner product. Then it is standard to

estimate the expectation of ((III)’\)S)

and 1) of Proposition 4.27, which gives

(BRI ) < et (B )2 P+ B + Bl ur 1) < elo)

For the corresponding conditional expectation estimation, we use (4.39), Holder’s inequality
and Burkholder’s inequality as before. It is easy to deduce that

(Bey, J@NP)) < (Bey, Q)P + oy Jar DO + By IS

z,y,T z,y,T
T
- (T +Ep | J HQV)‘ Inp(T — 7, %], y)| d7'|2> .
0

using Holder’s inequality, Burkholder’s inequality

o

z,y,T
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So by ii) of Proposition 4.27 and Proposition 4.14, we have

EPQ;;‘,T (1)) (;) | < et (@),

For (IT)*, the same argument gives

E[())]" < ela), Epae (D ) D] < e @),

For (I)*, we can check the differentiability of VTV SDW([uT])‘)E\l) term-by-term using its
expression in Corollary 5.33. The estimation can be done as above using Proposition 4.27.

By the inductive construction, ai_l(T, x,w) involves the mixed differentials of order j
in A and in V%’S of |ur]* and can be expressed by a multi-stochastic integral involving
a mixture of differential processes {([ut]A)g\j/)}j/gj,l, {[D(l)[Fﬁ]’\([uﬂA,w)](;)}igj,g and
(VMO (Inp )()(T o, |x7 ") }isicj-1.i<j—2- So, by Lemma 4.17 and Proposition 4.27, we
have the dlfferentlablhty of A — <Z>j 1(T x,w) and the derivative (gzﬁj 1) )(T x,w) involves
(o) Y ALDDLE M (el )] g1 and (9O (np)) O (T, s i1

The estimations in i) and iv) will follow from a repeated application of Proposition 4.27
to the multiple stochastic integral as in the j = 2 case. The bound estimation in iv) con-

tains (T _1d~A (x,y) + (\/T)_l)j since the formula of (qu\_l)g\l)(T,x,w) contains the terms
VAD Inp (T, 2, [x7]), VIO (0 ph) (T, [

As to the continuity and its uniformity in 7" and A of the map
y = wi(y) =B (GO0, 0)| b w) = y)

we compare W/ (y) with ¥/ ("F(y)), where {" F},cr is the flow map generated by a bounded

smooth vector field W on M. Let |"F]* be as in Section 5 which extends "F to the
¢-Brownian paths. Then, as in the proof of Theorem 5.1, we obtain

j (T _ (- \@) dﬁi © lrF]/\ _ p/\(T,.’L‘, y) dVol*
v ("F(y)) = E<(¢JA DY o "F* 5 |xr]* = ’y) DMT,2,"F(y)) dVol* o7 (y)-

In the proof of Lemma 5.34, we obtained the local uniform boundedness in (T, y) and A of

T

= oY =A
Ep: y’THd]P’:C o |"F|*/dP,|"
and the local uniformity in (7,y) and A of the convergence of
HdIP’ o |"F|/dP, — 1H 0, as r — 0.
x v, T

Following the estimation for iv), we obtain the local uniform boundedness in (7', y) and A
of

B @@ ww) o FP.

y,T
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So for iv), it remains to show the local uniform convergence in (T,y) and A of

B |G @ w0 P GO0 0w

2
H — 0, asr — 0.

This, by using ii) of Proposition 4.27, can be reduced to showing the local uniformity in
(T',y) and X of the convergence of

HA I"F]? AH 0, as 7 — 0,

for elements |u;]*, {([ut]’\)g\j/)}j/gj and {[D(l)[FLﬂ)‘([uﬂ’\,w)](;)}igj,l that appear in the
(1)

expression of (5&71) )\ > which is true since they can be further reduced to the A appearing
in Lemma 5.34 by the construction of |"F]*. O

Proof of properties ii), iii) and v) in Section 6.1. Using (4.45) and the inductive assump-
tion on the boundedness of Eﬁ; o H‘ZZ\_l (T, z,w)|?, we deduce that ®} : Y > &} (Y), where

L)@ = E (Y (lxr* @), & (T, w) - Dl (), | Ixr M (w) = )

is a locally bounded functional on C* bounded vector fields Y on M.

To show 5&(1/) is C1, we follow the argument in the proof of Lemma 5.34. Let {F*}r

be the flow generated by a smooth bounded vector field V on M. Let |F*]* be constructed
as in Section 5.5, which extends F'® to Brownian paths starting from x up to time 7" using
the auxiliary function s. Then the change of variable comparison in Section 5.1 gives

P o [FS1\ oMNT. 2 ol
. dP [F])pp((T, ,y)  dVol W,

(V) (Foy) = E- @ (Y, Fit - —=
)\( )( y) ]P;\,y,T ( )\( w) O[ ] d@i 3 t,CC,FSy) dVol* o Fs

where
(Y, w) = Y (Ixr (), 83 (T 2, w) - Dr(lur ) (w)),.
The process @g\(Y, w) o |F*]* is differentiable in s with
(@ o [F 1), = (Vg Y (551, 64 o [F D (lug V) )5,
+{Y (). (V TVs¢] Y o |F*Dr(Jur (1)>,\
+ Y (1) 4 o [PV Dr(lur ),

and this differential is L? integrable conditioned on x7 = y, uniformly in s, for all ¢ > 1.
Using this and Proposition 5.20, we can conclude that ®3(Y)(F*y) is differentiable in s.
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Following the proof of Lemma 5.34 (see (5.89)), we obtain

@O EW) =B (Tvuam Vo34 Drllur)y (),

+ Y (1), Vi (@47 Dr(lur) Y (w)),
(6.19) + (), 847 Dl ), Ere)

=By (HEV)w).

To show y — (®4(Y)(F*y)) is continuous, we compare (6.19) with its value at nearby
points. Choose another smooth bounded vector field W on M and let {"F},er be the flow
it generates and let |"F]* be its extension to §*-Brownian paths starting from z up to time
T. A change of variable argument in Section 5.1 for |"F]* shows that for z = "F(y),

A
» _ . dP, o |"F1*\ pMN(T,z,y)  dVol*
(I)J Y (F$ I E_ \I,] Y. "R AL Z ) .
(P (Y)(F?2))o ]P)i,y,T ( )\( V) o['F] d@i ) pMT, z, z) dVol* o F(y)

We can show the local uniform convergence (in (y, 7) and \) of (Ei(Y)(Fsz))g to (52\(Y)(Fsy))6
as r — 0 exactly as we did in the previous proofs of properties i) and iv).

As to the estimations in v), |z%’j (y)| can be estimated using the conditional L? expecta-
tions of (;Nﬁifl(T7 x,w), ([uT]A)E\l) (w), respectively. By (6.19), we have the formula in iii). By
Claim 6.3, we obtain the formula of V{\,zi"] (y) in (6.14). We can use them and Proposition
4.27 to give the desired estimation of Div)‘zg\’] (y). O

Proof of properties vi) and vii) in Section 6.1. The j = 1 case was considered in Theorem
5.1. When j = 2, since we have (6.1) for i = 1,2, so, for all fe CP(M),

[ 1A 000 @) avor (f F@)ONT, 2, (T, 2, ) dVol(y >>(l)

A
This implies

AT 2,9) = @ (T 2,) + AT 2.9) - (mA (T 2,900 0))
(¢A) (T x y) (qﬁ%\(T,x,y)) .

Hence,

(Inp)P(T,2,y) = (T, 2,y) — (63)*(T,2,y) — (n p)P(y)

and

V(inpN(T,2,y) = VA (T, 2,y) — 265(T, 2, y) VA (T, 2,y) — V(i p) P (y).
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This, together with vi), vii) in the j = 1 case, shows that the estimation for the term
VO (Inp )( )(T x,y)| in (6.10) holds true if the same type of estimation is valid for
VO @2(T, z,y)|. By i)-v), Claims 6.2-6.3 apply. We have

(6.20) A(T,2,9) =B (ST, w)| xrl(w) = ).

where

~ ~. 1 ~. ~. ~.

AT z.w) ()T 2.0) ~(V} T, w). Da(fur ) (w)) + 93 (T, )3} (T, ).

We can use (6.20) to derive the conditional expectation expressions of V(l)qﬁi(T, x,y) as
in the proof of Theorem 5.1. Using this and Proposition 4.27, we can derive the desired
estimations of V(l)gbi(T, x,y) and its L9-norm.

For j = 3, with i)-v), we have the identity
VO AT, 2,y)
(6.21) = VO (T, z,y) —Ji VO (g4 - o)V T, 2) VO (") V().
=1
By Theorem 5.1 i),
(T, x,y) = <ln(pA(T,x,y)pA(T,x,y)))(;)
By (6.1), for all 4, i < j, and all f € C®(M),

()T, 2, y) + (I pM) P ().

J F@)AT, 2, y)p\ (T, 2, y) dVol (y (J ) T, 2,y T, ) AV g )><1>

Since f is arbitrary, we must have

(¢ ) (T T y) ¢f\_1(T7$ay) '

Using this relationship inductively, we obtain

A

In(pX(T, z,y)pM(T, 2, y)))(;)

AT, 3, y).

S

) -1 o
ST 2,y) = (SN (T2, 9 + Y (64 - o)V (Th,y),
=1

which implies

(N (T, 2,y) = G(T,2,y) — i (64 -0 T 2 y) — ()P ().

A differentiation of this equation gives (6 1). By induction, we see that the differentials
(6%, ) (T x,y) for r < j—i—1 only consist of (Inp )(S) (T, z,y), (In p’\)(s)( ) up to order s =
i+r < j—1. By the inductive assumption on the gradient estimations of (In p )( )(T x,y),



THE REGULARITY OF THE LINEAR DRIFT IN NEGATIVELY CURVED SPACES 143

s < j — 1, to obtain vii) for |V(l) (lnp’\)E\j) (T,$,y)|, it suffices to give the estimation for
|V(l)¢f\(T,$,y)|. By i)-v), Claims 6.2-6.3 apply and we have

A(T.2,y) = (ST, w)| [ w) = y).

where gi(T,x, w) is defined inductively using (6.8). As in the proof of Theorem 5.1, we
can further obtain ggj)\’(l)(T ,x,w) such that

VO (T,2,y) = E (40 (T, w)| e w) = y).

The term q?i’(l) (T, z,w) involves the derivatives of (Z{\(T,x,w) under "F up to tl'r}e j-th
order and can be formulated as a stochastic integral using s,s’, |u]?, {([ut]’\)gf )}jlg‘j,
(DOLE A (P )] isor and (V2O (0 ) (T, (57 b scgoeo1. So we can use
this and ii) of Proposition 4.27 to derive the desired bound of [V() ¢4 (T, z, y)| as in Theorem

1

5.1. As to vi), it is equivalent to estimate (E(H(Ef\(l) (T, z,w)|?)) ?, which can be handled
using i) of Proposition 4.27 and the inductive assumption on (1.4) for ¢ < j. O

7. REGULARITY OF THE ENTROPY

The analog of formula (1.2) for the entropy involves the Martin kernel of the Brownian
motion on (M,3*) for g* € R¥(M). Recall that the Green function on (M,g?) is given by

o0
G“Cmy):=~f Mt z,y) dt, for x,y e M,
0

and it can be associated with a “Green metric” on M ([LS2]) by letting
— A if d~
der (2,y) = { In(coG(z,y)), if dy(z,y) > 1,

—In ¢y, otherwise,
where cg can be chosen to be independent of A for ¢* in a small neighborhood of ¢'. By

Anderson and Schoen [AS] (sec also [Anc]), the Martin kernel for (M, §) is defined by

. Gy, 2)
1 A =1 A h A = =,

Hence, the logarithm of the Martin kernel is an analog of the Busemann function using the
Green metric since

Ink*(z,y,&) = lin}é (dgr(w,2) — dgxr(y, 2)), for ,y € M, €€ oM.
zZ—>
Moreover, it is known that the entropy satisfies the following formula ([Kail])

W =~ f Ay lnk%r,y,f)\y:x dm*(z,€).



144 FRANCOIS LEDRAPPIER AND LIN SHU

For z,y € M fixed, the function k*(x,y, £) is a continuous version of the Radon-Nikodyn
derivative (dm,/dm,)(§); the gradient

Z(x,€) = VykM2,y,8)ly=o

is a G-equivariant stable vector field that depends Hoélder continuously on & with the
Holder exponent uniformly in A for g* in a small neighborhood of g° ([AS], see also [Ha]).
Furthermore, we have the following.

Lemma 7.1. Let M be a closed connected smooth manifold. For each g € R*(M) (k = 3),
there erist a neighborhood Vg of g in RE(M) and ", ©” > 0, such that for any C* curve

Ae(—=1,1)—gte Vé’ with ¢° = g, the second order differentials of k»(z,y,€) iny aty = x
are Holder continuous in & with exponent b”; for b < b”3¢, where > is as in (3.1), we have

(7.2) Ak (z,y, )| _,, (ADAIA (2,9, 8)] _, € Hy.

y=z’

Proof. The second part follows from [AS, Theorem 6.2] and the first part. We show the
first part by following the proof of [Ha, Lemma 3.2].

Let z € M and let B(x, ) be a small neighborhood around z with a positive radius 4.
For v = (2/,() € SMy with 2’ € B(x,20)\B(z,0) and p,0 < p < 7/2, let

'z

CHv,p) := {z e M : Li,k(v,"y§A 0)) < p}, C(v, p) := C%v,p)

PN
be the open corwlxe of vertex 7/, axis v and angle p, where Li, (-,-) is the §* angle gmction
in Sy M and 49, (0) is the initial tangent vector of the ¢ unit speed geodesic vJ, , from
x' to z.

There exists a neighborhood V, of g in R*(M) such that if ¢* € V,, then for all
v,C(v,7/6) « CMv,n/4) < C(v,n/3) and for all z € M,B(z,8/4) By (x,6/2) <
B(z,0).* Let {Zst}s),[¢|<1, With Zo0 = ¥, be any C? two parameter family of points in
B(z,d/4). For C(v,n/2) apart from B(z,d) and z € C(v,w/2), let

1

Sos,t(z) = § (k/\(waxs,ta Z) - k/\(xaxo,taz) - k/\(fv,iﬁs,mz) + k/\(%xo,oaz» .

To conclude the first part of Lemma 7.1, it suffices to show for V, small, there is some C,
C > 0, independent of s,t,z,z and g* such that

(7.3) lpst(2)| < C.

4There is a neighborhood V, of g in %3(M) and a number r such that for §,§ € V,, 7 > 7,
29,47 AL s ) <4860 L A0, )+ w100,
)

g’ g
Y2 () Tae(r) Tz ey Vae(r)

It suffices then to control the angles on B(z,r + 29).
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This is because (7.3) implies that, for z € C* (v, 7/4),

() 4+ € = 2(G@12) = Gy 2) = CManp, 2) + Glaop, 2)) + CCN(w 2)
R (v, 2)

is the quotient of two positive harmonic functions in C*(v, 7/4) which vanish at the infinity

boundary oM. Hence, by using [AS, Theorem 6.2], for V, small, we obtain two positive
numbers C’,b”, independent of s, ¢,z and ¢*, such that

(7.4) (5,6(2) + C) = (ps.0(2') + O)| < Ce ¥z vz 2 € CM(v, 7/4).

Let &,m € OM be points lying in the closure of C(v,m/6). Letting z — &, 2’ — n and then
letting s,t — 0 in (7.4), the first part statement of Lemma 7.1 follows by using (7.1).

It remains to show (7.3), or, equivalently,

(7.5)

1
3 (600 = GYa01,2) - G0 2) + G, )| < 0N, 2)

Since G*(-, z) is harmonic in By (z,6/2), by the Harnack inequality ([AS]) and the infini-
tesimal Harnack inequality of Cheng-Yau ([CY]), for V, small, there is some C”, C” > 0,
independent of s, ¢, z, z and ¢* such that

Gy, 2), [V3GA(y, 2)] ;5 < C"GMx, 2), Wy € By (2,8/2), 2 € CM(v,m/4).

To continue, we consider LW’yG/\(y, z), where W is any smooth bounded vector field on
M , Lw‘y is the Lie derivative in W evaluated at y. Then, in the distribution sense,

AL |, Gy, 2) = Lw |, AMGA(y, 2) + [Lw, AN GA(y, 2) = [Lw, A GH(y, 2),
where the last commutator term is a linear combination of the contractions R+ VAGA (-, 2),
VARA « GA(+, 2) evaluated at W e T, M. Since LW’yG/\(y, z) is C! in g, it must be a real
solution function f to the equation

AM(y) = [Lw, AN G (y, 2).

Hence the classical estimation property of elliptic equation (cf. [Fr]) shows that there is

some positive C” depending on the geometry, which can be chosen to be independent of
x, 2, g" for V, small, such that

HV;‘LW|yG)\(y,2)H§,\QC”/( sup HV;G/\(y,z)ng—i- sup G)‘(y,z))
yeB(x,0) yeB(x,0)

< QC”/C”G'A(Z'7 2).
This shows (7.5) since W can be arbitrary. O

Proof of Theorem 1.6. Let V!, b” be as in Lemma 7.1. Let b < b”s, Vy and Hp be such
that Theorem 1.2 holds true. Let A € (—=1,1) — g* € Vg NV, with g" = g be a C3 curve.

We omit the index 0 for k0, k0, p°, 70, A% Div?, VO, (-, ), Vol and m® at ¢°.
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We study the differentiability of A* by writing, as in [LS2],

SO =) = S0P = 120) (00— ) = (1), + (D,

where

PO — —JAS lnk(:c,y,@‘ dm(z, €).

y=x

Then, by (7.2) and Theorem 1.2,

lim (I1), = — f(AQ)glnk@,y,&)\y:x dm(z,£) - f Aylnk(z,y, €)],_, dm™)o(w,€).

Using wy for the function such that

Aul = _Ay lnk(x,%f)’ - h7 (See [Lsz7 (57)])7

y=r

we obtain, as in Section 3.3,
1 — _
K= /l\in% (I), = f <—2<VtraceX, Z + Vuy) + Div(X(Z + Vul))> dm.

Clearly, K is linear on X € C¥(S?T*). When g is locally symmetric, u; = 0 and Z = (X.
Hence,

K= EJ <—;<VtraceX,X> — (X (X, X)> dm,

which vanishes (see Remark 3.12).
We will now show limy_,(I), = 0, which will complete the proof of Theorem 1.6.
Following [LS2, Proposition 2.4], we obtain h*0 = inf3>0{ﬁ)\’0(s)}, where

EA’O(S) ;= lim —% f(lnp(st,x,y))pA(t,x,y) dVol)‘(y).

Then, for all A > 0,

1 1 pMmy) A
D)) = —sup lim —= [ In =L pA(¢ dvol
(D 5 Sup Jim —- J A L (t,z,y) dVol”(y)

1 . 1 P’\(tafﬂ,y)l)’\(y) A A
= Zsup lim —— [ 2SI ) avol
sup Jim — [0 LS 1,2, ) Vo)

>0 t—®©

1 1
< X sup lim ; (1 — jp(st,l",y) dVOl(y)) <0,
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where the third inequality holds since —Ina < a~' — 1 for all @ > 0. On the other hand,

Lo 1 PMtay) A
= — lim —— Jln ————=p"(t,z,y) dVol*(y
p(t,z,y) & 2:) )

: 1 p(n,x,y) \
m ]! dVol* (y).
A neNl'rrzn—mo n f = p)\(n7 T, y)p,\(y)p (na xz, y) Vo (y)

To estimate (I)y, consider the stationary Markov chain on the space Q = MN0) with
transition probability p*(1,z,y) dVol*(y) and the process Yy(w) = 1 and, for n > 1,

p(laﬂo’ﬂl) . p(lawlaw2) (1 wn 17 )
pM1,wo,wy)pMwy) P wy, we)pMwy) ML, w, g, w,)pMNw,)

Yo(w) =

Observe that

p(n,z,y)
=K A Yn w wn =Y
P, z,y)pMy) 7 (Yl | )
So we may write
1 1
(I)/\ = X EI\1]171’}14}00 ;EPA <IHEP)\ (Yn(w) ’wn = y))
1
> 5 im ;Eﬂ” (In¥x(w))
_ 1 H—l )
Sl S (w78)

1 17 Yii1(w)
=— i E E | — .
X neNmosoo 10 Z P2 < P < " Yi(w)

Set w; =y and let (|y:]*, [Ut] )i=0 be the stochastic pair in M x ©3" (M) that defines the
¢ Brownian motion on M starting from y. Then,

Yé—i—l(@) _ n p(l, Y, lYI])\(W)) _.
Eoy, (0507 ) =0 (0 iy o) = B2 (@)

which is L' integrable in y. Hence the ergodic theorem applied to the ¢* Brownian motion
on M (see Proposition 2.2) gives that

lim Z Epy (EPA < n Yy* (11(;;’)» = EpaEq (M) 54, ) -

neN,n—oo N =0
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Since

Eq (M) = Bq (~(npMa(Ly, [y (w) = (n )i (1))

p(L,y,2) N

+E V,In —2——~L— , D (]01] (w)> ],
@ (< - pk(lv Y, Z)p)‘(Z) z=|y1]*(w) ( )>\ >

we conclude that ((I1I) )\7y)l/\ is L' integrable, uniformly in A and v, by using Theorem 1.3

i), Lemma 4.13 and Proposition 4.27 i) for (|y1]*,|01]}). Moreover,

(Bq (TTT)x,))y = Eq (—(n)(1 3, 1y11°) — (g (ly11%)) = 0

by taking the differential in A of {p*(1,y, 2) dVolr (z) = 1.

Hence,
. 1 /
Jim SEeBaq (M) = Ee (Eq (M), = 0,
where the first equality holds since we are integrating a function that depends only on wj,.
Consequently, we obtain limy_,g40 (I), = 0. In the same way, we show limy_,o_o (I), = 0.

Thus, limy_,q (I), = 0. O

Remark 7.2. Note that for all A\, h* < (v*)? by [Gu] and [Kail]. As in Corollary 3.10,
we can also use [BCG], [KKPW] and the C* differentiability of A — h* for any C? curve
A gt e R3(M) to conclude that (h*) = 0 at locally symmetric g°.

In proving Theorem 1.6, we obtain the following formula.

Theorem 7.3. Let M be a closed connected smooth manifold and let g € R3(M). For any
C? curve N e (—1,1) = g* € R3(M) with ¢° = g and constant volume,

(W) = j <—;<VtraceX,Z + Vui) + Div(X(Z + Vul))> dm.
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