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In this work, we present some numerial approximations for a shallow water problem

with a depth-mean veloity formulation and we give, where possible, an error bound. To

prove the existene of solutions, we build a sequene of approximated solutions with the

Galerkin method for the momentum equation and we solve the ontinuity equation with

the method of the harateristis. This leads to an expensive natural numerial sheme.

Then, in order to redue the CPU time, we present other numerial approximations

based on the linear or nonlinear Galerkin method.

1. Introdution

1.1. Notations

Let 
 be a �xed bounded smooth open domain of R

2

with boundary . Phys-

ially, 
 is the domain orresponding to the surfae of the sea assumed to be hor-

izontal. Let u = (u

1

; u

2

) be the mean veloity of the uid (a vetor funtion from


 into R

2

) and let h be the water elevation (a salar funtion from 
 into R). If

u = (u

1

; u

2

) is a vetor funtion and q is a salar funtion from 
 into R

2

, then we

denote by

�, the operator from R

2

into R

2

de�ned by

�(u) = (�u

2

; u

1

);

Curl (\Curl with apital C") the operator from R into R

2

de�ned by

Curl q =

�

�q

�x

2

;�

�q

�x

1

�

;

url (\url with small ") the operator from R

2

into R de�ned by

urlu =

�u

2

�x

1

�

�u

1

�x

2

:

1



2 The nonlinear Galerkin method applied to shallow water equations

We also denote by ( � ; � ) the salar produt of L

2

(
) and L

2

(
)

2

and by (( � ; � ))

the salar produt of V .

1.2. Equations of the model

The shallow water equations are used in the modelling of the bidimensional

irulation of geophysial uids. The equations of the model in a depth-mean

veloity formulation are the following : (P )

u

t

+

1

2

gradu

2

+ urlu�(u) + !�(u) + g gradh�A�u = f in 
�℄0; T [= Q;

h

t

+ div (uh) = 0 in Q;

u � n = 0 ; urlu = 0 on �℄0; T [;

u(t = 0) = u

0

(x) in Q;

h(t = 0) = h

0

(x) in Q; h

0

� 0 :

For the sake of simpliity, we set g = 1 and ! = 1.

1.3. Theoretial results and numerial approximations

(a) The linear Galerkin method and harateristis.

Firstly we reall an existene theorem for the weak solutions of this problem.

This result is a global existene theorem with ontrolled data. We de�ne the

funtional spae V as follows :

V = f' 2 L

2

(
)

2

=div' 2 L

2

(
); url' 2 L

2

(
);' � n = 0 on g : (1.1)

This spae is equipped with the graph-norm

jj'jj

V

= jj'jj

L

2

(
)

+ jjdiv'jj

L

2

(
)

+ jjrot'jj

L

2

(
)

: (1.2)

Let (V ) be the following weak formulation of problem (P )

Find

u 2 L

2

(0; T ;V) \ L

1

(0; T ;L

2

(
)

2

) ; h 2 L

1

(0; T ;L

1

(
)) and h � 0

suh that

�

�u

�t

; v

�

�

1

2

�

u

2

; div v

�

+

�

urlu�(u); v

�

+

�

�(u); v

�

+A

��

u; v

��

�

�

h; div v

�

=

�

f; v

�

8v 2 V \H

4

(
)

2

(1.3)

�h

�t

+ div (uh) = 0 in L

1

(0; T ;W

�1;1

(
)) (1.4)

u(0; x) = u

0

(x) 2 V ; h(0; x) = h

0

(x) 2 L

1

(
); h

0

(x) � 0 a.e. in 
 : (1.5)

If the data are small enough, we show that (V ) has a solution with a

�xed-point method.
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Indeed, if we denote a basis of V by f'

1

; '

2

; : : : ; '

m

; : : :g, then we de�ne V

m

,

the set of linear ombinations of the m �rst elements of the basis. We use the

Galerkin method to approximate the solution of the momentum equation (1.3)

while the ontinuity equation (1.4) is solved with the method of harateristis.

The assoiated numerial method is ostly in CPU time. In the following

setions, we present other numerial methods in order to redue the CPU

time.

(b) Nonlinear Galerkin method and harateristis.

The �rst approah onsists in applying the nonlinear Galerkin method to

solve the momentum equation. This method, initially developped by M. Mar-

ion and R. Temam

7

in the ontext of the Navier-Stokes equations, onsists in

simplifying the interation laws between the small and large eddies. To obtain

these simpli�ations, we write u

m

as follows :

u

m

= y

m

+z

m

with y

m

=

m

1

X

i=1

x

i

(t)'(x) and z

m

=

m

X

i=m

1

+1

x

i

(t)'(x) ; (1.6)

and we eliminate some oupling terms between y

m

and z

m

.

With this deomposition, we establish the a priori estimates, and we prove

that the di�erene between the solution of this weak problem and (u; h) is

arbitrarily small.

() Global Galerkin method.

Sine the solving of the ontinuity equation represents a large portion of

the CPU time, we have used the Galerkin method to solve this equation. We

give some onvergene results to the solution (u; h) of the weak problem (V ).

(d) Nonlinear global Galerkin method.

Finally, we apply the nonlinear Galerkin method to the momentum equation

and the ontinuity equation. The onvergene results are similar to the results

obtained in the previous two steps.

(e) Numerial appliation.

In the last part of this paper, we present a omparison between these dif-

ferent numerial methods. We present, in a simple ase, the CPU time and

error assoiated with eah approah.

The omplexity of these numerial methods inreases but the time of om-

putation is redued and the numerial solution has retained a good level of

auray.

2. Existene results for the problem (V ) and numerial methods

In the �rst part of this setion, we reall an existene theorem for the solutions of

the weak problem (V ) when the data are small enough

9

. Next, we reall a theorem

in order to build a speial basis whih is well-adapted to this problem

8

. Finally, we

briey reall the method of harateristis used to solve the ontinuity equation

2

and we give the omplete numerial method that we use to approximate the weak
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solutions.

2.1. An existene theorem

In what follows, we denote by A, B, C, � and � onstants suh as

2A > � > 0; B = 2A� � (2.7)

0 < � < 1 (2.8)

C is the best onstant assoiated with the Gagliardo Nirenberg inequality

kuk

2

L

4

(
)

2

� Cjjujj

V

jjujj

L

2

(
)

(2.9)

We obtain the following theorem

Theorem 2.1 Let u

0

2 V, h

0

2 L

1

(
) and f satisfying

h

0

� 0; h

0

logh

0

2 L

1

(
); f 2 L

2

(0; T ;H

�1

(
)

2

); (2.10)

jju

0

jj

2

L

2

(
)

+ 2jjh

0

logh

0

jj

L

1

(
)

+

1

�

jjf jj

2

L

2

(0;T ;H

�1

(
))

+

2

e

mes (
) < �

2

B

2

C

2

; (2.11)

jju

0

jj

L

2

(
)

< �

B

C

: (2.12)

Then, for eah �, �, f , u

0

, h

0

satisfying (2.7), (2.8), (2.10),(2.11),(2.12), the

problem (V ) has a solution (u; h) suh that

(u; h) 2 f[L

2

(0; T ;V) \ L

1

(0; T ;L

2

(
)

2

)℄� L

1

(0; T ;L

1

(
))g : (2.13)

Moreover the solution satis�es

jjujj

2

L

1

(0;T ;L

2

(
)

2

)

� �

2

B

2

2C

2

+

2

e

mes (
) ; (2.14)

jjujj

2

L

2

(0;T ;V)

�

�

2

B

2

C

2

(B � C)

+

2

e

mes (
) ; (2.15)

�

1

e

mes (
) � sup

t

Z




h logh � �

2

B

2

2C

2

; h � 0 : (2.16)

A detailed proof of this theorem is given in

9

.

2.2. Speial basis

We now provide a theorem in order to build a speial basis of the spae V (1.1),

satisfying the impermeability boundary onditions.

We onsider the following eigen problem (P1)

��u = �u in 


u � n = urlu = 0 on 
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Theorem 2.2

� If (�; p) is a solution to the salar problem

(P2) ��p = �p in 
,

�p

�n

= 0 on ;

then (�; grad p) is a solution of (P1).

� If (�; q) is a solution to the salar problem

(P3) ��q = �q in 
, q = 0 on ;

then (�;Curl q) is a solution of (P1).

� If 
 is simply onneted, then 0 is not an eigen value of (P1), otherwise

the eigen spae assoiated to 0 is the �nite dimensional spae H

0

(div 0; url 0)

where

H

0

(div 0; url 0) = fu 2 L

2

(
)

2

; div u = 0; urlu = 0; u � n = 0 on g:

� The set omposed of grad p and Curl q, where p is solution of (P2) and q

is solution of (P3), is a total basis in L

2

(
)

2

n H

0

(div 0; url 0) and in V n

H

0

(div 0; url 0).

� If 
 is a smooth domain, then we obtain V = f' 2 H

1

(
)

2

; ':n = 0g and

the solutions of problem (P1) are very smooth.

Moreover, the set omposed of the funtions p

i

, solutions of (P2), onstitute an

orthogonal basis of L

2

(
).

2.3. The numerial method

Let f'

1

; : : : ; '

m

; : : :g be a basis of V , the funtions '

i

belong to H

4

(
)

2

and

satisfy the relationship

��'

i

= �

i

'

i

;

0 < �

1

� �

2

� : : : ; �

j

!1 when j !1 :

We denote by V

m

the set of the linear ombinations of the m �rst funtions

f'

1

; : : : ; '

m

g and we are looking for u

m

2 V

m

where u

m

is of the form

u

m

(x; t) =

m

X

i=1

x

i

(t)'

i

(x)

and we build the sequene (u

m

; h

m

), solution to the following problem (V

m

):

Find (u

m

; h

m

) 2

�

L

1

(0; T ;L

2

(
)

2

) \ L

2

(0; T ;V )

�

� L

1

(0; T ;L

1

(
)) suh that

�

�u

m

�t

; '

i

�

�

1

2

�

u

2

m

; div'

i

�

+

�

urlu

m

�(u

m

); '

i

�

+

�

�(u

m

); '

i

�

+A

��

u

m

; '

i

��

�

�

h

m

; div'

i

�

=

�

f; '

i

�

8'

i

; i = 1; : : : ;m (2.17)

�h

m

�t

+ div (u

m

h

m

) = 0 ; (2.18)

u

m

(t = 0) = u

0m

2 V

m

; h

m

(t = 0) = h

0m

2 C

1

(

�


) ; (2.19)
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where the onstants and the data satisfy the onditions of Theorem 2.1.

If h

0m

2 C

1

(

�


), then we have proven in

3

that (u

m

; h

m

) 2 C

0

([0; T ℄;C

2

(

�


)) �

C

1

(

�

Q).

The properties of the basis allow us to write the nonlinear terms in a simpler

fashion and we obtain a system with m di�erential equations of the form:

dx

i

dt

= F

i

(x

j

; x

k

) +G

i

(h

m

) ; (2.20)

where the funtions F

i

are integrals of basis funtion produts. We need only

ompute these integrations one for a given domain. The term G

i

is the projetion

of the water elevation gradient on the basis elements. We need to know this term

for eah time step, after omputation of the water elevation.

To ompute the water elevation, we use the method of harateristis. We

evaluate the variations in water elevation on a trajetory. We reall that

u

1

=

dx

1

dt

; u

2

=

dx

2

dt

:

Thus, we an write the ontinuity equation (2.18) of the form

Dh

m

Dt

= �h

m

div u

m

; (2.21)

where

Dh

m

Dt

is the time derivative of h

m

(x(t); t) as x(t) moves along with the uid

at veloity u

m

. Therefore let X(t

i�1

) denote the position of a partile of uid at

time t

i�1

whih will be in x at time t

i�1

+4t (4t is the time step). Then (2.21)

may be approximated by

h

m

(X(t

i

); t

i

) = h

m

(X(t

i�1

); t

i�1

) exp(�4t div u

m

(X(t

i

); t

i

)) (2.22)

Note that on eah point, there is a unique harateristi urve. If we have the

boundary ondition u:n 6= 0, it is neessary to presribe the water elevation on the

part of the boundary where the ow enters.

This method is well-adapted to both the problem and the theoretial results.

The CPU time, however,is very important. In what follows, we therefore present

some new approahes in order to redue this simulation time.

3. Nonlinear Galerkin method

In this setion, we apply the nonlinear Galerkin method to the resolution of the

momentum equation. In this work, we adapt the results obtained by M. Marion

and R. Temam on the Navier-Stokes equations

7

.

3.1. Desription of the method

In what follows, we onsider m 2 N , m

1

2 N and we suppose m > m

1

.
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We denote by V

m

1

the spae generated by the m

1

�rst '

i

funtions and by

~

V

m

1

the spae generated by the next m�m

1

'

i

funtions.

We set

u

m

= y

m

+ z

m

with y

m

=

m

1

X

i=1

x

i

(t)'

i

(x) and z

m

=

m

X

i=m

1

+1

x

i

(t)'

i

(x) (3.23)

and we denote by (V

a

m

) the following approximate problem:

�

�y

m

�t

; '

i

�

�

1

2

�

y

2

m

; div'

i

�

�

�

y

m

z

m

; div'

i

�

+

�

url y

m

�(y

m

); '

i

�

+

�

url z

m

�(y

m

); '

i

�

+

�

url y

m

�(z

m

); '

i

�

+

�

�(y

m

); '

i

�

+

�

�(z

m

); '

i

�

+A

��

y

m

; '

i

��

�

�

h

m

; div'

i

�

=

�

f; '

i

�

8'

i

2 V

m

1

; i = 1; : : : ;m

1

; (3.24)

�

�z

m

�t

; '

i

�

�

1

2

�

y

2

m

; div'

i

�

+

�

url y

m

�(y

m

); '

i

�

+

�

�(y

m

); '

i

�

+A

��

z

m

; '

i

��

�

�

h

m

; div'

i

�

=

�

f; '

i

�

8'

i

2

~

V

m

1

; i = m

1

+ 1; : : : ;m ; (3.25)

�h

m

�t

+ div (y

m

h

m

) + div (z

m

h

m

) = 0 ; (3.26)

y

m

(t = 0) = P

m

1

(u

0

) = y

0m

2 V

m

1

; (3.27)

z

m

(t = 0) =

~

P

m

1

(u

0

) = z

0m

2

~

V

m

1

and h

0m

2 C

1

(

�


) ; (3.28)

where P

m

1

denotes the L

2

-projetion operator on the spae V

m

1

and

~

P

m

1

denotes

the L

2

-projetion operator on the spae

~

V

m

1

.

The ontinuity equation is solved using the method of the harateristis as

previously desribed.

3.2. Existene and onvergene results

We give an existene result for the solutions to problem (V

a

m

) with onvergene

results.

Theorem 3.3 All the onstants are de�ned as in Theorem 2.1, exept for B, whih

is de�ned by B = (A�

�

2

)=

p

2.

Let y

0m

2 V

m

1

, z

0m

2

~

V

m

1

, h

0m

2 C

1

(

�


) and f 2 L

2

(0; T;H

�1

(
)

2

) satisfying

h

0m

� 0; h

0m

logh

0m

2 L

1

(
);
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jjy

0m

+ z

0m

jj

2

L

2

(
)

+ jjh

m

(0) logh

m

(0)jj

L

1

(
)

+

1

�

jjf jj

2

L

2

(0;T ;H

�1

(
)

2

)

+

2

e

mes(
) < �

�

B

C

�

2

;

jjy

0m

+ z

0m

jj

L

2

(
)

< �

B

C

:

Then:

z

m

* 0 weakly in L

2

(0; T ;V) ; (3.29)

z

m

! 0 strongly in L

2

(0; T ;L

2

(
)

2

) ; (3.30)

y

m

! u

�

weakly in L

2

(0; T ;V) and weakly in L

1

(0; T ;L

2

(
)

2

)� � ; (3.31)

Z

Q

h

m

� dx dt!

Z

Q

h� dx dt for eah � 2 L

1

(0; T ;L

1

(
)); (3.32)

�y

m

�t

bounded in L

2

(0; T ;H

�3

(
)

2

); (3.33)

(url y

m

�(z

m

); ')

L

2

(
)

2

! 0 strongly in L

1

(0; T ) ; (3.34)

(url z

m

�(y

m

); ')

L

2

(
)

2

! 0 strongly in L

1

(0; T ) ; (3.35)

(y

m

z

m

; div')

L

2

(
)

2

! 0 strongly in L

1

(0; T ) ; (3.36)

(y

m

+ z

m

)h

m

* uh strongly in L

1

(Q) ; (3.37)

Proof. First, we give the a priori estimates satis�ed by the solution of (V

a

m

) . Then

we pass to the limit and we prove that (y

m

; h

m

) onverges to the solution (u; h) of

(V ).

(i) a priori estimates

We set y

m

= '

i

in (3.24), z

m

= '

i

in (3.26), and we add these two equations.

Noting that

�

�(u); v

�

+

�

�(v); u

�

= 0 ;

and

�

urlu�(u); v

�

+

�

urlu�(v); u

�

= 0 ;

we obtain

1

2

d

dt

jju

m

jj

2

L

2

(
)

+Aju

m

j

2

V

�

1

2

�

y

2

m

; div u

m

�

�

�

y

m

z

m

; div y

m

�

�

�

h

m

; div u

m

�

=

�

f; u

m

�

: (3.38)

The right hand side in (3.38) is bounded by

�

f; u

m

�

�

1

2�

jjf jj

2

H

�1

(
)

+

�

2

ju

m

j

2

V

:
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The term

�

h

m

; div u

m

�

is estimated as in

9

. We thus obtain

�

h

m

; divu

m

�

=

d

dt

�

h

m

logh

m

� h

m

; 1

�

:

The other terms whih are not neessarily bounded are the nonlinear terms.

To estimate these terms, we build a stability spae. We obtain

1

2

�

y

2

m

; div u

m

�

�

C

2

jjy

m

jj

L

2

(
)

jjy

m

jj

V

jju

m

jj

V

�

y

m

z

m

; div y

m

�

� Cjjy

m

jj

1=2

L

2

(
)

jjy

m

jj

1=2

V

jjz

m

jj

1=2

L

2

(
)

jjz

m

jj

1=2

V

jju

m

jj

V

Then, adding the two inequalities, we obtain

1

2

�

y

2

m

; div u

m

�

+

�

y

m

z

m

; div y

m

�

� Cjjy

m

jj

1=2

L

2

(
)

jjy

m

jj

1=2

V

jju

m

jj

V

�

1

2

jjy

m

jj

1=2

L

2

(
)

jjy

m

jj

1=2

V

+ jjz

m

jj

1=2

L

2

(
)

jjz

m

jj

1=2

V

�

� Cjjy

m

jj

1=2

L

2

(
)

jjy

m

jj

1=2

V

jju

m

jj

V

h

jjy

m

jj

1=2

L

2

(
)

jjy

m

jj

1=2

V

+ jjz

m

jj

1=2

L

2

(
)

jjz

m

jj

1=2

V

i

� Cjjy

m

jj

1=2

L

2

(
)

ju

m

j

2

V

h

jjy

m

jj

1=2

L

2

(
)

+ jjz

m

jj

1=2

L

2

(
)

i

�

p

2Cjju

m

jj

L

2

(
)

ju

m

j

2

V

(3.39)

and �nally

1

2

d

dt

jju

m

jj

2

L

2

(
)

+ ju

m

j

2

V

��

A�

�

2

�

�

p

2Cjju

m

jj

L

2

(
)

�

+

d

dt

�

h

m

logh

m

� h

m

; 1

�

�

1

2�

jjf jj

2

H

�1

(
)

: (3.40)

To obtain the a priori estimates, we hoose the data suh that

�

A�

�

2

�

�

p

2Cjju

m

jj

L

2

(
)

> 0

Thus, setting B =

�

A�

�

2

�

=

p

2 :

jju

m

(t)jj

L

2

(
)

<

B

C

8t :

To prove this result, we use the same arguments as in

9

.

We dedue that u

m

is bounded in L

1

(0; T ;L

2

(
)) \ L

2

(0; T ;V).

Sine z

m

is bounded in L

2

(0; T ;V) for eah T > 0, and, by onstruting

jjz

m

jj

L

2

(0;T ;V)

� �

1=2

m

1

+1

jjz

m

jj

2

L

2

(
)

, we then obtain

8T > 0; �

1=2

m

1

+1

z

m

is bounded in L

2

(0; T ;L

2

(
)) : (3.41)
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Finally, we give some results on the nonlinear terms. Sine y

m

and z

m

are

both bounded in L

2

(0; T ;V), then url y

m

and url z

m

are bounded in L

2

(Q).

Moreover, y

m

and z

m

are also bounded in L

4

(Q). Therefore, url y

m

�(y

m

),

url z

m

�(y

m

) and url y

m

�(z

m

) are bounded in L

4

3

(Q).

Similarly, we obtain grad y

2

m

and grad (y

m

z

m

) bounded in L

4

3

(Q).

(ii) Passage to the limit

Sine �

m

!1 as m!1, (3.41) leads to

8T > 0; z

m

! 0 strongly in L

2

(0; T ;L

2

(
)) as m! +1 : (3.42)

Moreover z

m

is bounded in L

2

(0; T ;V) for eah T > 0 and the uniqueness

of the limit gives

8T > 0; z

m

* 0 weakly in L

2

(0; T ;V) as m! +1 : (3.43)

As y

m

is bounded in L

1

(0; T ;L

2

(
)

2

) \ L

2

(0; T ;V), then u

�

exists suh

that : 8T > 0,

y

m

! u

�

weakly in L

2

(0; T ;V) and weakly in L

1

(0; T ;L

2

(
)

2

)� � (3.44)

To pass to the limit in the nonlinear terms, we need a strong onvergene

in L

2

(Q) for y

m

and z

m

. This result is obtained with the Aubin theorem. In

order to apply this ompaity theorem, we must have a smoothness result for

�y

m

�t

.

Indeed,

�y

m

�t

is as smooth as rh

m

whih is the least smooth term. But

h

m

2 L

1

(
) and L

1

(
) ,! C

0;�

(
) ontinuously. In a two dimensional spae,

the embedding of H

2

(
) in C

0;�

(
) is ontinuous, and by duality, L

1

(
) ,!

H

�2

(
) ontinuously. Thus h

m

2 L

2

(0; T ;H

�2

(
)). We obtain

�y

m

�t

bounded in L

2

(0; T ;H

�3

(
)

2

) : (3.45)

By applying the Aubin theorem, we therefore prove that y

m

onverges

strongly a.e. to u

�

in L

2

(0; T ;L

2

(
)

2

).

We pass to the limit in the terms grady

2

m

and url y

m

�(y

m

) as in

9

. Indeed,

8' 2 D(Q),

j (url y

m

�(y

m

)� urlu

�

�(u

�

); ')

L

2

(Q)

j

� j (url y

m

�(y

m

� u

�

); ')

L

2

(Q)

j+ j ((url y

m

� urlu

�

)�(u

�

); ')

L

2

(Q)

j

� jjurl y

m

jj

L

2

(Q)

jjy

m

� u

�

jj

L

2

(Q)

jj'jj

L

1

(Q)

+j ((url y

m

� urlu

�

); u

�

')

L

2

(Q)

j (3.46)

url y

m

�(y

m

) then onverges weakly to urlu

�

�(u

�

) in D

0

(Q). Owing to the

uniqueness of the limit, url y

m

�(y

m

) onverges weakly to urlu

�

�(u

�

) in

L

4

3

(Q).
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In the same way, we an show that grad y

2

m

onverges weakly to gradu

�

2

in

L

4

3

(Q).

Now we must pass to the limit in the nonlinear terms oupling y

m

and z

m

.

We obtain

Z

T

0

j (url y

m

�(z

m

); ')

L

2

(
)

2

j �

R

T

0

jjy

m

jj

V

jjz

m

jj

2

L

2

(
)

jj'jj

L

1

(
)

2

� jjy

m

jj

L

2

(0;T ;V)

jjz

m

jj

L

2

(Q)

jj'jj

L

1

(Q)

(3.47)

As z

m

onverges strongly to 0 in L

2

(Q), we onlude that 8T > 0,

(url y

m

�(z

m

); ')

L

2

(
)

2

! 0 strongly in L

1

(0; T ) as m!1: (3.48)

In the same way, we have

Z

T

0

(url z

m

�(y

m

); ')

L

2

(
)

2

=

Z

T

0

(url z

m

; 'y

m

)

L

2

(
)

2

: (3.49)

Sine 8' 2 L

1

(
), y

m

' 2 L

2

(
) we obtain

8T > 0; (url z

m

�(y

m

); ')

L

2

(
)

2

! 0 strongly in L

1

(0; T ) as m!1 :

(3.50)

We obtain a similar result for the term (y

m

z

m

; div')

L

2

(
)

2

.

The last point to be proved is that we an make sense to u

�

(t = 0) and that

u

�

(t = 0) is equal to u(t = 0). In order to do this, we use the result

�u

�

�t

2 L

4

3

(0; T ;H

�3

(
)

2

) and u

�

2 L

2

(0; T ;L

2

(
)) � L

4

3

(0; T ;H

�3

(
)

2

) ;

whih proves that u

�

is ontinuous from [0; T ℄ in H

�3

(
)

2

. Then, we make

sense to u

�

(t = 0) in H

�3

(
)

2

; moreover y

m

(t = 0) is equal to u

0m

1

and

u

0m

1

onverges to u

0

in V . We dedue that u

�

(t = 0) = u

0

.

Now, we have to pass to the limit in the ontinuity equation. We reall a

result proved in

9

Lemma 3.1 Assume that

u

m

2 L

2

(0; T;H

m

(
)

2

); m � 3 ;

u

m

bounded in L

2

(0; T;V) ;

h

m

� 0 bounded in L

1

(0; T ;L

1

(
)) ;

h

m

logh

m

bounded in L

1

(0; T ;L

1

(
)) ;

�h

m

�t

+ div (u

m

h

m

) = 0 ;
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then,

Z

Q

h

m

� dx dt!

Z

Q

h

�

� dx dt for eah � 2 L

1

(0; T ;L

1

(
)) (3.51)

u

m

h

m

* u

�

h

�

weakly in L

1

(0; T ;L

1

(
)

2

) : (3.52)

Setting u

m

= y

m

+ z

m

, we show that :

(y

m

+ z

m

)h

m

* u

�

h

�

weakly in L

1

(Q) : (3.53)

Now it is possible to pass to the limit in the system onstituted by equations

(3.24) to (3.28). We �nd that u

�

and h

�

satisfy the following problem:

�

�u

�

�t

; '

i

�

�

1

2

�

u

�

2

; div'

i

�

+

�

urlu

�

�(u

�

); '

i

�

+

�

�(u

�

); '

i

�

+A

��

u

�

; '

i

��

�

�

h

�

; div'

i

�

=

�

f; '

i

�

8'

i

2 V (3.54)

�h

�

�t

+ div (u

�

h

�

) = 0 (3.55)

and u

�

(t = 0) = u

0

, h

�

(t = 0) = h

0

.

Thus (u

�

; h

�

) is the unique solution of problem (V ).

3.3. Numerial resolution method

The numerial resolution of this problem and the numerial method presented

in setion 2:1 are nearly idential. The only di�erene in these two methods resides

in the treatment of the unknowns assoiated with the large and small veloity

omponents. Indeed, we always obtain

dx

i

dt

= F

i

(x

j

; x

k

) +G

i

(3.56)

for the veloity omponent y

m

, but we have

dx

i

dt

=

~

F

i

(x

j

; x

k

) +G

i

(3.57)

for the veloity omponent z

m

where

~

F

i

is simpler than F

i

.

The ontinuity equation is solved as above using the method of the harateris-

tis.

4. Global Galerkin method

In this setion, we use the linear Galerkin method to solve the momentum and

ontinuity equations. Then, the ontinuity equation is not quite veri�ed. We do not

have the estimate h logh bounded in L

1

(0; T ;L

1

(
)). However, as the existene
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of the solutions to problem V has been proven, we show that the approximated

problem has a solution and we an obtain some onvergene results of this solution

to (u; h) solution of V .

4.1. Desription of the method

Let fp

1

; : : : ; p

n

; : : :g be a basis of H

1

(
) satisfying the following relation

��p

i

= �

i

p

i

0 < �

1

� �

2

� : : : ; �

j

!1 as j !1

We denote by H

1

(
)

m

the subspae of H

1

(
) generated by the m �rst funtions

fp

1

; p

2

; : : : ; p

m

g and

u

m;n

(x; t) =

m

X

i=1

x

i

(t)'

i

(x) h

m;n

(x; t) =

n

X

k=1

y

k

(t)p

k

(x) (4.58)

where (u

m;n

; h

m;n

) is a solution of the weak problem (V

m;n

)

�

�u

m;n

�t

; '

i

�

�

1

2

�

u

2

m;n

; div'

i

�

+

�

urlu

m;n

�(u

m;n

); '

i

�

+A

��

u

m;n

; '

i

��

�

�

h

m;n

; div'

i

�

=

�

f; '

i

�

in Q; 8'

i

; i = 1; : : : ;m (4.59)

�

�h

m;n

�t

; p

i

�

+

�

div (u

m;n

h

m;n

); p

i

�

= 0 in Q; 8p

i

; i = 1; : : : ; n (4.60)

u

m;n

(t = 0) = u

0mn

2 V

m

and h

m;n

(t = 0) = h

0mn

2 H

1

(
)

n

: (4.61)

4.2. Weak onvergene results

If "

1

is a non-negative onstant, then we obtain the following result:

Theorem 4.4 The di�erent onstants are de�ned in the same way as in Theorem

2.1, exept for onstant B, whih is de�ned by B = 2A� �� 2", with " > 0.

Let u

0mn

2 V

m

, h

0mn

2 H

1

(
)

n

and f 2 L

2

(0; T;H

�1

(
)

2

) satisfying

2

�

jjf jj

2

L

2

(0;T ;H

�1

(
))

+ jju

0mn

jj

2

L

2

(
)

+ 4"

1

� �

�

B

C

�

2

jju

0mn

jj

L

2

(
)

� �

�

B

C

�

Then

� (u

m;n

; h

m;n

) solution to (V

m;n

) onverges weakly to (u

m

; h

m

), solution to the

problem (V

m

), in L

2

(0; T ;L

q

(
)); q < 2.

� For eah m, there exists n(m), suh that (u

m;n(m)

; h

m;n(m)

) onverges to

(u; h), solution to (V ), in L

1

(Q)� L

1

(Q).
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The proof of this theorem is given in three steps

� Estimate of h

m;n

in relation to u

m;n

.

� Estimates in the momentum equation.

� Passage to the limit in the two equations.

Proof.

(i) Estimate of h

m;n

in relation to u

m;n

We hange p

i

by h

m;n

in equation (4.60). It then follows that

Z




�h

m;n

�t

h

m;n

+

Z




h

m;n

div (u

m;n

h

m;n

) = 0 ; (4.62)

hene

Z




�h

2

m;n

�t

+

Z




h

2

m;n

div (u

m;n

) = 0 ; (4.63)

therefore

d

d t

jjh

m;n

jj

2

L

2

(
)

� jjh

m;n

jj

2

L

2

(
)

jjdiv u

m;n

jj

L

1

(
)

: (4.64)

Owing to the Gronwall lemma, we obtain 8T > 0, 8t 2 [0; T ℄

jjh

m;n

(t)jj

2

L

2

(
)

� jjh

m;n

(0)jj

2

L

2

(
)

exp

�

Z

t

0

jjdiv u

m;n

(�)jj

L

1

(
)

d �

�

: (4.65)

(ii) a priori estimates

When we obtain the energy estimate of the momentum equation, the terms

�

u

2

; div u

�

and (h; div u) are not neessarily bounded.

First, we estimate these terms for a time T

n

whih is suÆiently small, and

then we show that T

n

does not go to 0 as n goes to +1.

Next, we obtain a onvergene result of (u

m;n

; h

m;n

) to (u

m

; h

m

) in L

1

(Q)�

L

1

(Q) weak as n! +1. Finally, we prove that (u

m;n(m)

; h

m;n(m)

) onverges

weakly to (u; h) in L

1

(Q)� L

1

(Q), with a judiious hoie of n.

Indeed, we have

Z

T

0

Z




h

m;n

div u

m;n

d
 d t � jjh

m;n

jj

L

1

(0;T ;L

2

(
))

jjdiv u

m;n

jj

L

1

(0;T ;L

2

(
))

;

(4.66)

and thus

Z

T

0

Z




h

m;n

div u

m;n

d
 d t � T jjh

m;n

jj

L

1

(0;T ;L

2

(
))

jju

m;n

jj

L

2

(0;T ;V)

� 

"

T

2

jjh

m;n

jj

2

L

1

(0;T ;L

2

(
)

2

)

+ " jju

m;n

jj

2

L

2

(0;T ;V)

: (4.67)



The nonlinear Galerkin method applied to shallow water equations 15

The energy equation is given by

�

�u

m;n

�t

; u

m;n

�

+A

��

u

m;n

; u

m;n

��

�

1

2

�

u

2

m;n

; div u

m;n

�

�

�

h

m;n

; div u

m;n

�

=

�

f; u

m;n

�

:

We estimate the right-hand side with

�

f; u

m;n

�

�

1

2�

jjf jj

2

H

�1

(
)

+

�

2

ju

m;n

j

2

V

:

Then, as m is �xed, the integration in time gives

1

2

jju

m;n

jj

2

C

0

(0;T ;L

2

(
))

� 

2"

T

2

jjh

m;n

jj

2

L

1

(0;T ;L

2

(
)

2

)

+ jju

m;n

jj

2

L

2

(0;T ;V)

��

A�

�

2

� "

�

�

C

2

jju

m;n

jj

L

1

(0;T ;L

2

(
))

�

�

1

2�

jjf jj

2

L

2

(0;T ;H

�1

(
))

(4.68)

hene, with (4.65)

1

2

jju

m;n

jj

2

C

0

(0;T ;L

2

(
))

+ jju

m;n

jj

2

L

2

(0;T ;V)

��

A�

�

2

� "

�

�

C

2

jju

m;n

jj

L

1

(0;T ;L

2

(
))

�

�

"

T

2

jjh

m;n

(0)jj

2

L

2

(
)

exp

 

Z

T

0

jjdiv u

m;n

(t)jj

L

1

(
)

d t

!

�

1

2�

jjf jj

2

L

2

(0;T ;H

�1

(
))

: (4.69)

Now, in order to obtain the a priori estimates, we must give an estimate

for the expression



"

T

2

jjh

m;n

(0)jj

2

L

2

(
)

exp

 

Z

T

0

jjdiv u

m;n

(t)jj

L

1

(
)

d t

!

:

We argue with a value of T

o;n

whih is suÆiently small. 8"

1

> 0 and for

eah n there exists T

o;n

> 0 suh that, for eah t < T

o;n

, we obtain



"

t

2

jjh

m;n

(0)jj

2

L

2

(
)

exp

�

Z

t

0

jjdiv u

m;n

(�)jj

L

1

(
)

d �

�

� "

1

and thus

1

4

jju

m;n

jj

2

C

0

(0;t;L

2

(
))

� 

"

t

2

jjh

m;n

(0)jj

2

L

2

(
)

exp

�

Z

t

0

jjdiv u

m;n

(�)jj

L

1

(
)

d�

�

�

1

4

jju

m;n

(0)jj

2

L

2

(
)

� "

1
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We must prove that T

o;n

does not go to zero as n goes to in�nity. T

0;n

is

de�ned suh that the following equation is satis�ed:

1

4

jju

m;n

jj

2

C

0

(0;T

o;n

;L

2

(
))

�

"

T

2

o;n

jjh

m;n

(0)jj

2

L

2

(
)

exp

 

Z

T

o;n

0

jjdiv u

m;n

(�)jj

L

1

(
)

d �

!

=

1

4

jju

m;n

(0)jj

2

L

2

(
)

� "

1

(4.70)

Let us suppose that T

0

> 0 does not exist suh that (4.70) is satis�ed for

eah n. This means that

T

o;n

! 0 as n!1

and thus

jju

m;n

jj

2

C

0

(0;T

o;n

;L

2

(
))

! jju

m;n

(0)jj

2

L

2

(
)

� 4"

1

as n!1

whih is impossible.

Consequently, we have the relation

1

4

jju

m;n

jj

2

C

0

(0;T ;L

2

(
))

+ jju

m;n

jj

2

L

2

(0;T ;V)

��

A�

�

2

� "

�

�

C

2

jju

m;n

jj

L

1

(0;T ;L

2

(
))

�

�

1

2�

jjf jj

2

L

2

(0;T ;H

�1

(
)

2

)

�

1

4

jju

m;n

(0)jj

2

L

2

(
)

+ "

1

(4.71)

If we set B = 2A� �� 2", we an obtain the a priori estimates if the data

are hosen in order to satisfy the following equation

B � C jju

m;n

jj

L

1

(0;T ;L

2

(
))

> 0

Then, for eah t, we must have

jju

m;n

(t)jj

L

2

(
)

<

B

C

and we argue as in

9

.

We dedue that u

m;n

is bounded in C

0

(0; T

0

;L

2

(
)

2

)\L

2

(0; T

0

;V), h

m;n

is

bounded in L

1

(0; T

0

;L

2

(
)) and we extrat two sequenes, noted u

m;n

and

h

m;n

whih onverge to u

�

m

and h

�

m

as n! +1 respetively.

The previous argument is true for t 2 [0; T

o

[. But the funtions u

m;n

and

h

m;n

are ontinuous in time and it is possible to extend these results on [0; T [

for eah T > 0.
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(iii) Passage to the limit

We are now going to prove that u

m;n

h

m;n

onverges weakly to u

�

m

h

�

m

in

L

2

(0; T ;L

q

(
)) (with q < 2). To this end, we must verify that

Z




(u

m;n

h

m;n

� u

�

m

h

�

m

)' =

Z




u

m;n

(h

m;n

� h

�

m

)'

+

Z




h

�

m

(u

m;n

� u

�

m

)' 8' 2 (L

q

(
))

0

: (4.72)

We have proven that u

m;n

is bounded in L

2

(0; T ;H

1

(
)

2

) and then in

L

2

(0; T ;L

p

(
)

2

), p <1, with embedding theorems. Moreover, we have h

�

m

2

L

2

(0; T ;L

2

(
)).

Thus, if we hoose ' in L

2

(0; T; L

q

(
)

2

); q > 2, we obtain :

h

�

m

' 2 L

2

(0; T ;L

2�"

(
)) :

Then

Z




(u

m;n

� u

�

m

)h

�

m

'! 0 as n! +1 :

In the same way, we have u

�

m

' 2 L

2

(0; T ;L

2

(
)

2

), and, sine h

m;n

onverges

weakly in L

2

(Q), then

Z




(h

m;n

� h

�

m

)u

m;n

'! 0 as n!1 :

We dedue that (u

�

m

; h

�

m

) is a solution of the problem (V

m

). As this problem

has a unique solution

2

, we have (u

�

m

; h

�

m

) = (u

m

; h

m

).

In the previous estimates, the onvergene of u

m;n

(resp. h

m;n

) to u

�

m

(resp.

h

�

m

) is not uniform in m. However, we show that we an extrat a sequene

from (u

m;n

; h

m;n

), always denoted by (u

mn

; h

mn

) whih onverges weakly in

(L

2

(0; T ;L

q

(
)))

0

; q > 2. Indeed, we have:

Z




(u

m;n

� u)' =

Z




(u

m;n

� u

m

)' +

Z




(u

m

� u)' :

The weak onvergene of u

m

to u gives

8" > 0; 9m=

Z




(u

m

� u)' <

"

2

;

and for eah m, there exists n(m) suh that

Z




(u

m;n(m)

� u

m

)' <

"

2

;

from whih we obtain the result.

In the same way, we show the onvergene of h

m;n

to h and the onvergene

of (u

m;n

h

m;n

) to (uh).
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4.3. Strong onvergene results

For a �xed value of m, we an establish some strong onvergene results for

h

m;n

with the Aubin theorem. Previously, we proved that u

m;n

is bounded into

C

0

(0; T ;H

4

(
)

2

). As h

m;n

is bounded into L

2

(0; T ;L

2

(
)), we have

u

m;n

h

m;n

bounded into L

2

(0; T ;L

2

(
)

2

)

hene

div (u

m;n

h

m;n

) bounded into L

2

(0; T ;H

�1

(
)) :

We thus dedue that

�h

m;n

�t

is bounded into L

2

(0; T ;H

�1

(
)). The Aubin the-

orem with :

h

m;n

bounded into L

2

(0; T ;L

2

(
)) and

�h

m;n

�t

bounded into L

2

(0; T ;H

�1

(
)) ;

therefore gives

h

m;n

�! h

m

strongly in L

2

(Q) :

In the same way, it is lear that u

m;n

onverges strongly to u

m

in L

2

(Q).

It is possible to obtain an error estimate by substrating (2.18) from (4.60),

multiplying by h

m;n

� h

m

and integrating over 
. We obtain

1

2

d

dt

jjh

m;n

� h

m

jj

2

L

2

(
)

=

Z




div (u

m

h

m

)(h

m;n

� h

m

)

�

Z




div [u

m;n

(h

m;n

� h

m

)℄(h

m;n

� h

m

)

�

Z




div (u

m;n

h

m

)(h

m;n

� h

m

) ; (4.73)

therefore,

1

2

d

dt

jjh

m;n

� h

m

jj

2

L

2

(
)

� kh

m;n

� h

m

k

L

2

(
)

�

kdiv (u

m

h

m

)k

L

2

(
)

+kdiv (u

m;n

h

m

)k

L

2

(
)

�

�

Z




div [u

m;n

(h

m;n

� h

m

)℄(h

m;n

� h

m

) : (4.74)

The last term on the right-hand side of (4.74) is hanged to

Z




div [u

m;n

(h

m;n

� h

m

)℄(h

m;n

� h

m

) =

1

2

Z




div (u

m;n

)(h

m;n

� h

m

)

2

: (4.75)

Integrating (4.74) in time, it omes

sup

t

jjh

m;n

(t)� h

m

(t)jj

2

L

2

(
)

� 2kh

m;n

� h

m

k

L

2

(Q)

�

kdiv (u

m

h

m

)k

L

2

(Q)

+kdiv (u

m;n

h

m

)k

L

2

(Q)

�

+ jjh

m;n

(0)� h

m

(0)jj

2

L

2

(
)

�

Z

Q

div (u

m;n

)(h

m;n

� h

m

)

2

: (4.76)
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Finally, as h

m;n

onverges strongly to h

m

in L

2

(Q),

9N 2 N = 8n > N; (h

m;n

� h

m

)

2

� (h

m;n

� h

m

) < 1 :

Thus,

sup

t

jjh

m;n

(t)� h

m

(t)jj

2

L

2

(
)

� kh

m;n

� h

m

k

L

2

(Q)

�

2kdiv (u

m

h

m

)k

L

2

(Q)

+2kdiv (u

m;n

h

m

)k

L

2

(Q)

+ kdiv (u

m;n

)k

L

2

(Q)

�

+jjh

m;n

(0)� h

m

(0)jj

2

L

2

(
)

: (4.77)

We an obtain some stronger onvergene results if we argue as in

2

.

4.4. Numerial resolution method

Theorem 2.2 proves that the set omposed of the funtions p

k

whih are solutions

to problem (P2), onstitute an orthogonal basis of H

1

(
). This basis is used for

the projetion of the ontinuity equation. We thus obtain m + n equations of the

form

dx

i

dt

= F

i

(x

j

; x

k

) +H

i

(y

j

)

dy

i

dt

= �

i

(x

j

; y

k

)

The funtions F

i

, H

i

and �

i

are obtained by integration on the domain of basis

funtions. Contrary to the methods using the harateristis, it is not neessary to

ompute the trajetory and to evaluate integrals on the domain for eah time step.

However, the presene of several non linear terms are ostly in terms of CPU time.

5. Global nonlinear Galerkin method

In the previous setion, we justi�ed the use of the Galerkin method to solve

the ontinuity equation. We will now apply the nonlinear Galerkin method to

the momentum and ontinuity equations. This method allows us to redue the

simulation time.

5.1. Desription of the method

We de�ne u

m;n

= y

m;n

+ z

m;n

with

y

m;n

=

m

1

X

i=1

x

i

(t)'(x) and z

m;n

=

m

X

i=m

1

+1

x

i

(t)'(x) (5.78)

and h

m;n

= �

m;n

+ �

m;n

with

�

m;n

=

n

1

X

k=1

y

k

(t)p

k

(x) and �

m;n

=

n

X

k=n

1

+1

y

k

(t)p

k

(x) (5.79)
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solutions of the following problem (V

a

m;n

)

�

�y

m;n

�t

; '

i

�

+ b(y

m;n

; y

m;n

; '

i

) + b(y

m;n

; z

m;n

; '

i

) + b(z

m;n

; y

m;n

; '

i

)

+

�

�(y

m;n

); '

i

�

+

�

�(z

m;n

); '

i

�

+A

��

y

m;n

; '

i

��

�

�

�

m;n

; div'

i

�

�

�

�

m;n

; div'

i

�

=

�

f; '

i

�

; 8'

i

; i = 1; : : : ;m

1

(5.80)

�

��

m;n

�t

; p

k

�

�

�

y

m;n

�

m;n

; gradp

k

�

�

�

y

m;n

�

m;n

; grad p

k

�

�

�

z

m;n

�

m;n

; gradp

k

�

= 0; 8p

k

; k = 1; : : : ; n

1

(5.81)

�

�z

m

�t

; '

i

�

+ b(y

m;n

; y

m;n

; '

i

) +

�

�(y

m;n

); '

i

�

+A

��

z

m;n

; '

i

��

�

�

�

m;n

; div'

i

�

=

�

f; '

i

�

; '

i

;8i = m

1

+ 1; : : : ;m (5.82)

�

��

m;n

�t

; p

k

�

�

�

y

m;n

�

m;n

; gradp

k

�

= 0; 8p

k

; k = n

1

+ 1; : : : ; n (5.83)

where b( ; ; ) represents the nonlinear terms.

5.2. Weak onvergene results

If " and "

0

are two positive onstants, then we obtain the following result

Theorem 5.5 All the onstants are de�ned as in Theorem 2.1, exept for B, whih

is de�ned by B = (A�

�

2

�max("; "

0

))=

p

2.

Let u

0

2 V, h

0

2 L

2

and f 2 L

2

(0; T;H

�1

(
)

2

) satisfying

2

�

jjf jj

2

L

2

(0;T ;H

�1

(
))

+ jjy

0m

+ z

0m

jj

2

L

2

(
)

+ 4"

1

� �

�

B

C

�

2

jju(0)jj

L

2

(
)

� �

�

B

C

�

Then

� z

m;n

* 0 weakly in L

2

(0; T ;V).

� z

m;n

! 0 strongly in L

2

(0; T ;L

2

(
)

2

).

� y

m;n

* 0 weakly in L

2

(0; T ;V) and weakly in L

1

(0; T ;L

2

(
)

2

)-*.

� 8Æ > 0;8m; 9N(m)=

8n > N(m);

R

Q

�

m;n

� dx dt�

R

Q

h� dx dt < Æ 8� 2 L

1

(0; T ;L

1

(
)).

�

�y

m;n

�t

bounded in L

2

(0; T ;H

�3

(
)

2

)

� (url y

m;n

�(z

m;n

); ')

L

2

(
)

2

! 0 strongly in L

1

(0; T ):

� (url z

m;n

�(y

m;n

); ')

L

2

(
)

2

! 0 strongly in L

1

(0; T ):
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� (y

m;n

z

m;n

; div')

L

2

(
)

2

! 0 strongly in L

1

(0; T ):

� (y

m;n

�

m;n

;rp

i

)

L

2

(
)

2

! 0 strongly in L

1

(0; T ):

� (y

m;n

; �

m;n

) onverges weakly to (u

m

; h

m

) in L

2

(0; T ;L

q

(
)) for q < 2 where

(u

m

; h

m

) is the solution of (V

m

) .

� 8m > 0, there exists n(m) suh as (y

m;n(m)

; �

m;n(m)

) onverges weakly to

(u; h) solution of (V ) in L

1

(Q)� L

1

(Q).

The three main steps of the theorem proof are the following:

� Estimate of �

m;n

and �

m;n

aording to y

m;n

and z

m;n

.

� a priori estimate for y

m;n

and z

m;n

.

� Passage to the limit.

Proof.

(i) Estimate of �

m;n

and �

m;n

aording to y

m;n

and z

m;n

First, we estimate jj�

m;n

jj

L

2

(
)

+ jj�

m;n

jj

L

2

(
)

aording to jju

m;n

jj

2

L

1

(0;T ;L

2

(
)

2

)

.

In order to obtain this estimate, we set p

k

= �

m;n

in (5.81) and p

k

= �

m;n

in

(5.83) and we add the two equations

1

2

d

dt

�

jj�

m;n

jj

2

L

2

(
)

+ jj�

m;n

jj

2

L

2

(
)

�

�

�

y

m;n

�

m;n

;r�

m;n

�

�

�

y

m;n

�

m;n

;r�

m;n

�

�

�

z

m;n

�

m;n

;r�

m;n

�

�

�

y

m;n

�

m;n

;r�

m;n

�

= 0 : (5.84)

Sine we have

�

y

m;n

�

m;n

;r�

m;n

�

= �

1

2

�

�

2

m;n

; div y

m;n

�

; (5.85)

�

z

m;n

�

m;n

;r�

m;n

�

= �

1

2

�

�

2

m;n

; div z

m;n

�

; (5.86)

and

�

y

m;n

�

m;n

;r�

m;n

�

= �

�

y

m;n

�

m;n

;r�

m;n

�

�

�

�

m;n

�

m;n

; div y

m;n

�

;

we obtain

1

2

d

dt

�

jj�

m;n

jj

2

L

2

(
)

+ jj�

m;n

jj

2

L

2

(
)

�

+

1

2

�

�

2

m;n

; div y

m;n

�

+

1

2

�

�

2

m;n

; div z

m;n

�

+

�

�

m;n

�

m;n

; div y

m;n

�

= 0 :(5.87)

We an write the following estimate

d

dt

�

jj�

m;n

jj

2

L

2

(
)

+ jj�

m;n

jj

2

L

2

(
)

�

�

�

jj�

m;n

jj

2

L

2

(
)

+ jj�

m;n

jj

2

L

2

(
)

�

:

h

jjdiv y

m;n

jj

L

1

(
)

+ jjdiv z

m;n

jj

L

1

(
)

i

: (5.88)
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Using the Gronwall lemma, we obtain 8T > 0,

jj�
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L

2

(
)

+ jj�

m;n

jj

2

L

2

(
)

�

�

jj�
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(0)jj

2

L
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(
)

+ jj�

m;n

(0)jj

2

L

2

(
)

�
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Z

T

0

h

jjdiv y

m;n

jj

L

1

(
)

+ jjdiv z

m;n

jj

L

1

(
)

i

dt

!

:(5.89)

(ii) a priori estimate of y

m;n

and z

m;n

The energy equation is obtained by setting '

i

= y

m;n

in (5.80) and '

i

=

z

m;n

in (5.82). Then, by adding the two equations, we obtain

1

2

�

d

d t

jjy

m;n

jj

2

L
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)

+

d
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)

�
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�
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m;n

j

2

V

+ jz
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j

2

V

�

�

�

�
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; div y
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�

�

�

�
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; div y
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�

�

�
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; div z
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�
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1

2
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; div y
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�
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�
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; div y
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�

�

1

2

�

y

2

m;n

; div z

m;n

�

=

�

f; y

m;n

�

+

�

f; z

m;n

�

: (5.90)

The nonlinear terms and the terms with �

m;n

and �

m;n

are not neessarily

bounded. In order to solve this diÆulty, we argue as in Theorem 3.3. First,

we write

Z

T

0

Z




�

m;n

div y

m;n

d
 d t+

Z

T

0

Z




�

m;n

div z
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d
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� jj�
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L

1

(0;T ;L

2

(
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1

(0;T ;L

2

(
))

+ jj�
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L

1

(0;T ;L

2

(
))

jjdiv z

m;n
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L

1

(0;T ;L

2

(
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; (5.91)

and

Z

T
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: (5.92)

Therefore, with " and "

0

arbitrarily hosen, we obtain
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: (5.93)
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Next, we bound the right-hand side as follows

�
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m;n

�

+

�

f; z

m;n

�

�

1

2�

jjf jj

2
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+

�

2

ju
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2
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;

the nonlinear terms are bounded as in setion 3
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�

+
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By integrating the energy equation over time, we obtain the following esti-

mate
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: (5.95)

We must estimate the term

T

2

exp
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(t)jj

L

1

(
)

+ jjdiv z

m;n
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(
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�
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Then, we argue as in setion 4 with a small time step T

o;n

. If n is given and

8"

1

> 0, then there exists T

o;n

> 0 suh that, for eah t, t � T

o;n

, we have
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We need to verify that T

o;n

does not go to zero as n goes to in�nity. T

0;n

is de�ned suh that the following equation is satis�ed:
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We now suppose that T

o;n

does not exist suh that (5.97) is satis�ed for

eah value of n. This means that

T

o;n

! 0 as n!1 ;
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and then
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We thus obtain the inequality:
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If we set B = (A�

�

2

�max("; "

0

))=

p

2, then the estimates are obtained by

hoosing the data suh that :
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> 0 :

For eah value of t, we must have :
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To prove this point, we argue as in

9

.

We dedue that y
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are bounded in C

0

(0; T

0

;L

2

(
)

2

)\L
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and that we extrat two sequenes, still denoted by y
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, whih

onverge weakly to y
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as n! +1.

In the same way �
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are bounded in L

1
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)) and we
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m;n
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, whih onverge

weakly-* to �

�

m

and �

�

m

.

The previous argument is true for t 2 [0; T

0

[. As all the funtions are

ontinuous, it is possible to extend the result on [0; T [, 8T > 0.

(iii) Passage to the limit

Owing to the de�nition of �

m;n

, it is evident that :

8p
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m;n
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1

> k;
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1

(Q), as n! +1.

It therefore follow that

Z

Q
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m;n
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m;n

gradp

k

! 0 as n!1 : (5.99)

Next, as z

m;n

is bounded in L

2

(0; T ;V), we an prove, using an argument

similar to that of setion 3:1, that:

z

m;n

! 0 strongly in L

2

(Q) as n! +1 :
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Finally, with the properties of the basis, we have

(�

m;n

; div'

k

) = ��

1

2

k

(�

m;n

; p

k

)! 0 as n! +1 : (5.100)

By using the same argument as in the global Galerkin method, we an prove

that:

Z




(y

m;n

�

m;n

� y

�

m

�

�

m

)'! 0 as n! +1 : (5.101)

We dedue that (y

�

m

; �

�

m

) is a solution to problem (V

m

). Sine this solution

is unique, we neessarily have (y

�

m

; �

�

m;n

) = (u

m

; h

m

).

The onvergene of y

m;n

(resp. �

m;n

) to u

m

(resp. h

m

) is not uniform with

m and we an not diretly onlude that y

m;n

(resp. �

m;n

) onverges to u

(resp. h). As in the ase of the global Galerkin method, However, with a

judiious hoie of m and n, we an obtain the di�erene between y

m;n

and u

(resp. �

m;n

and h) whih is as small as we wish.

5.3. Strong onvergene results

As in setion 4:3, we an establish some strong onvergene results for �

m;n

with

the Aubin theorem, for a �xed value of m. First we dedue that

�
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(Q) ;

with the Aubin theorem.

In the same way, we prove that y
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m
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It is possible to obtain an error estimate by substrating (2.18) from (5.81),
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and integrating over 
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and �nally, as in setion 4:3,
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6. Numerial appliations

6.1. Computation
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In order to ompare the results presented here with previous results, we make

the following assumptions :

The studied domain is a square with 1000 kilometers in length. If we hange the

spatial and temporal sales, this square is transformed into a square of one unit in

length.

We onsider a uid layer of density �

2

and mean elevation of 200 meters, whih

moves on a �xed uid layer of density �

1

(> �

2

). We replae the aeleration of the

gravity with a oeÆient of redued gravity g

0

de�ned by

g

0

=

�

1

� �

2

�

1

g;

here, g

0

= 2:10

�2

m:s

�2

.

The boundary onditions express waterproof onditions on all the boundaries.

The surfae stress is the wind stress tensor used by P. Orenga

1

and F.J. Chatelon

2

.

The spae disretization used for the integrations and the method of the hara-

teristis is 1860 elements uniformly distributed over the domain. The real time step

is approximatively 15 minutes. The oeÆient of eddy visosity is 10

�1

m

2

:s

�1

.

This oeÆient is hosen suÆiently small in order to obtain a signi�ant represen-

tation of the uid irulation on the �rst 60 eigen funtions for veloity.

6.2. Remarks

With the method of the harateristis, we evaluate the water elevation on the

mesh points. We have to interpolate the value on eah element and to make nu-

merial integrations on these elements. The ost of this method is proportional to

the number of elements.

On the other hand, when we use the Galerkin method, the spae disretization is

only made for the omputation of the onstant oeÆients (one for a given domain)

and the representation of results. The omputation osts are (nearly) independent

of the mesh, but they diretly depend on the dimension of the spae to whih the

solution belongs.

Thus, omparison of the di�erent methods is problemati, to whih we add

the optimization of algorithm and the use of di�erent stability riteria for eah

numerial sheme. Although we have sought, where possible, to optimize odes and

parameters, the results may not be optimum.

The advantages of the global nonlinear Galerkin method as ompared to the

global Galerkin method are presented in

4

. In partiular, a omparison was made

in the present study, between the method of the harateristis and the Galerkin

method in solving the ontinuity equation.

6.3. Numerial sheme
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The partiular geometry of the domain allows us to obtain an analytial solution

to problems (P2) and (P3). In a general ase, these problems are solved with

ModulEf, the �nite elements software developped by the INRIA. If we use Hermite's

�nite element with three degrees of freedom, we diretly obtain the gradient and

the Curl of the funtions without numerial di�ereniation.

We have hosen a method of quadrature in order to aurately integrate the

di�usion term

4

. This method allows us to use a greater time step than in the

lassial methods and it is partiularly adapted to high frequenies. The other

terms are integrated with an impliit Euler sheme.

6.4. Results and disussion

Theoretially, the method of the harateristis for the ontinuity equation gives

the best approximation of the solution. Then, we use as referene value, the results

obtained using the usual Galerkin method for the momentum equation and the

method of the harateristis for the ontinuity equation.

(i) Comparison between the usual Galerkin method and the method of the har-

ateristis

First, we ompare the results obtained using the method of the harater-

istis and the Galerkin method aording to the number of eigen funtions.

We use the notion of potential energy (Ep) ; this notion orresponds to the

energy stored by the deformation of the uid layer

6

:

Ep =

1

2

�g(h�

�

h)

2

(6.104)

where

�

h represents the referene state and � the density of the uid whih is

supposed to be onstant. During the deomposition of the variations in water

elevation by the Galerkin method, the potential energy is given by:

Ep(h

m;n

) =

�g

2

n

X

k=1

y

2

k

(6.105)

In the same way, when we use the method of the harateristis, it is ne-

essary to evaluate the terms (h

m

; div'

i

), whih orrespond to

p

�

i

(h

m

; p

i

).

These are the L

2

-projetions of water elevation on the basis fp

1

; p

2

; : : : p

m

g

(to within about a multipliative oeÆient). The potential energy an be

approximated by:

Ep(h

m

) '

�g

2

m

X

k=1

�

(h

m

; p

k

)

p

�

i

�

2

(6.106)



28 The nonlinear Galerkin method applied to shallow water equations

The evolution of potential energy for the approximations of water elevation

for 10, 20 and 30 eigen funtions is presented in Fig. (1).

1.0×102 1.0×104 2.0×104
5.4×10−6

1.0×100

2.0×100

3.0×100

Potential energy

caract.

Ga : n=30

Ga : n=20

Ga : n=10

Fig. 1. Comparison between the harateristis and the Galerkin method aording to the number

of eigen funtions.

If we take into aount an inreasing number of eigen funtions, we redue

the osillations. However, if the number of p

i

eigen funtions (used for ele-

vation) is greater than the number of gradp

k

funtions (used for veloity, see

subsetion 2:2 then it appear a high level of numerial instability. It should

be noted that the Galerkin method with 30 eigen funtions gives a small

overestimate of the �nal potential energy.

In Fig. 2 to 5, we present the simulation results generated using either the

Galerkin method with 30 eigen funtions or the method of the harateristis

to solve the ontinuity equation.
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Fig. 2. Variations in water elevation

(harateristis).

Fig. 3. Variations in water elevation

(Galerkin (n=30)).
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Fig. 4. Veloity �eld (harateristis).

Fig. 5. Veloity �eld (Galerkin n=30).
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We observe a good orrespondene between these results. They justify the

use of the Galerkin method whih is less ostly in terms of omputation time.

(ii) Comparison between the usual Galerkin method and the nonlinear Galerkin

method

Several numerial results have been given in

4

. We simply reall the main

steps of the simulation.

The hoie of the ut frequeny between the large and small omponents

(m

1

and n

1

) is done by using energy riteria. Thus, m

1

is determined by

omparing the ratio of the kineti energy assoiated with y

m

1

and z

m

1

, and a

referene value. We reall that the kineti energy of u

m

is given by :

E(u

m

) =

1

2

jju

m

jj

2

L

2

(
)

=

1

2

m

X

i=1

X

2

i

(6.107)

We de�ne two onstants, �

u

and �

h

. Thus, the values of m

1

and n

1

are

determined from the relations :

m

1

= min

�

M=8m

1

> M;

E(z

m;n

)

E(y

m;n

)

� �

u

�

: (6.108)

n

1

= min

�

N=8n

1

> N;

Ep(�

m;n

)

Ep(�

m;n

)

� �

h

�

: (6.109)

Note that with these de�nitions, the values of m

1

and n

1

may hange over

time in order to adapt to the irulation dynamis.

Aording Jauberteau

5

, we have also implemented a temporal multilevel

adaptative method using a V-yle numerial sheme.

7. Conlusion

This work allows us to validate the solution approximation for shallow water

equations, using the Galerkin method for both of the model equations. Moreover,

it reveals the theoretial justi�ation of the nonlinear Galerkin method for both

equations and ompletes the numerial results presented in

4

.
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