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In this work, we present some numeri
al approximations for a shallow water problem

with a depth-mean velo
ity formulation and we give, where possible, an error bound. To

prove the existen
e of solutions, we build a sequen
e of approximated solutions with the

Galerkin method for the momentum equation and we solve the 
ontinuity equation with

the method of the 
hara
teristi
s. This leads to an expensive natural numeri
al s
heme.

Then, in order to redu
e the CPU time, we present other numeri
al approximations

based on the linear or nonlinear Galerkin method.

1. Introdu
tion

1.1. Notations

Let 
 be a �xed bounded smooth open domain of R

2

with boundary 
. Phys-

i
ally, 
 is the domain 
orresponding to the surfa
e of the sea assumed to be hor-

izontal. Let u = (u

1

; u

2

) be the mean velo
ity of the 
uid (a ve
tor fun
tion from


 into R

2

) and let h be the water elevation (a s
alar fun
tion from 
 into R). If

u = (u

1

; u

2

) is a ve
tor fun
tion and q is a s
alar fun
tion from 
 into R

2

, then we

denote by

�, the operator from R

2

into R

2

de�ned by

�(u) = (�u

2

; u

1

);

Curl (\Curl with 
apital C") the operator from R into R

2

de�ned by

Curl q =

�

�q

�x

2

;�

�q

�x

1

�

;


url (\
url with small 
") the operator from R

2

into R de�ned by


urlu =

�u

2

�x

1

�

�u

1

�x

2

:

1



2 The nonlinear Galerkin method applied to shallow water equations

We also denote by ( � ; � ) the s
alar produ
t of L

2

(
) and L

2

(
)

2

and by (( � ; � ))

the s
alar produ
t of V .

1.2. Equations of the model

The shallow water equations are used in the modelling of the bidimensional


ir
ulation of geophysi
al 
uids. The equations of the model in a depth-mean

velo
ity formulation are the following : (P )

u

t

+

1

2

gradu

2

+ 
urlu�(u) + !�(u) + g gradh�A�u = f in 
�℄0; T [= Q;

h

t

+ div (uh) = 0 in Q;

u � n = 0 ; 
urlu = 0 on 
�℄0; T [;

u(t = 0) = u

0

(x) in Q;

h(t = 0) = h

0

(x) in Q; h

0

� 0 :

For the sake of simpli
ity, we set g = 1 and ! = 1.

1.3. Theoreti
al results and numeri
al approximations

(a) The linear Galerkin method and 
hara
teristi
s.

Firstly we re
all an existen
e theorem for the weak solutions of this problem.

This result is a global existen
e theorem with 
ontrolled data. We de�ne the

fun
tional spa
e V as follows :

V = f' 2 L

2

(
)

2

=div' 2 L

2

(
); 
url' 2 L

2

(
);' � n = 0 on 
g : (1.1)

This spa
e is equipped with the graph-norm

jj'jj

V

= jj'jj

L

2

(
)

+ jjdiv'jj

L

2

(
)

+ jjrot'jj

L

2

(
)

: (1.2)

Let (V ) be the following weak formulation of problem (P )

Find

u 2 L

2

(0; T ;V) \ L

1

(0; T ;L

2

(
)

2

) ; h 2 L

1

(0; T ;L

1

(
)) and h � 0

su
h that

�

�u

�t

; v

�

�

1

2

�

u

2

; div v

�

+

�


urlu�(u); v

�

+

�

�(u); v

�

+A

��

u; v

��

�

�

h; div v

�

=

�

f; v

�

8v 2 V \H

4

(
)

2

(1.3)

�h

�t

+ div (uh) = 0 in L

1

(0; T ;W

�1;1

(
)) (1.4)

u(0; x) = u

0

(x) 2 V ; h(0; x) = h

0

(x) 2 L

1

(
); h

0

(x) � 0 a.e. in 
 : (1.5)

If the data are small enough, we show that (V ) has a solution with a

�xed-point method.
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Indeed, if we denote a basis of V by f'

1

; '

2

; : : : ; '

m

; : : :g, then we de�ne V

m

,

the set of linear 
ombinations of the m �rst elements of the basis. We use the

Galerkin method to approximate the solution of the momentum equation (1.3)

while the 
ontinuity equation (1.4) is solved with the method of 
hara
teristi
s.

The asso
iated numeri
al method is 
ostly in CPU time. In the following

se
tions, we present other numeri
al methods in order to redu
e the CPU

time.

(b) Nonlinear Galerkin method and 
hara
teristi
s.

The �rst approa
h 
onsists in applying the nonlinear Galerkin method to

solve the momentum equation. This method, initially developped by M. Mar-

ion and R. Temam

7

in the 
ontext of the Navier-Stokes equations, 
onsists in

simplifying the intera
tion laws between the small and large eddies. To obtain

these simpli�
ations, we write u

m

as follows :

u

m

= y

m

+z

m

with y

m

=

m

1

X

i=1

x

i

(t)'(x) and z

m

=

m

X

i=m

1

+1

x

i

(t)'(x) ; (1.6)

and we eliminate some 
oupling terms between y

m

and z

m

.

With this de
omposition, we establish the a priori estimates, and we prove

that the di�eren
e between the solution of this weak problem and (u; h) is

arbitrarily small.

(
) Global Galerkin method.

Sin
e the solving of the 
ontinuity equation represents a large portion of

the CPU time, we have used the Galerkin method to solve this equation. We

give some 
onvergen
e results to the solution (u; h) of the weak problem (V ).

(d) Nonlinear global Galerkin method.

Finally, we apply the nonlinear Galerkin method to the momentum equation

and the 
ontinuity equation. The 
onvergen
e results are similar to the results

obtained in the previous two steps.

(e) Numeri
al appli
ation.

In the last part of this paper, we present a 
omparison between these dif-

ferent numeri
al methods. We present, in a simple 
ase, the CPU time and

error asso
iated with ea
h approa
h.

The 
omplexity of these numeri
al methods in
reases but the time of 
om-

putation is redu
ed and the numeri
al solution has retained a good level of

a

ura
y.

2. Existen
e results for the problem (V ) and numeri
al methods

In the �rst part of this se
tion, we re
all an existen
e theorem for the solutions of

the weak problem (V ) when the data are small enough

9

. Next, we re
all a theorem

in order to build a spe
ial basis whi
h is well-adapted to this problem

8

. Finally, we

brie
y re
all the method of 
hara
teristi
s used to solve the 
ontinuity equation

2

and we give the 
omplete numeri
al method that we use to approximate the weak
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solutions.

2.1. An existen
e theorem

In what follows, we denote by A, B, C, � and � 
onstants su
h as

2A > � > 0; B = 2A� � (2.7)

0 < � < 1 (2.8)

C is the best 
onstant asso
iated with the Gagliardo Nirenberg inequality

kuk

2

L

4

(
)

2

� Cjjujj

V

jjujj

L

2

(
)

(2.9)

We obtain the following theorem

Theorem 2.1 Let u

0

2 V, h

0

2 L

1

(
) and f satisfying

h

0

� 0; h

0

logh

0

2 L

1

(
); f 2 L

2

(0; T ;H

�1

(
)

2

); (2.10)

jju

0

jj

2

L

2

(
)

+ 2jjh

0

logh

0

jj

L

1

(
)

+

1

�

jjf jj

2

L

2

(0;T ;H

�1

(
))

+

2

e

mes (
) < �

2

B

2

C

2

; (2.11)

jju

0

jj

L

2

(
)

< �

B

C

: (2.12)

Then, for ea
h �, �, f , u

0

, h

0

satisfying (2.7), (2.8), (2.10),(2.11),(2.12), the

problem (V ) has a solution (u; h) su
h that

(u; h) 2 f[L

2

(0; T ;V) \ L

1

(0; T ;L

2

(
)

2

)℄� L

1

(0; T ;L

1

(
))g : (2.13)

Moreover the solution satis�es

jjujj

2

L

1

(0;T ;L

2

(
)

2

)

� �

2

B

2

2C

2

+

2

e

mes (
) ; (2.14)

jjujj

2

L

2

(0;T ;V)

�

�

2

B

2

C

2

(B � C)

+

2

e

mes (
) ; (2.15)

�

1

e

mes (
) � sup

t

Z




h logh � �

2

B

2

2C

2

; h � 0 : (2.16)

A detailed proof of this theorem is given in

9

.

2.2. Spe
ial basis

We now provide a theorem in order to build a spe
ial basis of the spa
e V (1.1),

satisfying the impermeability boundary 
onditions.

We 
onsider the following eigen problem (P1)

��u = �u in 


u � n = 
urlu = 0 on 
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Theorem 2.2

� If (�; p) is a solution to the s
alar problem

(P2) ��p = �p in 
,

�p

�n

= 0 on 
;

then (�; grad p) is a solution of (P1).

� If (�; q) is a solution to the s
alar problem

(P3) ��q = �q in 
, q = 0 on 
;

then (�;Curl q) is a solution of (P1).

� If 
 is simply 
onne
ted, then 0 is not an eigen value of (P1), otherwise

the eigen spa
e asso
iated to 0 is the �nite dimensional spa
e H

0

(div 0; 
url 0)

where

H

0

(div 0; 
url 0) = fu 2 L

2

(
)

2

; div u = 0; 
urlu = 0; u � n = 0 on 
g:

� The set 
omposed of grad p and Curl q, where p is solution of (P2) and q

is solution of (P3), is a total basis in L

2

(
)

2

n H

0

(div 0; 
url 0) and in V n

H

0

(div 0; 
url 0).

� If 
 is a smooth domain, then we obtain V = f' 2 H

1

(
)

2

; ':n = 0g and

the solutions of problem (P1) are very smooth.

Moreover, the set 
omposed of the fun
tions p

i

, solutions of (P2), 
onstitute an

orthogonal basis of L

2

(
).

2.3. The numeri
al method

Let f'

1

; : : : ; '

m

; : : :g be a basis of V , the fun
tions '

i

belong to H

4

(
)

2

and

satisfy the relationship

��'

i

= �

i

'

i

;

0 < �

1

� �

2

� : : : ; �

j

!1 when j !1 :

We denote by V

m

the set of the linear 
ombinations of the m �rst fun
tions

f'

1

; : : : ; '

m

g and we are looking for u

m

2 V

m

where u

m

is of the form

u

m

(x; t) =

m

X

i=1

x

i

(t)'

i

(x)

and we build the sequen
e (u

m

; h

m

), solution to the following problem (V

m

):

Find (u

m

; h

m

) 2

�

L

1

(0; T ;L

2

(
)

2

) \ L

2

(0; T ;V )

�

� L

1

(0; T ;L

1

(
)) su
h that

�

�u

m

�t

; '

i

�

�

1

2

�

u

2

m

; div'

i

�

+

�


urlu

m

�(u

m

); '

i

�

+

�

�(u

m

); '

i

�

+A

��

u

m

; '

i

��

�

�

h

m

; div'

i

�

=

�

f; '

i

�

8'

i

; i = 1; : : : ;m (2.17)

�h

m

�t

+ div (u

m

h

m

) = 0 ; (2.18)

u

m

(t = 0) = u

0m

2 V

m

; h

m

(t = 0) = h

0m

2 C

1

(

�


) ; (2.19)
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where the 
onstants and the data satisfy the 
onditions of Theorem 2.1.

If h

0m

2 C

1

(

�


), then we have proven in

3

that (u

m

; h

m

) 2 C

0

([0; T ℄;C

2

(

�


)) �

C

1

(

�

Q).

The properties of the basis allow us to write the nonlinear terms in a simpler

fashion and we obtain a system with m di�erential equations of the form:

dx

i

dt

= F

i

(x

j

; x

k

) +G

i

(h

m

) ; (2.20)

where the fun
tions F

i

are integrals of basis fun
tion produ
ts. We need only


ompute these integrations on
e for a given domain. The term G

i

is the proje
tion

of the water elevation gradient on the basis elements. We need to know this term

for ea
h time step, after 
omputation of the water elevation.

To 
ompute the water elevation, we use the method of 
hara
teristi
s. We

evaluate the variations in water elevation on a traje
tory. We re
all that

u

1

=

dx

1

dt

; u

2

=

dx

2

dt

:

Thus, we 
an write the 
ontinuity equation (2.18) of the form

Dh

m

Dt

= �h

m

div u

m

; (2.21)

where

Dh

m

Dt

is the time derivative of h

m

(x(t); t) as x(t) moves along with the 
uid

at velo
ity u

m

. Therefore let X(t

i�1

) denote the position of a parti
le of 
uid at

time t

i�1

whi
h will be in x at time t

i�1

+4t (4t is the time step). Then (2.21)

may be approximated by

h

m

(X(t

i

); t

i

) = h

m

(X(t

i�1

); t

i�1

) exp(�4t div u

m

(X(t

i

); t

i

)) (2.22)

Note that on ea
h point, there is a unique 
hara
teristi
 
urve. If we have the

boundary 
ondition u:n 6= 0, it is ne
essary to pres
ribe the water elevation on the

part of the boundary where the 
ow enters.

This method is well-adapted to both the problem and the theoreti
al results.

The CPU time, however,is very important. In what follows, we therefore present

some new approa
hes in order to redu
e this simulation time.

3. Nonlinear Galerkin method

In this se
tion, we apply the nonlinear Galerkin method to the resolution of the

momentum equation. In this work, we adapt the results obtained by M. Marion

and R. Temam on the Navier-Stokes equations

7

.

3.1. Des
ription of the method

In what follows, we 
onsider m 2 N , m

1

2 N and we suppose m > m

1

.
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We denote by V

m

1

the spa
e generated by the m

1

�rst '

i

fun
tions and by

~

V

m

1

the spa
e generated by the next m�m

1

'

i

fun
tions.

We set

u

m

= y

m

+ z

m

with y

m

=

m

1

X

i=1

x

i

(t)'

i

(x) and z

m

=

m

X

i=m

1

+1

x

i

(t)'

i

(x) (3.23)

and we denote by (V

a

m

) the following approximate problem:

�

�y

m

�t

; '

i

�

�

1

2

�

y

2

m

; div'

i

�

�

�

y

m

z

m

; div'

i

�

+

�


url y

m

�(y

m

); '

i

�

+

�


url z

m

�(y

m

); '

i

�

+

�


url y

m

�(z

m

); '

i

�

+

�

�(y

m

); '

i

�

+

�

�(z

m

); '

i

�

+A

��

y

m

; '

i

��

�

�

h

m

; div'

i

�

=

�

f; '

i

�

8'

i

2 V

m

1

; i = 1; : : : ;m

1

; (3.24)

�

�z

m

�t

; '

i

�

�

1

2

�

y

2

m

; div'

i

�

+

�


url y

m

�(y

m

); '

i

�

+

�

�(y

m

); '

i

�

+A

��

z

m

; '

i

��

�

�

h

m

; div'

i

�

=

�

f; '

i

�

8'

i

2

~

V

m

1

; i = m

1

+ 1; : : : ;m ; (3.25)

�h

m

�t

+ div (y

m

h

m

) + div (z

m

h

m

) = 0 ; (3.26)

y

m

(t = 0) = P

m

1

(u

0

) = y

0m

2 V

m

1

; (3.27)

z

m

(t = 0) =

~

P

m

1

(u

0

) = z

0m

2

~

V

m

1

and h

0m

2 C

1

(

�


) ; (3.28)

where P

m

1

denotes the L

2

-proje
tion operator on the spa
e V

m

1

and

~

P

m

1

denotes

the L

2

-proje
tion operator on the spa
e

~

V

m

1

.

The 
ontinuity equation is solved using the method of the 
hara
teristi
s as

previously des
ribed.

3.2. Existen
e and 
onvergen
e results

We give an existen
e result for the solutions to problem (V

a

m

) with 
onvergen
e

results.

Theorem 3.3 All the 
onstants are de�ned as in Theorem 2.1, ex
ept for B, whi
h

is de�ned by B = (A�

�

2

)=

p

2.

Let y

0m

2 V

m

1

, z

0m

2

~

V

m

1

, h

0m

2 C

1

(

�


) and f 2 L

2

(0; T;H

�1

(
)

2

) satisfying

h

0m

� 0; h

0m

logh

0m

2 L

1

(
);
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jjy

0m

+ z

0m

jj

2

L

2

(
)

+ jjh

m

(0) logh

m

(0)jj

L

1

(
)

+

1

�

jjf jj

2

L

2

(0;T ;H

�1

(
)

2

)

+

2

e

mes(
) < �

�

B

C

�

2

;

jjy

0m

+ z

0m

jj

L

2

(
)

< �

B

C

:

Then:

z

m

* 0 weakly in L

2

(0; T ;V) ; (3.29)

z

m

! 0 strongly in L

2

(0; T ;L

2

(
)

2

) ; (3.30)

y

m

! u

�

weakly in L

2

(0; T ;V) and weakly in L

1

(0; T ;L

2

(
)

2

)� � ; (3.31)

Z

Q

h

m

� dx dt!

Z

Q

h� dx dt for ea
h � 2 L

1

(0; T ;L

1

(
)); (3.32)

�y

m

�t

bounded in L

2

(0; T ;H

�3

(
)

2

); (3.33)

(
url y

m

�(z

m

); ')

L

2

(
)

2

! 0 strongly in L

1

(0; T ) ; (3.34)

(
url z

m

�(y

m

); ')

L

2

(
)

2

! 0 strongly in L

1

(0; T ) ; (3.35)

(y

m

z

m

; div')

L

2

(
)

2

! 0 strongly in L

1

(0; T ) ; (3.36)

(y

m

+ z

m

)h

m

* uh strongly in L

1

(Q) ; (3.37)

Proof. First, we give the a priori estimates satis�ed by the solution of (V

a

m

) . Then

we pass to the limit and we prove that (y

m

; h

m

) 
onverges to the solution (u; h) of

(V ).

(i) a priori estimates

We set y

m

= '

i

in (3.24), z

m

= '

i

in (3.26), and we add these two equations.

Noting that

�

�(u); v

�

+

�

�(v); u

�

= 0 ;

and

�


urlu�(u); v

�

+

�


urlu�(v); u

�

= 0 ;

we obtain

1

2

d

dt

jju

m

jj

2

L

2

(
)

+Aju

m

j

2

V

�

1

2

�

y

2

m

; div u

m

�

�

�

y

m

z

m

; div y

m

�

�

�

h

m

; div u

m

�

=

�

f; u

m

�

: (3.38)

The right hand side in (3.38) is bounded by

�

f; u

m

�

�

1

2�

jjf jj

2

H

�1

(
)

+

�

2

ju

m

j

2

V

:
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The term

�

h

m

; div u

m

�

is estimated as in

9

. We thus obtain

�

h

m

; divu

m

�

=

d

dt

�

h

m

logh

m

� h

m

; 1

�

:

The other terms whi
h are not ne
essarily bounded are the nonlinear terms.

To estimate these terms, we build a stability spa
e. We obtain

1

2

�

y

2

m

; div u

m

�

�

C

2

jjy

m

jj

L

2

(
)

jjy

m

jj

V

jju

m

jj

V

�

y

m

z

m

; div y

m

�

� Cjjy

m

jj

1=2

L

2

(
)

jjy

m

jj

1=2

V

jjz

m

jj

1=2

L

2

(
)

jjz

m

jj

1=2

V

jju

m

jj

V

Then, adding the two inequalities, we obtain

1

2

�

y

2

m

; div u

m

�

+

�

y

m

z

m

; div y

m

�

� Cjjy

m

jj

1=2

L

2

(
)

jjy

m

jj

1=2

V

jju

m

jj

V

�

1

2

jjy

m

jj

1=2

L

2

(
)

jjy

m

jj

1=2

V

+ jjz

m

jj

1=2

L

2

(
)

jjz

m

jj

1=2

V

�

� Cjjy

m

jj

1=2

L

2

(
)

jjy

m

jj

1=2

V

jju

m

jj

V

h

jjy

m

jj

1=2

L

2

(
)

jjy

m

jj

1=2

V

+ jjz

m

jj

1=2

L

2

(
)

jjz

m

jj

1=2

V

i

� Cjjy

m

jj

1=2

L

2

(
)

ju

m

j

2

V

h

jjy

m

jj

1=2

L

2

(
)

+ jjz

m

jj

1=2

L

2

(
)

i

�

p

2Cjju

m

jj

L

2

(
)

ju

m

j

2

V

(3.39)

and �nally

1

2

d

dt

jju

m

jj

2

L

2

(
)

+ ju

m

j

2

V

��

A�

�

2

�

�

p

2Cjju

m

jj

L

2

(
)

�

+

d

dt

�

h

m

logh

m

� h

m

; 1

�

�

1

2�

jjf jj

2

H

�1

(
)

: (3.40)

To obtain the a priori estimates, we 
hoose the data su
h that

�

A�

�

2

�

�

p

2Cjju

m

jj

L

2

(
)

> 0

Thus, setting B =

�

A�

�

2

�

=

p

2 :

jju

m

(t)jj

L

2

(
)

<

B

C

8t :

To prove this result, we use the same arguments as in

9

.

We dedu
e that u

m

is bounded in L

1

(0; T ;L

2

(
)) \ L

2

(0; T ;V).

Sin
e z

m

is bounded in L

2

(0; T ;V) for ea
h T > 0, and, by 
onstru
ting

jjz

m

jj

L

2

(0;T ;V)

� �

1=2

m

1

+1

jjz

m

jj

2

L

2

(
)

, we then obtain

8T > 0; �

1=2

m

1

+1

z

m

is bounded in L

2

(0; T ;L

2

(
)) : (3.41)
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Finally, we give some results on the nonlinear terms. Sin
e y

m

and z

m

are

both bounded in L

2

(0; T ;V), then 
url y

m

and 
url z

m

are bounded in L

2

(Q).

Moreover, y

m

and z

m

are also bounded in L

4

(Q). Therefore, 
url y

m

�(y

m

),


url z

m

�(y

m

) and 
url y

m

�(z

m

) are bounded in L

4

3

(Q).

Similarly, we obtain grad y

2

m

and grad (y

m

z

m

) bounded in L

4

3

(Q).

(ii) Passage to the limit

Sin
e �

m

!1 as m!1, (3.41) leads to

8T > 0; z

m

! 0 strongly in L

2

(0; T ;L

2

(
)) as m! +1 : (3.42)

Moreover z

m

is bounded in L

2

(0; T ;V) for ea
h T > 0 and the uniqueness

of the limit gives

8T > 0; z

m

* 0 weakly in L

2

(0; T ;V) as m! +1 : (3.43)

As y

m

is bounded in L

1

(0; T ;L

2

(
)

2

) \ L

2

(0; T ;V), then u

�

exists su
h

that : 8T > 0,

y

m

! u

�

weakly in L

2

(0; T ;V) and weakly in L

1

(0; T ;L

2

(
)

2

)� � (3.44)

To pass to the limit in the nonlinear terms, we need a strong 
onvergen
e

in L

2

(Q) for y

m

and z

m

. This result is obtained with the Aubin theorem. In

order to apply this 
ompa
ity theorem, we must have a smoothness result for

�y

m

�t

.

Indeed,

�y

m

�t

is as smooth as rh

m

whi
h is the least smooth term. But

h

m

2 L

1

(
) and L

1

(
) ,! C

0;�

(
) 
ontinuously. In a two dimensional spa
e,

the embedding of H

2

(
) in C

0;�

(
) is 
ontinuous, and by duality, L

1

(
) ,!

H

�2

(
) 
ontinuously. Thus h

m

2 L

2

(0; T ;H

�2

(
)). We obtain

�y

m

�t

bounded in L

2

(0; T ;H

�3

(
)

2

) : (3.45)

By applying the Aubin theorem, we therefore prove that y

m


onverges

strongly a.e. to u

�

in L

2

(0; T ;L

2

(
)

2

).

We pass to the limit in the terms grady

2

m

and 
url y

m

�(y

m

) as in

9

. Indeed,

8' 2 D(Q),

j (
url y

m

�(y

m

)� 
urlu

�

�(u

�

); ')

L

2

(Q)

j

� j (
url y

m

�(y

m

� u

�

); ')

L

2

(Q)

j+ j ((
url y

m

� 
urlu

�

)�(u

�

); ')

L

2

(Q)

j

� jj
url y

m

jj

L

2

(Q)

jjy

m

� u

�

jj

L

2

(Q)

jj'jj

L

1

(Q)

+j ((
url y

m

� 
urlu

�

); u

�

')

L

2

(Q)

j (3.46)


url y

m

�(y

m

) then 
onverges weakly to 
urlu

�

�(u

�

) in D

0

(Q). Owing to the

uniqueness of the limit, 
url y

m

�(y

m

) 
onverges weakly to 
urlu

�

�(u

�

) in

L

4

3

(Q).
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In the same way, we 
an show that grad y

2

m


onverges weakly to gradu

�

2

in

L

4

3

(Q).

Now we must pass to the limit in the nonlinear terms 
oupling y

m

and z

m

.

We obtain

Z

T

0

j (
url y

m

�(z

m

); ')

L

2

(
)

2

j �

R

T

0

jjy

m

jj

V

jjz

m

jj

2

L

2

(
)

jj'jj

L

1

(
)

2

� jjy

m

jj

L

2

(0;T ;V)

jjz

m

jj

L

2

(Q)

jj'jj

L

1

(Q)

(3.47)

As z

m


onverges strongly to 0 in L

2

(Q), we 
on
lude that 8T > 0,

(
url y

m

�(z

m

); ')

L

2

(
)

2

! 0 strongly in L

1

(0; T ) as m!1: (3.48)

In the same way, we have

Z

T

0

(
url z

m

�(y

m

); ')

L

2

(
)

2

=

Z

T

0

(
url z

m

; 'y

m

)

L

2

(
)

2

: (3.49)

Sin
e 8' 2 L

1

(
), y

m

' 2 L

2

(
) we obtain

8T > 0; (
url z

m

�(y

m

); ')

L

2

(
)

2

! 0 strongly in L

1

(0; T ) as m!1 :

(3.50)

We obtain a similar result for the term (y

m

z

m

; div')

L

2

(
)

2

.

The last point to be proved is that we 
an make sense to u

�

(t = 0) and that

u

�

(t = 0) is equal to u(t = 0). In order to do this, we use the result

�u

�

�t

2 L

4

3

(0; T ;H

�3

(
)

2

) and u

�

2 L

2

(0; T ;L

2

(
)) � L

4

3

(0; T ;H

�3

(
)

2

) ;

whi
h proves that u

�

is 
ontinuous from [0; T ℄ in H

�3

(
)

2

. Then, we make

sense to u

�

(t = 0) in H

�3

(
)

2

; moreover y

m

(t = 0) is equal to u

0m

1

and

u

0m

1


onverges to u

0

in V . We dedu
e that u

�

(t = 0) = u

0

.

Now, we have to pass to the limit in the 
ontinuity equation. We re
all a

result proved in

9

Lemma 3.1 Assume that

u

m

2 L

2

(0; T;H

m

(
)

2

); m � 3 ;

u

m

bounded in L

2

(0; T;V) ;

h

m

� 0 bounded in L

1

(0; T ;L

1

(
)) ;

h

m

logh

m

bounded in L

1

(0; T ;L

1

(
)) ;

�h

m

�t

+ div (u

m

h

m

) = 0 ;
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then,

Z

Q

h

m

� dx dt!

Z

Q

h

�

� dx dt for ea
h � 2 L

1

(0; T ;L

1

(
)) (3.51)

u

m

h

m

* u

�

h

�

weakly in L

1

(0; T ;L

1

(
)

2

) : (3.52)

Setting u

m

= y

m

+ z

m

, we show that :

(y

m

+ z

m

)h

m

* u

�

h

�

weakly in L

1

(Q) : (3.53)

Now it is possible to pass to the limit in the system 
onstituted by equations

(3.24) to (3.28). We �nd that u

�

and h

�

satisfy the following problem:

�

�u

�

�t

; '

i

�

�

1

2

�

u

�

2

; div'

i

�

+

�


urlu

�

�(u

�

); '

i

�

+

�

�(u

�

); '

i

�

+A

��

u

�

; '

i

��

�

�

h

�

; div'

i

�

=

�

f; '

i

�

8'

i

2 V (3.54)

�h

�

�t

+ div (u

�

h

�

) = 0 (3.55)

and u

�

(t = 0) = u

0

, h

�

(t = 0) = h

0

.

Thus (u

�

; h

�

) is the unique solution of problem (V ).

3.3. Numeri
al resolution method

The numeri
al resolution of this problem and the numeri
al method presented

in se
tion 2:1 are nearly identi
al. The only di�eren
e in these two methods resides

in the treatment of the unknowns asso
iated with the large and small velo
ity


omponents. Indeed, we always obtain

dx

i

dt

= F

i

(x

j

; x

k

) +G

i

(3.56)

for the velo
ity 
omponent y

m

, but we have

dx

i

dt

=

~

F

i

(x

j

; x

k

) +G

i

(3.57)

for the velo
ity 
omponent z

m

where

~

F

i

is simpler than F

i

.

The 
ontinuity equation is solved as above using the method of the 
hara
teris-

ti
s.

4. Global Galerkin method

In this se
tion, we use the linear Galerkin method to solve the momentum and


ontinuity equations. Then, the 
ontinuity equation is not quite veri�ed. We do not

have the estimate h logh bounded in L

1

(0; T ;L

1

(
)). However, as the existen
e
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of the solutions to problem V has been proven, we show that the approximated

problem has a solution and we 
an obtain some 
onvergen
e results of this solution

to (u; h) solution of V .

4.1. Des
ription of the method

Let fp

1

; : : : ; p

n

; : : :g be a basis of H

1

(
) satisfying the following relation

��p

i

= �

i

p

i

0 < �

1

� �

2

� : : : ; �

j

!1 as j !1

We denote by H

1

(
)

m

the subspa
e of H

1

(
) generated by the m �rst fun
tions

fp

1

; p

2

; : : : ; p

m

g and

u

m;n

(x; t) =

m

X

i=1

x

i

(t)'

i

(x) h

m;n

(x; t) =

n

X

k=1

y

k

(t)p

k

(x) (4.58)

where (u

m;n

; h

m;n

) is a solution of the weak problem (V

m;n

)

�

�u

m;n

�t

; '

i

�

�

1

2

�

u

2

m;n

; div'

i

�

+

�


urlu

m;n

�(u

m;n

); '

i

�

+A

��

u

m;n

; '

i

��

�

�

h

m;n

; div'

i

�

=

�

f; '

i

�

in Q; 8'

i

; i = 1; : : : ;m (4.59)

�

�h

m;n

�t

; p

i

�

+

�

div (u

m;n

h

m;n

); p

i

�

= 0 in Q; 8p

i

; i = 1; : : : ; n (4.60)

u

m;n

(t = 0) = u

0mn

2 V

m

and h

m;n

(t = 0) = h

0mn

2 H

1

(
)

n

: (4.61)

4.2. Weak 
onvergen
e results

If "

1

is a non-negative 
onstant, then we obtain the following result:

Theorem 4.4 The di�erent 
onstants are de�ned in the same way as in Theorem

2.1, ex
ept for 
onstant B, whi
h is de�ned by B = 2A� �� 2", with " > 0.

Let u

0mn

2 V

m

, h

0mn

2 H

1

(
)

n

and f 2 L

2

(0; T;H

�1

(
)

2

) satisfying

2

�

jjf jj

2

L

2

(0;T ;H

�1

(
))

+ jju

0mn

jj

2

L

2

(
)

+ 4"

1

� �

�

B

C

�

2

jju

0mn

jj

L

2

(
)

� �

�

B

C

�

Then

� (u

m;n

; h

m;n

) solution to (V

m;n

) 
onverges weakly to (u

m

; h

m

), solution to the

problem (V

m

), in L

2

(0; T ;L

q

(
)); q < 2.

� For ea
h m, there exists n(m), su
h that (u

m;n(m)

; h

m;n(m)

) 
onverges to

(u; h), solution to (V ), in L

1

(Q)� L

1

(Q).
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The proof of this theorem is given in three steps

� Estimate of h

m;n

in relation to u

m;n

.

� Estimates in the momentum equation.

� Passage to the limit in the two equations.

Proof.

(i) Estimate of h

m;n

in relation to u

m;n

We 
hange p

i

by h

m;n

in equation (4.60). It then follows that

Z




�h

m;n

�t

h

m;n

+

Z




h

m;n

div (u

m;n

h

m;n

) = 0 ; (4.62)

hen
e

Z




�h

2

m;n

�t

+

Z




h

2

m;n

div (u

m;n

) = 0 ; (4.63)

therefore

d

d t

jjh

m;n

jj

2

L

2

(
)

� jjh

m;n

jj

2

L

2

(
)

jjdiv u

m;n

jj

L

1

(
)

: (4.64)

Owing to the Gronwall lemma, we obtain 8T > 0, 8t 2 [0; T ℄

jjh

m;n

(t)jj

2

L

2

(
)

� jjh

m;n

(0)jj

2

L

2

(
)

exp

�

Z

t

0

jjdiv u

m;n

(�)jj

L

1

(
)

d �

�

: (4.65)

(ii) a priori estimates

When we obtain the energy estimate of the momentum equation, the terms

�

u

2

; div u

�

and (h; div u) are not ne
essarily bounded.

First, we estimate these terms for a time T

n

whi
h is suÆ
iently small, and

then we show that T

n

does not go to 0 as n goes to +1.

Next, we obtain a 
onvergen
e result of (u

m;n

; h

m;n

) to (u

m

; h

m

) in L

1

(Q)�

L

1

(Q) weak as n! +1. Finally, we prove that (u

m;n(m)

; h

m;n(m)

) 
onverges

weakly to (u; h) in L

1

(Q)� L

1

(Q), with a judi
ious 
hoi
e of n.

Indeed, we have

Z

T

0

Z




h

m;n

div u

m;n

d
 d t � jjh

m;n

jj

L

1

(0;T ;L

2

(
))

jjdiv u

m;n

jj

L

1

(0;T ;L

2

(
))

;

(4.66)

and thus

Z

T

0

Z




h

m;n

div u

m;n

d
 d t � T jjh

m;n

jj

L

1

(0;T ;L

2

(
))

jju

m;n

jj

L

2

(0;T ;V)

� 


"

T

2

jjh

m;n

jj

2

L

1

(0;T ;L

2

(
)

2

)

+ " jju

m;n

jj

2

L

2

(0;T ;V)

: (4.67)
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The energy equation is given by

�

�u

m;n

�t

; u

m;n

�

+A

��

u

m;n

; u

m;n

��

�

1

2

�

u

2

m;n

; div u

m;n

�

�

�

h

m;n

; div u

m;n

�

=

�

f; u

m;n

�

:

We estimate the right-hand side with

�

f; u

m;n

�

�

1

2�

jjf jj

2

H

�1

(
)

+

�

2

ju

m;n

j

2

V

:

Then, as m is �xed, the integration in time gives

1

2

jju

m;n

jj

2

C

0

(0;T ;L

2

(
))

� 


2"

T

2

jjh

m;n

jj

2

L

1

(0;T ;L

2

(
)

2

)

+ jju

m;n

jj

2

L

2

(0;T ;V)

��

A�

�

2

� "

�

�

C

2

jju

m;n

jj

L

1

(0;T ;L

2

(
))

�

�

1

2�

jjf jj

2

L

2

(0;T ;H

�1

(
))

(4.68)

hen
e, with (4.65)

1

2

jju

m;n

jj

2

C

0

(0;T ;L

2

(
))

+ jju

m;n

jj

2

L

2

(0;T ;V)

��

A�

�

2

� "

�

�

C

2

jju

m;n

jj

L

1

(0;T ;L

2

(
))

�

�


"

T

2

jjh

m;n

(0)jj

2

L

2

(
)

exp

 

Z

T

0

jjdiv u

m;n

(t)jj

L

1

(
)

d t

!

�

1

2�

jjf jj

2

L

2

(0;T ;H

�1

(
))

: (4.69)

Now, in order to obtain the a priori estimates, we must give an estimate

for the expression




"

T

2

jjh

m;n

(0)jj

2

L

2

(
)

exp

 

Z

T

0

jjdiv u

m;n

(t)jj

L

1

(
)

d t

!

:

We argue with a value of T

o;n

whi
h is suÆ
iently small. 8"

1

> 0 and for

ea
h n there exists T

o;n

> 0 su
h that, for ea
h t < T

o;n

, we obtain




"

t

2

jjh

m;n

(0)jj

2

L

2

(
)

exp

�

Z

t

0

jjdiv u

m;n

(�)jj

L

1

(
)

d �

�

� "

1

and thus

1

4

jju

m;n

jj

2

C

0

(0;t;L

2

(
))

� 


"

t

2

jjh

m;n

(0)jj

2

L

2

(
)

exp

�

Z

t

0

jjdiv u

m;n

(�)jj

L

1

(
)

d�

�

�

1

4

jju

m;n

(0)jj

2

L

2

(
)

� "

1
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We must prove that T

o;n

does not go to zero as n goes to in�nity. T

0;n

is

de�ned su
h that the following equation is satis�ed:

1

4

jju

m;n

jj

2

C

0

(0;T

o;n

;L

2

(
))

�


"

T

2

o;n

jjh

m;n

(0)jj

2

L

2

(
)

exp

 

Z

T

o;n

0

jjdiv u

m;n

(�)jj

L

1

(
)

d �

!

=

1

4

jju

m;n

(0)jj

2

L

2

(
)

� "

1

(4.70)

Let us suppose that T

0

> 0 does not exist su
h that (4.70) is satis�ed for

ea
h n. This means that

T

o;n

! 0 as n!1

and thus

jju

m;n

jj

2

C

0

(0;T

o;n

;L

2

(
))

! jju

m;n

(0)jj

2

L

2

(
)

� 4"

1

as n!1

whi
h is impossible.

Consequently, we have the relation

1

4

jju

m;n

jj

2

C

0

(0;T ;L

2

(
))

+ jju

m;n

jj

2

L

2

(0;T ;V)

��

A�

�

2

� "

�

�

C

2

jju

m;n

jj

L

1

(0;T ;L

2

(
))

�

�

1

2�

jjf jj

2

L

2

(0;T ;H

�1

(
)

2

)

�

1

4

jju

m;n

(0)jj

2

L

2

(
)

+ "

1

(4.71)

If we set B = 2A� �� 2", we 
an obtain the a priori estimates if the data

are 
hosen in order to satisfy the following equation

B � C jju

m;n

jj

L

1

(0;T ;L

2

(
))

> 0

Then, for ea
h t, we must have

jju

m;n

(t)jj

L

2

(
)

<

B

C

and we argue as in

9

.

We dedu
e that u

m;n

is bounded in C

0

(0; T

0

;L

2

(
)

2

)\L

2

(0; T

0

;V), h

m;n

is

bounded in L

1

(0; T

0

;L

2

(
)) and we extra
t two sequen
es, noted u

m;n

and

h

m;n

whi
h 
onverge to u

�

m

and h

�

m

as n! +1 respe
tively.

The previous argument is true for t 2 [0; T

o

[. But the fun
tions u

m;n

and

h

m;n

are 
ontinuous in time and it is possible to extend these results on [0; T [

for ea
h T > 0.
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(iii) Passage to the limit

We are now going to prove that u

m;n

h

m;n


onverges weakly to u

�

m

h

�

m

in

L

2

(0; T ;L

q

(
)) (with q < 2). To this end, we must verify that

Z




(u

m;n

h

m;n

� u

�

m

h

�

m

)' =

Z




u

m;n

(h

m;n

� h

�

m

)'

+

Z




h

�

m

(u

m;n

� u

�

m

)' 8' 2 (L

q

(
))

0

: (4.72)

We have proven that u

m;n

is bounded in L

2

(0; T ;H

1

(
)

2

) and then in

L

2

(0; T ;L

p

(
)

2

), p <1, with embedding theorems. Moreover, we have h

�

m

2

L

2

(0; T ;L

2

(
)).

Thus, if we 
hoose ' in L

2

(0; T; L

q

(
)

2

); q > 2, we obtain :

h

�

m

' 2 L

2

(0; T ;L

2�"

(
)) :

Then

Z




(u

m;n

� u

�

m

)h

�

m

'! 0 as n! +1 :

In the same way, we have u

�

m

' 2 L

2

(0; T ;L

2

(
)

2

), and, sin
e h

m;n


onverges

weakly in L

2

(Q), then

Z




(h

m;n

� h

�

m

)u

m;n

'! 0 as n!1 :

We dedu
e that (u

�

m

; h

�

m

) is a solution of the problem (V

m

). As this problem

has a unique solution

2

, we have (u

�

m

; h

�

m

) = (u

m

; h

m

).

In the previous estimates, the 
onvergen
e of u

m;n

(resp. h

m;n

) to u

�

m

(resp.

h

�

m

) is not uniform in m. However, we show that we 
an extra
t a sequen
e

from (u

m;n

; h

m;n

), always denoted by (u

mn

; h

mn

) whi
h 
onverges weakly in

(L

2

(0; T ;L

q

(
)))

0

; q > 2. Indeed, we have:

Z




(u

m;n

� u)' =

Z




(u

m;n

� u

m

)' +

Z




(u

m

� u)' :

The weak 
onvergen
e of u

m

to u gives

8" > 0; 9m=

Z




(u

m

� u)' <

"

2

;

and for ea
h m, there exists n(m) su
h that

Z




(u

m;n(m)

� u

m

)' <

"

2

;

from whi
h we obtain the result.

In the same way, we show the 
onvergen
e of h

m;n

to h and the 
onvergen
e

of (u

m;n

h

m;n

) to (uh).
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4.3. Strong 
onvergen
e results

For a �xed value of m, we 
an establish some strong 
onvergen
e results for

h

m;n

with the Aubin theorem. Previously, we proved that u

m;n

is bounded into

C

0

(0; T ;H

4

(
)

2

). As h

m;n

is bounded into L

2

(0; T ;L

2

(
)), we have

u

m;n

h

m;n

bounded into L

2

(0; T ;L

2

(
)

2

)

hen
e

div (u

m;n

h

m;n

) bounded into L

2

(0; T ;H

�1

(
)) :

We thus dedu
e that

�h

m;n

�t

is bounded into L

2

(0; T ;H

�1

(
)). The Aubin the-

orem with :

h

m;n

bounded into L

2

(0; T ;L

2

(
)) and

�h

m;n

�t

bounded into L

2

(0; T ;H

�1

(
)) ;

therefore gives

h

m;n

�! h

m

strongly in L

2

(Q) :

In the same way, it is 
lear that u

m;n


onverges strongly to u

m

in L

2

(Q).

It is possible to obtain an error estimate by substra
ting (2.18) from (4.60),

multiplying by h

m;n

� h

m

and integrating over 
. We obtain

1

2

d

dt

jjh

m;n

� h

m

jj

2

L

2

(
)

=

Z




div (u

m

h

m

)(h

m;n

� h

m

)

�

Z




div [u

m;n

(h

m;n

� h

m

)℄(h

m;n

� h

m

)

�

Z




div (u

m;n

h

m

)(h

m;n

� h

m

) ; (4.73)

therefore,

1

2

d

dt

jjh

m;n

� h

m

jj

2

L

2

(
)

� kh

m;n

� h

m

k

L

2

(
)

�

kdiv (u

m

h

m

)k

L

2

(
)

+kdiv (u

m;n

h

m

)k

L

2

(
)

�

�

Z




div [u

m;n

(h

m;n

� h

m

)℄(h

m;n

� h

m

) : (4.74)

The last term on the right-hand side of (4.74) is 
hanged to

Z




div [u

m;n

(h

m;n

� h

m

)℄(h

m;n

� h

m

) =

1

2

Z




div (u

m;n

)(h

m;n

� h

m

)

2

: (4.75)

Integrating (4.74) in time, it 
omes

sup

t

jjh

m;n

(t)� h

m

(t)jj

2

L

2

(
)

� 2kh

m;n

� h

m

k

L

2

(Q)

�

kdiv (u

m

h

m

)k

L

2

(Q)

+kdiv (u

m;n

h

m

)k

L

2

(Q)

�

+ jjh

m;n

(0)� h

m

(0)jj

2

L

2

(
)

�

Z

Q

div (u

m;n

)(h

m;n

� h

m

)

2

: (4.76)
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Finally, as h

m;n


onverges strongly to h

m

in L

2

(Q),

9N 2 N = 8n > N; (h

m;n

� h

m

)

2

� (h

m;n

� h

m

) < 1 :

Thus,

sup

t

jjh

m;n

(t)� h

m

(t)jj

2

L

2

(
)

� kh

m;n

� h

m

k

L

2

(Q)

�

2kdiv (u

m

h

m

)k

L

2

(Q)

+2kdiv (u

m;n

h

m

)k

L

2

(Q)

+ kdiv (u

m;n

)k

L

2

(Q)

�

+jjh

m;n

(0)� h

m

(0)jj

2

L

2

(
)

: (4.77)

We 
an obtain some stronger 
onvergen
e results if we argue as in

2

.

4.4. Numeri
al resolution method

Theorem 2.2 proves that the set 
omposed of the fun
tions p

k

whi
h are solutions

to problem (P2), 
onstitute an orthogonal basis of H

1

(
). This basis is used for

the proje
tion of the 
ontinuity equation. We thus obtain m + n equations of the

form

dx

i

dt

= F

i

(x

j

; x

k

) +H

i

(y

j

)

dy

i

dt

= �

i

(x

j

; y

k

)

The fun
tions F

i

, H

i

and �

i

are obtained by integration on the domain of basis

fun
tions. Contrary to the methods using the 
hara
teristi
s, it is not ne
essary to


ompute the traje
tory and to evaluate integrals on the domain for ea
h time step.

However, the presen
e of several non linear terms are 
ostly in terms of CPU time.

5. Global nonlinear Galerkin method

In the previous se
tion, we justi�ed the use of the Galerkin method to solve

the 
ontinuity equation. We will now apply the nonlinear Galerkin method to

the momentum and 
ontinuity equations. This method allows us to redu
e the

simulation time.

5.1. Des
ription of the method

We de�ne u

m;n

= y

m;n

+ z

m;n

with

y

m;n

=

m

1

X

i=1

x

i

(t)'(x) and z

m;n

=

m

X

i=m

1

+1

x

i

(t)'(x) (5.78)

and h

m;n

= �

m;n

+ �

m;n

with

�

m;n

=

n

1

X

k=1

y

k

(t)p

k

(x) and �

m;n

=

n

X

k=n

1

+1

y

k

(t)p

k

(x) (5.79)
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solutions of the following problem (V

a

m;n

)

�

�y

m;n

�t

; '

i

�

+ b(y

m;n

; y

m;n

; '

i

) + b(y

m;n

; z

m;n

; '

i

) + b(z

m;n

; y

m;n

; '

i

)

+

�

�(y

m;n

); '

i

�

+

�

�(z

m;n

); '

i

�

+A

��

y

m;n

; '

i

��

�

�

�

m;n

; div'

i

�

�

�

�

m;n

; div'

i

�

=

�

f; '

i

�

; 8'

i

; i = 1; : : : ;m

1

(5.80)

�

��

m;n

�t

; p

k

�

�

�

y

m;n

�

m;n

; gradp

k

�

�

�

y

m;n

�

m;n

; grad p

k

�

�

�

z

m;n

�

m;n

; gradp

k

�

= 0; 8p

k

; k = 1; : : : ; n

1

(5.81)

�

�z

m

�t

; '

i

�

+ b(y

m;n

; y

m;n

; '

i

) +

�

�(y

m;n

); '

i

�

+A

��

z

m;n

; '

i

��

�

�

�

m;n

; div'

i

�

=

�

f; '

i

�

; '

i

;8i = m

1

+ 1; : : : ;m (5.82)

�

��

m;n

�t

; p

k

�

�

�

y

m;n

�

m;n

; gradp

k

�

= 0; 8p

k

; k = n

1

+ 1; : : : ; n (5.83)

where b( ; ; ) represents the nonlinear terms.

5.2. Weak 
onvergen
e results

If " and "

0

are two positive 
onstants, then we obtain the following result

Theorem 5.5 All the 
onstants are de�ned as in Theorem 2.1, ex
ept for B, whi
h

is de�ned by B = (A�

�

2

�max("; "

0

))=

p

2.

Let u

0

2 V, h

0

2 L

2

and f 2 L

2

(0; T;H

�1

(
)

2

) satisfying

2

�

jjf jj

2

L

2

(0;T ;H

�1

(
))

+ jjy

0m

+ z

0m

jj

2

L

2

(
)

+ 4"

1

� �

�

B

C

�

2

jju(0)jj

L

2

(
)

� �

�

B

C

�

Then

� z

m;n

* 0 weakly in L

2

(0; T ;V).

� z

m;n

! 0 strongly in L

2

(0; T ;L

2

(
)

2

).

� y

m;n

* 0 weakly in L

2

(0; T ;V) and weakly in L

1

(0; T ;L

2

(
)

2

)-*.

� 8Æ > 0;8m; 9N(m)=

8n > N(m);

R

Q

�

m;n

� dx dt�

R

Q

h� dx dt < Æ 8� 2 L

1

(0; T ;L

1

(
)).

�

�y

m;n

�t

bounded in L

2

(0; T ;H

�3

(
)

2

)

� (
url y

m;n

�(z

m;n

); ')

L

2

(
)

2

! 0 strongly in L

1

(0; T ):

� (
url z

m;n

�(y

m;n

); ')

L

2

(
)

2

! 0 strongly in L

1

(0; T ):
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� (y

m;n

z

m;n

; div')

L

2

(
)

2

! 0 strongly in L

1

(0; T ):

� (y

m;n

�

m;n

;rp

i

)

L

2

(
)

2

! 0 strongly in L

1

(0; T ):

� (y

m;n

; �

m;n

) 
onverges weakly to (u

m

; h

m

) in L

2

(0; T ;L

q

(
)) for q < 2 where

(u

m

; h

m

) is the solution of (V

m

) .

� 8m > 0, there exists n(m) su
h as (y

m;n(m)

; �

m;n(m)

) 
onverges weakly to

(u; h) solution of (V ) in L

1

(Q)� L

1

(Q).

The three main steps of the theorem proof are the following:

� Estimate of �

m;n

and �

m;n

a

ording to y

m;n

and z

m;n

.

� a priori estimate for y

m;n

and z

m;n

.

� Passage to the limit.

Proof.

(i) Estimate of �

m;n

and �

m;n

a

ording to y

m;n

and z

m;n

First, we estimate jj�

m;n

jj

L

2

(
)

+ jj�

m;n

jj

L

2

(
)

a

ording to jju

m;n

jj

2

L

1

(0;T ;L

2

(
)

2

)

.

In order to obtain this estimate, we set p

k

= �

m;n

in (5.81) and p

k

= �

m;n

in

(5.83) and we add the two equations

1

2

d

dt

�

jj�

m;n

jj

2

L

2

(
)

+ jj�

m;n

jj

2

L

2

(
)

�

�

�

y

m;n

�

m;n

;r�

m;n

�

�

�

y

m;n

�

m;n

;r�

m;n

�

�

�

z

m;n

�

m;n

;r�

m;n

�

�

�

y

m;n

�

m;n

;r�

m;n

�

= 0 : (5.84)

Sin
e we have

�

y

m;n

�

m;n

;r�

m;n

�

= �

1

2

�

�

2

m;n

; div y

m;n

�

; (5.85)

�

z

m;n

�

m;n

;r�

m;n

�

= �

1

2

�

�

2

m;n

; div z

m;n

�

; (5.86)

and

�

y

m;n

�

m;n

;r�

m;n

�

= �

�

y

m;n

�

m;n

;r�

m;n

�

�

�

�

m;n

�

m;n

; div y

m;n

�

;

we obtain

1

2

d

dt

�

jj�

m;n

jj

2

L

2

(
)

+ jj�

m;n

jj

2

L

2

(
)

�

+

1

2

�

�

2

m;n

; div y

m;n

�

+

1

2

�

�

2

m;n

; div z

m;n

�

+

�

�

m;n

�

m;n

; div y

m;n

�

= 0 :(5.87)

We 
an write the following estimate

d

dt

�

jj�

m;n

jj

2

L

2

(
)

+ jj�

m;n

jj

2

L

2

(
)

�

�

�

jj�

m;n

jj

2

L

2

(
)

+ jj�

m;n

jj

2

L

2

(
)

�

:

h

jjdiv y

m;n

jj

L

1

(
)

+ jjdiv z

m;n

jj

L

1

(
)

i

: (5.88)
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Using the Gronwall lemma, we obtain 8T > 0,

jj�

m;n

jj

2

L

2

(
)

+ jj�

m;n

jj

2

L

2

(
)

�

�

jj�

m;n

(0)jj

2

L

2

(
)

+ jj�

m;n

(0)jj

2

L

2

(
)

�

exp

 

Z

T

0

h

jjdiv y

m;n

jj

L

1

(
)

+ jjdiv z

m;n

jj

L

1

(
)

i

dt

!

:(5.89)

(ii) a priori estimate of y

m;n

and z

m;n

The energy equation is obtained by setting '

i

= y

m;n

in (5.80) and '

i

=

z

m;n

in (5.82). Then, by adding the two equations, we obtain

1

2

�

d

d t

jjy

m;n

jj

2

L

2

(
)

+

d

d t

jjz

m;n

jj

2

L

2

(
)

�

+A

�

jy

m;n

j

2

V

+ jz

m;n

j

2

V

�

�

�

�

m;n

; div y

m;n

�

�

�

�

m;n

; div y

m;n

�

�

�

�

m;n

; div z

m;n

�

�

1

2

�

y

2

m;n

; div y

m;n

�

�

�

y

m;n

z

m;n

; div y

m;n

�

�

1

2

�

y

2

m;n

; div z

m;n

�

=

�

f; y

m;n

�

+

�

f; z

m;n

�

: (5.90)

The nonlinear terms and the terms with �

m;n

and �

m;n

are not ne
essarily

bounded. In order to solve this diÆ
ulty, we argue as in Theorem 3.3. First,

we write

Z

T

0

Z




�

m;n

div y

m;n

d
 d t+

Z

T

0

Z




�

m;n

div z

m;n

d
 d t

� jj�

m;n

jj

L

1

(0;T ;L

2

(
))

jjdiv y

m;n

jj

L

1

(0;T ;L

2

(
))

+ jj�

m;n

jj

L

1

(0;T ;L

2

(
))

jjdiv z

m;n

jj

L

1

(0;T ;L

2

(
))

; (5.91)

and

Z

T

0

Z




�

m;n

div y

m;n

d
 d t+

Z

T

0

Z




�

m;n

div z

m;n

d
 d t

� T jj�

m;n

jj

L

1

(0;T ;L

2

(
))

jjy

m;n

jj

L

2

(0;T ;V)

+T jj�

m;n

jj

L

1

(0;T ;L

2

(
))

jjz

m;n

jj

L

2

(0;T ;V)

: (5.92)

Therefore, with " and "

0

arbitrarily 
hosen, we obtain

Z

T

0

Z




�

m;n

div y

m;n

d
 d t+

Z

T

0

Z




�

m;n

div z

m;n

d
 d t

� 


"

T

2

�

jj�

m;n

jj

2

L

1

(0;T ;L

2

(
)

2

)

+ jj�

m;n

jj

2

L

1

(0;T ;L

2

(
)

2

)

�

+" jjy

m;n
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2

L

2

(0;T ;V)
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0

jjz

m;n
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2

L

2

(0;T ;V)

� 


"

T

2

�

jj�

m;n

jj

2

L

1

(0;T ;L

2

(
)

2

)

+ jj�

m;n
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2

L

1

(0;T ;L

2

(
)

2

)

�

+max("; "

0

) jju

m;n

jj

2

L

2

(0;T ;V)

: (5.93)
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Next, we bound the right-hand side as follows

�

f; y

m;n

�

+

�

f; z

m;n

�

�

1

2�

jjf jj

2

H

�1

(
)

+

�

2

ju

m;n

j

2

V

;

the nonlinear terms are bounded as in se
tion 3

1

2

�

y

2

m;n

; div u

m;n

�

+

�

y

m;n

z

m;n
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m;n

�

�

p

2Cjju

m;n
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L

2

(
)

ju

m;n

j

2

V

: (5.94)

By integrating the energy equation over time, we obtain the following esti-

mate

1

2

(jjy

m;n

jj

2

C

0

(0;T ;L
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(
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+ jjz
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2

)

�

�
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�
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2

L

2
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: (5.95)

We must estimate the term

T

2

exp

 

Z

T

0

�

jjdiv y

m;n

(t)jj

L

1

(
)

+ jjdiv z

m;n

(t)jj

L

1

(
)

�

d t

!

Then, we argue as in se
tion 4 with a small time step T

o;n

. If n is given and

8"

1

> 0, then there exists T

o;n

> 0 su
h that, for ea
h t, t � T

o;n

, we have

1

4
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m;n

(t)k

2

C

0
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2

(
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)
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+ jj�
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1

: (5.96)

We need to verify that T

o;n

does not go to zero as n goes to in�nity. T

0;n

is de�ned su
h that the following equation is satis�ed:

1

4

jju

m;n

jj

2

C
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�
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1

4
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: (5.97)

We now suppose that T

o;n

does not exist su
h that (5.97) is satis�ed for

ea
h value of n. This means that

T

o;n

! 0 as n!1 ;
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and then

jju

m;n

jj
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(
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! jju
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2
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1
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whi
h is impossible.

We thus obtain the inequality:
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If we set B = (A�

�

2

�max("; "

0

))=

p

2, then the estimates are obtained by


hoosing the data su
h that :

B � Cjju

m;n

jj

L

2

(
)

> 0 :

For ea
h value of t, we must have :

jju

m;n

jj

L

2

(
)

<

B

C

:

To prove this point, we argue as in

9

.

We dedu
e that y

m;n

and z

m;n

are bounded in C

0

(0; T

0

;L

2

(
)

2

)\L

2

(0; T

0

;V)

and that we extra
t two sequen
es, still denoted by y

m;n

and z

m;n

, whi
h


onverge weakly to y

�

m

and z

�

m

as n! +1.

In the same way �

m;n

and �

m;n

are bounded in L

1

(0; T

0

; L

2

(
)) and we


an extra
t two sequen
es, still denoted by �

m;n

and �

m;n

, whi
h 
onverge

weakly-* to �

�

m

and �

�

m

.

The previous argument is true for t 2 [0; T

0

[. As all the fun
tions are


ontinuous, it is possible to extend the result on [0; T [, 8T > 0.

(iii) Passage to the limit

Owing to the de�nition of �

m;n

, it is evident that :

8p

k

;

Z




�

m;n

p

k

= 0 when n

1

> k;

and �

m;n

* 0 weakly in L

1

(Q), as n! +1.

It therefore follow that

Z

Q

�

m;n

y

m;n

gradp

k

! 0 as n!1 : (5.99)

Next, as z

m;n

is bounded in L

2

(0; T ;V), we 
an prove, using an argument

similar to that of se
tion 3:1, that:

z

m;n

! 0 strongly in L

2

(Q) as n! +1 :



The nonlinear Galerkin method applied to shallow water equations 25

Finally, with the properties of the basis, we have

(�

m;n

; div'

k

) = ��

1

2

k

(�

m;n

; p

k

)! 0 as n! +1 : (5.100)

By using the same argument as in the global Galerkin method, we 
an prove

that:

Z




(y

m;n

�

m;n

� y

�

m

�

�

m

)'! 0 as n! +1 : (5.101)

We dedu
e that (y

�

m

; �

�

m

) is a solution to problem (V

m

). Sin
e this solution

is unique, we ne
essarily have (y

�

m

; �

�

m;n

) = (u

m

; h

m

).

The 
onvergen
e of y

m;n

(resp. �

m;n

) to u

m

(resp. h

m

) is not uniform with

m and we 
an not dire
tly 
on
lude that y

m;n

(resp. �

m;n

) 
onverges to u

(resp. h). As in the 
ase of the global Galerkin method, However, with a

judi
ious 
hoi
e of m and n, we 
an obtain the di�eren
e between y

m;n

and u

(resp. �

m;n

and h) whi
h is as small as we wish.

5.3. Strong 
onvergen
e results

As in se
tion 4:3, we 
an establish some strong 
onvergen
e results for �

m;n

with

the Aubin theorem, for a �xed value of m. First we dedu
e that

�

m;n

�! h

m

strongly in L

2

(Q) ;

with the Aubin theorem.

In the same way, we prove that y

m;n


onverges strongly to u

m

in L

2

(Q).

It is possible to obtain an error estimate by substra
ting (2.18) from (5.81),

multiplying by �

m;n

� h

m

and integrating over 
. We obtain
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and �nally, as in se
tion 4:3,
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: (5.103)

6. Numeri
al appli
ations

6.1. Computation
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In order to 
ompare the results presented here with previous results, we make

the following assumptions :

The studied domain is a square with 1000 kilometers in length. If we 
hange the

spatial and temporal s
ales, this square is transformed into a square of one unit in

length.

We 
onsider a 
uid layer of density �

2

and mean elevation of 200 meters, whi
h

moves on a �xed 
uid layer of density �

1

(> �

2

). We repla
e the a

eleration of the

gravity with a 
oeÆ
ient of redu
ed gravity g

0

de�ned by

g

0

=

�

1

� �

2

�

1

g;

here, g

0

= 2:10

�2

m:s

�2

.

The boundary 
onditions express waterproof 
onditions on all the boundaries.

The surfa
e stress is the wind stress tensor used by P. Orenga

1

and F.J. Chatelon

2

.

The spa
e dis
retization used for the integrations and the method of the 
hara
-

teristi
s is 1860 elements uniformly distributed over the domain. The real time step

is approximatively 15 minutes. The 
oeÆ
ient of eddy vis
osity is 10

�1

m

2

:s

�1

.

This 
oeÆ
ient is 
hosen suÆ
iently small in order to obtain a signi�
ant represen-

tation of the 
uid 
ir
ulation on the �rst 60 eigen fun
tions for velo
ity.

6.2. Remarks

With the method of the 
hara
teristi
s, we evaluate the water elevation on the

mesh points. We have to interpolate the value on ea
h element and to make nu-

meri
al integrations on these elements. The 
ost of this method is proportional to

the number of elements.

On the other hand, when we use the Galerkin method, the spa
e dis
retization is

only made for the 
omputation of the 
onstant 
oeÆ
ients (on
e for a given domain)

and the representation of results. The 
omputation 
osts are (nearly) independent

of the mesh, but they dire
tly depend on the dimension of the spa
e to whi
h the

solution belongs.

Thus, 
omparison of the di�erent methods is problemati
, to whi
h we add

the optimization of algorithm and the use of di�erent stability 
riteria for ea
h

numeri
al s
heme. Although we have sought, where possible, to optimize 
odes and

parameters, the results may not be optimum.

The advantages of the global nonlinear Galerkin method as 
ompared to the

global Galerkin method are presented in

4

. In parti
ular, a 
omparison was made

in the present study, between the method of the 
hara
teristi
s and the Galerkin

method in solving the 
ontinuity equation.

6.3. Numeri
al s
heme
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The parti
ular geometry of the domain allows us to obtain an analyti
al solution

to problems (P2) and (P3). In a general 
ase, these problems are solved with

ModulEf, the �nite elements software developped by the INRIA. If we use Hermite's

�nite element with three degrees of freedom, we dire
tly obtain the gradient and

the Curl of the fun
tions without numeri
al di�eren
iation.

We have 
hosen a method of quadrature in order to a

urately integrate the

di�usion term

4

. This method allows us to use a greater time step than in the


lassi
al methods and it is parti
ularly adapted to high frequen
ies. The other

terms are integrated with an impli
it Euler s
heme.

6.4. Results and dis
ussion

Theoreti
ally, the method of the 
hara
teristi
s for the 
ontinuity equation gives

the best approximation of the solution. Then, we use as referen
e value, the results

obtained using the usual Galerkin method for the momentum equation and the

method of the 
hara
teristi
s for the 
ontinuity equation.

(i) Comparison between the usual Galerkin method and the method of the 
har-

a
teristi
s

First, we 
ompare the results obtained using the method of the 
hara
ter-

isti
s and the Galerkin method a

ording to the number of eigen fun
tions.

We use the notion of potential energy (Ep) ; this notion 
orresponds to the

energy stored by the deformation of the 
uid layer

6

:

Ep =

1

2

�g(h�

�

h)

2

(6.104)

where

�

h represents the referen
e state and � the density of the 
uid whi
h is

supposed to be 
onstant. During the de
omposition of the variations in water

elevation by the Galerkin method, the potential energy is given by:

Ep(h

m;n

) =

�g

2

n

X

k=1

y

2

k

(6.105)

In the same way, when we use the method of the 
hara
teristi
s, it is ne
-

essary to evaluate the terms (h

m

; div'

i

), whi
h 
orrespond to

p

�

i

(h

m

; p

i

).

These are the L

2

-proje
tions of water elevation on the basis fp

1

; p

2

; : : : p

m

g

(to within about a multipli
ative 
oeÆ
ient). The potential energy 
an be

approximated by:

Ep(h

m

) '

�g

2

m

X

k=1

�

(h

m

; p

k

)

p

�

i

�

2

(6.106)
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The evolution of potential energy for the approximations of water elevation

for 10, 20 and 30 eigen fun
tions is presented in Fig. (1).

1.0×102 1.0×104 2.0×104
5.4×10−6

1.0×100

2.0×100

3.0×100

Potential energy

caract.

Ga : n=30

Ga : n=20

Ga : n=10

Fig. 1. Comparison between the 
hara
teristi
s and the Galerkin method a

ording to the number

of eigen fun
tions.

If we take into a

ount an in
reasing number of eigen fun
tions, we redu
e

the os
illations. However, if the number of p

i

eigen fun
tions (used for ele-

vation) is greater than the number of gradp

k

fun
tions (used for velo
ity, see

subse
tion 2:2 then it appear a high level of numeri
al instability. It should

be noted that the Galerkin method with 30 eigen fun
tions gives a small

overestimate of the �nal potential energy.

In Fig. 2 to 5, we present the simulation results generated using either the

Galerkin method with 30 eigen fun
tions or the method of the 
hara
teristi
s

to solve the 
ontinuity equation.
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Fig. 2. Variations in water elevation

(
hara
teristi
s).

Fig. 3. Variations in water elevation

(Galerkin (n=30)).
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Fig. 5. Velo
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We observe a good 
orresponden
e between these results. They justify the

use of the Galerkin method whi
h is less 
ostly in terms of 
omputation time.

(ii) Comparison between the usual Galerkin method and the nonlinear Galerkin

method

Several numeri
al results have been given in

4

. We simply re
all the main

steps of the simulation.

The 
hoi
e of the 
ut frequen
y between the large and small 
omponents

(m

1

and n

1

) is done by using energy 
riteria. Thus, m

1

is determined by


omparing the ratio of the kineti
 energy asso
iated with y

m

1

and z

m

1

, and a

referen
e value. We re
all that the kineti
 energy of u

m

is given by :

E
(u

m

) =

1

2

jju

m

jj

2

L

2

(
)

=

1

2

m

X

i=1

X

2

i

(6.107)

We de�ne two 
onstants, �

u

and �

h

. Thus, the values of m

1

and n

1

are

determined from the relations :

m

1

= min

�

M=8m

1

> M;

E
(z

m;n

)

E
(y

m;n

)

� �

u

�

: (6.108)

n

1

= min

�

N=8n

1

> N;

Ep(�

m;n

)

Ep(�

m;n

)

� �

h

�

: (6.109)

Note that with these de�nitions, the values of m

1

and n

1

may 
hange over

time in order to adapt to the 
ir
ulation dynami
s.

A

ording Jauberteau

5

, we have also implemented a temporal multilevel

adaptative method using a V-
y
le numeri
al s
heme.

7. Con
lusion

This work allows us to validate the solution approximation for shallow water

equations, using the Galerkin method for both of the model equations. Moreover,

it reveals the theoreti
al justi�
ation of the nonlinear Galerkin method for both

equations and 
ompletes the numeri
al results presented in

4

.
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