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In this work, we present some numerical approximations for a shallow water problem
with a depth-mean velocity formulation and we give, where possible, an error bound. To
prove the existence of solutions, we build a sequence of approximated solutions with the
Galerkin method for the momentum equation and we solve the continuity equation with
the method of the characteristics. This leads to an expensive natural numerical scheme.
Then, in order to reduce the CPU time, we present other numerical approximations
based on the linear or nonlinear Galerkin method.

1. Introduction

1.1. Notations

Let Q be a fixed bounded smooth open domain of R? with boundary ~. Phys-
ically, Q2 is the domain corresponding to the surface of the sea assumed to be hor-
izontal. Let u = (u1,us) be the mean velocity of the fluid (a vector function from
Q into R?) and let h be the water elevation (a scalar function from Q into R). If
u = (uy,us) is a vector function and ¢ is a scalar function from €2 into R?, then we
denote by

a, the operator from R? into R? defined by

a(u) = (—uz,u1),
Curl (“Curl with capital C”) the operator from R into R? defined by

Curlq = ((‘)a—ai’_[f—ai)’

curl (“curl with small ¢”) the operator from R? into R defined by
6”2 6u1

curly = — — — .

8:171 8:172



2 The nonlinear Galerkin method applied to shallow water equations

We also denote by (-, -) the scalar product of L?(Q) and L?*(Q)? and by ((-, -))
the scalar product of V.
1.2. Equations of the model

The shallow water equations are used in the modelling of the bidimensional
circulation of geophysical fluids. The equations of the model in a depth-mean
velocity formulation are the following : (P)

uy + tgradu?® + curlua(u) + wa(u) + ggradh — AAu = f in 2x]0,T[= Q,
hy + div (uh) =0 in Q,
u-n=0 ; curlu=0 onyx]0,T7,
u(t=0) =uo(z) inQ,
h(t =0) =ho(z) in@Q, ho>0.

For the sake of simplicity, we set g =1 and w = 1.
1.3. Theoretical results and numerical approxrimations

(a) The linear Galerkin method and characteristics.
Firstly we recall an existence theorem for the weak solutions of this problem.
This result is a global existence theorem with controlled data. We define the
functional space V as follows :

V={pe L*(Q)?/divep € L*(Q),curlp € L*(Q);p-n=0o0n~}. (1.1)
This space is equipped with the graph-norm

lely = 1@l + 1div el 2 o) + [rot ] 2, - (1.2)
Let (V') be the following weak formulation of problem (P)
Find
u € L*(0,T; V)N L>(0,T; L*()?) , heL>®0,T;L'(Q) and h>0

such that

(%,v) - %(uQ,divv) + (curlua(u),v) + (a(u),v) +A((u,v))
—(h,divv) - (f, v) Yo e VN HY(Q)? (1.3)

O div(uh) =0 in L'(0,T5 W) 4

u(0,2) = ug(z) €V, h(0,2) = ho(z) € L' (), ho(z) >0 ae. in Q. (1.5)

If the data are small enough, we show that (V) has a solution with a
fixed-point method.
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Indeed, if we denote a basis of V by {¢1, @2,...,%m, ...}, then we define V,,,
the set of linear combinations of the m first elements of the basis. We use the
Galerkin method to approximate the solution of the momentum equation (1.3)
while the continuity equation (1.4) is solved with the method of characteristics.

The associated numerical method is costly in CPU time. In the following
sections, we present other numerical methods in order to reduce the CPU
time.

(b) Nonlinear Galerkin method and characteristics.

The first approach consists in applying the nonlinear Galerkin method to
solve the momentum equation. This method, initially developped by M. Mar-
ion and R. Temam? in the context of the Navier-Stokes equations, consists in
simplifying the interaction laws between the small and large eddies. To obtain
these simplifications, we write u,, as follows :

ma m

Um = Ym + 2Zm  With  yp, = le(t)cp(ac) and 2z, = Z z;(t)p(z) , (1.6)

=1 i=mi+1

and we eliminate some coupling terms between y,, and z,,.

With this decomposition, we establish the a priori estimates, and we prove
that the difference between the solution of this weak problem and (u,h) is
arbitrarily small.

(c) Global Galerkin method.

Since the solving of the continuity equation represents a large portion of
the CPU time, we have used the Galerkin method to solve this equation. We
give some convergence results to the solution (u, h) of the weak problem (V).

(d) Nonlinear global Galerkin method.

Finally, we apply the nonlinear Galerkin method to the momentum equation
and the continuity equation. The convergence results are similar to the results
obtained in the previous two steps.

(e) Numerical application.

In the last part of this paper, we present a comparison between these dif-
ferent numerical methods. We present, in a simple case, the CPU time and
error associated with each approach.

The complexity of these numerical methods increases but the time of com-
putation is reduced and the numerical solution has retained a good level of
accuracy.

2. Existence results for the problem (V) and numerical methods

In the first part of this section, we recall an existence theorem for the solutions of
the weak problem (V) when the data are small enough®. Next, we recall a theorem
in order to build a special basis which is well-adapted to this problem®. Finally, we
briefly recall the method of characteristics used to solve the continuity equation?
and we give the complete numerical method that we use to approximate the weak
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solutions.

2.1. An existence theorem

In what follows, we denote by A, B, C, X and 6 constants such as
2A>A>0, B=2A-2A (2.7)

0<o<1 (2.8)

C is the best constant associated with the Gagliardo Nirenberg inequality
2
||U||L4(Q)2 < Clulvulrz@) (2.9)

We obtain the following theorem
Theorem 2.1 Let ug € V, hg € L'(Q) and f satisfying

ho >0, hologhe € L'(Q), f € L*(0,T; H *(Q)?), (2.10)

. 2 B2
[0 2 e, + 200108 hol ) + 5 U3 0,mr-100y + e () < 075, (211)

B
ok
Then, for each 0, X\, f, ug, ho satisfying (2.7), (2.8), (2.10),(2.11),(2.12), the
problem (V') has a solution (u,h) such that

||U0||L2(n) <40 (2.12)

(u, h) € {[L*(0,T5V) N L>(0,T5 L*(2)*)] x L>(0,T; L'(Q))} - (2.13)

Moreover the solution satisfies

2 , B2 2
||u||Loo(0‘T;L2(m2) <46 202 + gmes Q) , (2.14)
6% B2 2
"u"i2(0,T;V) < m + gmeS (Q) y (215)
! es(Q) <s /hlo h<¢9QB2 h>0 (2.16)
——m — : :
. <sup | hlogh <0757, h2

A detailed proof of this theorem is given in®.

2.2. Special basis

We now provide a theorem in order to build a special basis of the space V (1.1),
satisfying the impermeability boundary conditions.

We consider the following eigen problem (P1)

—Au = \u in
u-n=curlu=0 on-vy
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Theorem 2.2

e If (\,p) is a solution to the scalar problem
(P2) —Ap = Apin Q, g—z =0 on~;

then (A, grad p) is a solution of (P1).
o If (1,q) is a solution to the scalar problem

(P3) —Ag=pginQ, ¢g=0on-;

then (u, Curl q) is a solution of (P1).

o If Q is simply connected, then 0 is not an eigen value of (P1), otherwise
the eigen space associated to 0 is the finite dimensional space Ho(div 0, curl 0)
where
Hy(div 0, curl0) = {u € L?(Q)?,divu = 0,curlu = 0,u-n =0 on v}.

e The set composed of gradp and Curlq, where p is solution of (P2) and q
is solution of (P3), is a total basis in L*()? \ Hy(div0,curl0) and in V \
Hy(div 0, curl0).

o If Q is a smooth domain, then we obtain V = {p € H(Q)%,¢o.n = 0} and
the solutions of problem (P1) are very smooth.

Moreover, the set composed of the functions p;, solutions of (P2), constitute an
orthogonal basis of L?(12).

2.3. The numerical method

Let {©1,...,0m,...} be a basis of V, the functions ¢; belong to H*(Q)? and
satisfy the relationship
—Ap; = Nipi
0< A <A< .,A =00 when j—00.

We denote by V,, the set of the linear combinations of the m first functions
{¢1,...,om} and we are looking for u,, € V,, where u,, is of the form

t) = Z i (t)pi(z)

and we build the sequence (up,, i), solution to the following problem (V;;,):
Find (up, hy) € (L>(0,T; L*(2)*) N L*(0,T; V)) x L>(0,T; L'(2)) such that

(ag—;n,cpi) —( d1v<p2) (curluma (Um), cpl) + (a(um),cpi)
—I—A((um,gol)) (hm,dlvgol) = (f, <pl) Voi, i=1,...,m (2.17)

Ol
T + div (upmhm) =0, (2.18)

U (t = 0) = tuom € Vi, hm(t =0) = hom € C' (D), (2.19)
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where the constants and the data satisfy the conditions of Theorem 2.1.
If hom € C'(Q), then we have proven in® that (u,,,h,) € C°([0,T];C%(Q)) x
(@)

The properties of the basis allow us to write the nonlinear terms in a simpler
fashion and we obtain a system with m differential equations of the form:

daci
dt

:Fi(l‘j,l‘k)+Gi(hm) R (220)

where the functions Fj are integrals of basis function products. We need only
compute these integrations once for a given domain. The term (; is the projection
of the water elevation gradient on the basis elements. We need to know this term
for each time step, after computation of the water elevation.

To compute the water elevation, we use the method of characteristics. We
evaluate the variations in water elevation on a trajectory. We recall that

_dl‘l . _dl‘g
“ET T

Thus, we can write the continuity equation (2.18) of the form

Dh
B = ~hudivi, (2.21)
where £l s the time derivative of hy, (z(t),t) as z(t) moves along with the fluid

at velocity u,,. Therefore let X (¢;_1) denote the position of a particle of fluid at
time ¢;—1 which will be in z at time t;_; + At (At is the time step). Then (2.21)
may be approximated by

B (X (), £3) = hm (X (t1-1), t11) exp(— At div um (X (£), 1)) (2.22)

Note that on each point, there is a unique characteristic curve. If we have the
boundary condition u.n # 0, it is necessary to prescribe the water elevation on the
part of the boundary where the flow enters.

This method is well-adapted to both the problem and the theoretical results.
The CPU time, however,is very important. In what follows, we therefore present
some new approaches in order to reduce this simulation time.

3. Nonlinear Galerkin method

In this section, we apply the nonlinear Galerkin method to the resolution of the

momentum equation. In this work, we adapt the results obtained by M. Marion

and R. Temam on the Navier-Stokes equations’.

3.1. Description of the method

In what follows, we consider m € N, m; € N and we suppose m > my.
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We denote by V,,, the space generated by the my first ¢; functions and by f/ml
the space generated by the next m —my ¢; functions.

We set,
m1 m

Um = Ym + 2m With  ym =D 2i(H)pi(w) and z,, = Y i(t)ei(z)  (3.23)
=1 i=mi+1

and we denote by (V,2) the following approximate problem:

(202 0) - (i) (oo

(curlyma Ym) <pl) + (curl zma(ym),goi) + (curlyma(zm),cpi)

ot ) + (o)

A((yma‘pz)) (hm,dlv soz) = (f, <Pi) Vi € Vinyy i =1,...,my , (3.24)

(%—:,wi) — %(yfmdiv w) + (curlyma(ym),soi)

(ot ) + ()

—(hm,diw,») - (f,(pi) Vi € Vs i=mi+1,...,m,  (3.25)

% + div (Ymhum) + div (Zmhm) =0, (3.26)
Ym(t =0) = Py (40) = Yom € Viny s (3.27)
Zm(t = 0) = Py, (40) = Zom € Vi, and ho,, € C1(Q) (3.28)

where P,,, denotes the L2-projection operator on the space V,,, and 75m1 denotes
the L2-projection operator on the space Vy,, .

The continuity equation is solved using the method of the characteristics as
previously described.

3.2. Existence and convergence results

We give an existence result for the solutions to problem (V%) with convergence
results.

Theorem 3.3 All the constants are defined as in Theorem 2.1, except for B, which
is defined by B = (A — 3)/V2.
Let Yom € Vs Zom € Vimy» hom € C1(Q) and f € L*(0,T, H~'(Q)?) satisfying

hom > 0, hom log hom € L'(Q),
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L2
[yom + 2om 72 ) + Nm (0) 1og B (0) 1 @) + 5 1120 2.1 )

-I-gmes(ﬂ) < (
e

B
"yOm + ZOm"L2(n) < 05 .

Then:
Zm — 0 weakly in L*(0,T;V) ,

Zm — 0 strongly in L*(0,T; L*(Q)?) ,
Ym — u* weakly in L?(0,T;V) and weakly in L°°(0,T; L*(Q)?) — % ,
/ hm© dx dt — / h® dx dt for each © € L'(0,T; L>°(Q)),
Q Q

ag—:"” bounded in L*(0,T; H3(Q)?),

(curl yma(zm), @) 1202 — 0 strongly in L'(0,T) ,
(curl 2m & (Ym), @) 22 — 0 strongly in L'0,T),
(Ym2Zm, div <p)L2(Q)2 — 0 strongly in L'(0,T) ,

(Ym + Zm)hm — uh strongly in L' (Q) ,

B\?2
z)

(3.29)
(3.30)
(3.31)

(3.32)

(3.33)
3.34
3.35

(3.34)
(3.35)
(3.36)
(3.37)

3.37

Proof. First, we give the a priori estimates satisfied by the solution of (V,2) . Then
we pass to the limit and we prove that (ym,, hm) converges to the solution (u,h) of

V).

(i) a priori estimates

We set ym = ¢; in (3.24), 2, = ; in (3.26), and we add these two equations.

Noting that
(a(u),v) + (a(v),u) =0,
and
(curl ua(u),v) + (curl ua(v),u) =0,
we obtain

1d 1 ]
__”um"i’ﬁ(n) + A|um|3 - 5 (yfn,dw um)

2 dt
—(ymzm,divym) - (hm,divum) = (f, um) .

The right hand side in (3.38) is bounded by

1 A
(£rum) < 5500100y + Shml

(3.38)
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The term (hm, div um) is estimated as in®. We thus obtain

(hm,divum) - %(hm 10g hym — hm,l) :

The other terms which are not necessarily bounded are the nonlinear terms.
To estimate these terms, we build a stability space. We obtain

<¢

1 .
5 (v divum) < Slymloz o [yl lmly

2

. 1/2 1/2 1/2 1/2
(v 2ms div ) < Clym by lym Y Vo 45 Vol

Then, adding the two inequalities, we obtain

1
—(y?n,div um) + (ymzm,div ym)

2
< Clyml 220 Wyl Yt Enym 12 gl + ol L2 ||zm||i/2]
S 7 5 7 1 7 o YA ) P o P
< Cllyml 52 lim 2 [lyml o, + 1m0 |
< \/§C||“m ||L2(n)|“m|% (3.39)
and finally
3l +lunl? [ (4-3) = VECunliaa)

d 1.,
= (hm 108 iy — B, 1) < 5l - (340)

To obtain the a priori estimates, we choose the data such that
A
A- 5]~ \/§C”um"L2m) >0
Thus, setting B = (A — %) /\/5 :

B
[um@Olr2e < & V-

To prove this result, we use the same arguments as in®.

We deduce that u, is bounded in L>(0,T; L*(Q)) N L?(0,T; V).

Since z,, is bounded in L?(0,T;V) for each T > 0, and, by constructing
1/2 .
I2mll 20,00y > /\n{l+1"2m 12> we then obtain

VT >0, A’z is bounded in L2(0,T; L*(Q)) . (3.41)
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Finally, we give some results on the nonlinear terms. Since y,, and z,, are
both bounded in L?(0,T; V), then curly,, and curl z,, are bounded in L?(Q).
Moreover, ¥, and z,, are also bounded in L*(Q). Therefore, curly,,a(ym),
curl Zma(ym) and curl ymo(zm) are bounded in L# (Q).

Similarly, we obtain grady2, and grad (¥, 2m) bounded in L3 (Q).

Passage to the limit

Since A, — 00 as m — 00, (3.41) leads to
VT >0, zy — 0 strongly in L*(0,T; L*(Q)) as m — +oo0 . (3.42)

Moreover z,, is bounded in L?(0,7;V) for each T > 0 and the uniqueness
of the limit gives

VT >0, 2z, — 0 weakly in L?*(0,T;V) as m — 400 . (3.43)

As y,,, is bounded in L*°(0,T; L*(Q)%) N L*(0,T;V), then u* exists such
that : VT > 0,

ym — u* weakly in L?(0,T;V) and weakly in L>°(0,T; L*(Q)?) — x (3.44)

To pass to the limit in the nonlinear terms, we need a strong convergence
in L?(Q) for y,, and z,,. This result is obtained with the Aubin theorem. In

order to apply this compacity theorem, we must have a smoothness result for
OYm

8)indeed, %’—? is as smooth as Vh,, which is the least smooth term. But
hy € LY () and LY(Q) < C%*(Q) continuously. In a two dimensional space,
the embedding of H2(Q) in C%(Q) is continuous, and by duality, L!(Q) <
H~2(Q) continuously. Thus h,, € L*(0,T; H 2(Q)). We obtain

Bg—:‘ bounded in L2(0, T; H*(Q)?) . (3.45)

By applying the Aubin theorem, we therefore prove that y,, converges
strongly a.e. to u* in L?(0,T; L*(Q)?).

We pass to the limit in the terms grad y2, and curl y,,a(y,,) as in®. Indeed,
Yy € D(Q),

| (Curl yma(ym) — curl u*a(u*)a @)LZ(Q) |
<[ (curlyma(ym — u*), @) 12 | + | ((curlyn — curlu®)a(u®), ) 12 (g |
< ||Curlym||L2(Q) "ym - u*||L2(Q) ||()0||L°°(Q)

+| ((curl ypm — curlu®), u*@) 12 | (3.46)

curl ya(ym) then converges weakly to curlu*a(u*) in D'(Q). Owing to the
uniqueness of the limit, curl y,a(yy,) converges weakly to curlu*a(u*) in

L3(Q).
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In the same way, we can show that grad y2, converges weakly to grad u*? in
4

L3(Q).

Now we must pass to the limit in the nonlinear terms coupling y,,, and z,.
We obtain

T
[ el maten) @ | < bl Tl o
< yml 2020, 12ml 2 ) 16l o0 o, (3:47)
As z,, converges strongly to 0 in L?(Q), we conclude that YT > 0,
(curl yma(zm), @) 12(q)2 — 0 strongly in L*0,T) as m — o0. (3.48)

In the same way, we have

T T
/ (curl 2m & (Ym), ©) 2(0)2 :/ (cwrl 2im, QYm) r2(q)e - (3.49)
0 0

Since Yy € L>®(Q), yme € L*(Q) we obtain

VT >0, (curlzpma(ym),¢)p2q)p: — 0 strongly in L'(0,T) as m — oo .
(3.50)
We obtain a similar result for the term (Y2, div ) 12 (q)2-

The last point to be proved is that we can make sense to u* (¢ = 0) and that
u*(t = 0) is equal to u(t = 0). In order to do this, we use the result

ou*

o € L3(0,T; H3(Q)?) and u* € L2(0,T; L*(Q)) C L3(0,T; H~3(Q)?) ,

which proves that u* is continuous from [0,7] in H~=3(Q)2. Then, we make
sense to u*(t = 0) in H~3(2)2 ; moreover y,,(t = 0) is equal to ug,,, and
Uom, converges to ug in V. We deduce that u*(t = 0) = uo.

Now, we have to pass to the limit in the continuity equation. We recall a
result proved in?

Lemma 3.1 Assume that
um € L*(0,T, H™(Q)%), m >3,

U bounded in L*(0,T,V) ,
B > 0 bounded in L°°(0,T; L*(Q)) ,
o 10g h bounded in L°°(0,T; L'(Q)) ,

ag_;n + div (Umhm) =0
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then,

/ hm0 dz dt — / h*© dx dt for each © € L*(0,T; L>=()) (3.51)
Q Q

Up o, — w*h* weakly in L*(0,T; L*(Q)?) . (3.52)

Setting ., = Ym + Zm, we show that :

(Ym + Zm)hm — u*h* weakly in L'(Q) . (3.53)

Now it is possible to pass to the limit in the system constituted by equations
(3.24) to (3.28). We find that u* and h* satisfy the following problem:

(%,%) - %(U*2,diV<Pi) + (curlu*a(u*),tpi) + (a(u*),cpi)

+A((u*,<pi)) - (h*,div @i) - (f, <pi) Vo, €V (3.54)
oh*
at

and u* (¢ = 0) = uo, h*(t = 0) = ho.
Thus (u*, h*) is the unique solution of problem (V). O

+div (u*h*) =0 (3.55)

3.3. Numerical resolution method

The numerical resolution of this problem and the numerical method presented
in section 2.1 are nearly identical. The only difference in these two methods resides
in the treatment of the unknowns associated with the large and small velocity
components. Indeed, we always obtain

dx i
dt

= Filwj,ax) + Gi (3.56)

for the velocity component y,,, but we have

dl‘i
dt

= ﬁ'i(acj,ack) + G; (357)

for the velocity component z,, where F; is simpler than F).
The continuity equation is solved as above using the method of the characteris-
tics.

4. Global Galerkin method

In this section, we use the linear Galerkin method to solve the momentum and
continuity equations. Then, the continuity equation is not quite verified. We do not
have the estimate hlogh bounded in L>°(0,T; L'(2)). However, as the existence
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of the solutions to problem V has been proven, we show that the approximated
problem has a solution and we can obtain some convergence results of this solution
o (u, h) solution of V.

4.1. Description of the method
Let {p1,...,Pn,--.} be a basis of H' () satisfying the following relation

—Ap; = [ip;

O<pm <pz < ... ,puj —00asj— oo

We denote by H*(Q), the subspace of H*(2) generated by the m first functions
{p1,p2,...,pm} and

Umn x, t ZCUZ sz m n 35 t Zyk pk (458)

where (U n, hm,n) is a solution of the weak problem (V)

(%a%) — %( . n div cpl) (curlum,na(um,n),cpi) + A((“m,n,%’))

—(hm’n,divcpi) - (f,cpi) in Q, ¥oi,i=1,...,m (4.59)

8h'm7n . _ . .
( ot ,pl) + (le (ummhmm),pz) =0 inQ, Vp;,t=1,....,n (4.60)
U (t = 0) = Uomn € Vim and by, n(t = 0) = homn € H (Q),. (4.61)

4.2. Weak convergence results

If 1 is a non-negative constant, then we obtain the following result:

Theorem 4.4 The different constants are defined in the same way as in Theorem
2.1, except for constant B, which is defined by B = 2A — X\ — 2¢, with € > 0.
Let womn € Vi, homn € H'(Q),, and f € L2(0,T, H=Y(Q)?) satisfying

2 2 2 B 2
X ”f”LZ(o,T;H*l(n)) + ”uomn"L2m) +4e1 <90 5

B
fuomal.o <0 ()

® (Um.ns him,n) solution to (Vi n) converges weakly to (um, by ), solution to the
problem (Vy,), in L?(0,T; LY(Q)), q < 2.

e For each m, there exists n(m), such that (U n(m), hm,nim)) converges to
(u, h), solution to (V), in L}(Q) x LY(Q).

Then
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The proof of this theorem is given in three steps

e Estimate of hyy, , in relation to wpm, .-
e Estimates in the momentum equation.
e Passage to the limit in the two equations.

Proof.

(i) Estimate of hy, ,, in relation to t, ,

We change p; by hp, n in equation (4.60). It then follows that

Oh
6”27” hinn + / B ndiv (U nhmn) =0, (4.62)
Q Q
hence
8h2
/ B2, o div (Umn) =0, (4.63)
Q
therefore 1
a"hm n"L 200, < "hm,n"i%m |div umm”Loom) . (4.64)

Owing to the Gronwall lemma, we obtain VT > 0, Vt € [0, T

t
1 ()22 0y < Mo (0)]72q, exp (/0 iVt (T)] o dT) - (4.69)

(ii) a priori estimates

When we obtain the energy estimate of the momentum equation, the terms
(u?,divu) and (h,divu) are not necessarily bounded.

First, we estimate these terms for a time 7}, which is sufficiently small, and
then we show that T}, does not go to 0 as n goes to +oo.

Next, we obtain a convergence result of (tm n, Bm.n) t0 (Um, hm) in L1(Q) x
L'(Q) weak as n — +oo. Finally, we prove that (U, n(m)s Prm,n(m)) converges
weakly to (u,h) in L*(Q) x L'(Q), with a judicious choice of n.

Indeed, we have

T
/ / hin ndiv g, A2 dt < ||hm7n||L°°(0,T;L2(Q)) "le Um,n||L1(O’T;L2m)) )
Q

(4.66)
and thus

T
/ / B @i i A2 At < T il e o 1o 2o o,
0 Q

< T? |hm, n||L°°(o r2e2y T E Um, n”L 2o,z - (467)
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The energy equation is given by

(Buar;v”’umm) + A((umn,umn)) — %(ufn’n, div umn)

—(hm,n,divumm) - (f, umn) .

We estimate the right-hand side with

)\
(#1mn) < g5 lso + ol

Then, as m is fixed, the integration in time gives

1 2
5 ||um7n”co(o,T;L2(n)) CQET ”hm n||L°°(0 T:.2(2)2)
A C
2
Fumnlz2 .m0, [(A 2 5) 2 ”um’””L""(o,T:L?m))]
Lo
< ﬁ ||f||L2(0,T;H_1(Q)) (4-68)

hence, with (4.65)

1 2 A c
5 "um,n"(;o(o‘T;Lz(m) + "um n"L 2(0,T;V) |:<A - 5 - 5) - 5 ”Um,n"Loo(O‘T;Lz(m):|

T
_CETQHhmm(O)”i%m €xp (/0 |div Um,n(t)||L°°(n) dt)

1
S 22\ ||f||L2(o TH-1(Q) * (469)

Now, in order to obtain the a priori estimates, we must give an estimate
for the expression

T
=TV hm,n(0)[32 ) €D (/0 1div thrm 1 (£)] e dt) :

We argue with a value of T}, , which is sufficiently small. Ve; > 0 and for
each n there exists T, , > 0 such that, for each ¢ < T}, ,,, we obtain

t
otV (O, €D ( AT dT) <

and thus

1 2
Wl = Oy 50 ([ 1080, 7
>

"um n( )”L 20y — €1

] S—
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We must prove that Ty, , does not go to zero as n goes to infinity. Tp,, is
defined such that the following equation is satisfied:

1

2
1 "Um,n"cO(o.To,n;Lz(m)

To,n
_CETOQ,n"hm,n(O) "%2(9) €xp (/0 |div Um,n(T)”Loo(m dT)

1

= om0 22 o, — &1 (4.70)

Let us suppose that To > 0 does not exist such that (4.70) is satisfied for
each n. This means that

Tpn —+0asn— oo

and thus
2
||um7n||co(0,TO‘n;L2(Q)) — "um,n(o)"iQ(Q) - 451 asn — oo

which is impossible.

Consequently, we have the relation

1

2
4 ||um7n”co(o,T;L2(9))

A C
2
+ "Um,n”Lz(O‘T;V) [(A - 5 - 5) - 5 ”um,n”LOO(o,T;L?(n))

1 9 1
< ﬁ ||f||L2(0,T;H_1(Q)2) - Z"um,n(o)”zz(n) +er (4-71)
If we set B = 2A — X\ — 2¢, we can obtain the a priori estimates if the data

are chosen in order to satisfy the following equation

B — C |umul >0

L°°(0,T;L%(Q))
Then, for each t, we must have

B

ltmn (D200 <

and we argue as in”.

We deduce that wy, , is bounded in C°(0, To; L*(2)?) N L2(0,To; V), b is
bounded in L% (0,Ty; L?(2)) and we extract two sequences, noted m, , and
hm,n which converge to u;, and hj, as n — 400 respectively.

The previous argument is true for ¢ € [0,7,[. But the functions uy,, , and
hm,n are continuous in time and it is possible to extend these results on [0, T’
for each T > 0.
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(iii) Passage to the limit

We are now going to prove that wm, nhm,, converges weakly to uy hy, in
L2(0,T; L1(Q)) (with ¢ < 2). To this end, we must verify that

/ (Umnhmn — umhy,) @ = / U (Pman — hy) @
Q Q

4 [ By i —ui) e VoE (LIQ) . (72)
Q

We have proven that wu,, is bounded in L?*(0,T;H'(Q2)?) and then in
L?(0,T; LP(Q)?), p < 0o, with embedding theorems. Moreover, we have h, €
12(0,T; L2(Q)).

Thus, if we choose ¢ in L2(0,T, LY(Q)?), q > 2, we obtain :

Wt € L2(0,T; L2(9)) .

Then
/ (U —uy) hyp =0 asn— +0o .
Q

In the same way, we have u}, ¢ € L?(0,T; L*(Q)?), and, since Ay, , converges
weakly in L2(Q), then

/ (hm,n - h;(n) Um,nP — Oasn — 0.
Q

We deduce that (u*,, h¥,) is a solution of the problem (V). As this problem

m? m

has a unique solution?, we have (u,, h%,) = (tm,hm)-

In the previous estimates, the convergence of y, ,, (resp. hm,n) to ul, (resp.
h¥,) is not uniform in m. However, we show that we can extract a sequence
from (tm,n, hm,n), always denoted by (tmn, hmn) which converges weakly in
(L?(0,T; L)), ¢ > 2. Indeed, we have:

[ =00 = [ = i+ [ (=)

The weak convergence of u,, to u gives
Ve >0,E|m//(um—u)g0< = ,
Q 2
and for each m, there exists n(m) such that

g
(um,n(m) - Um)QO < 5 ;
Q

from which we obtain the result.
In the same way, we show the convergence of h,, , to h and the convergence
of (Um,nhm.n) to (uh). O
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4.3. Strong convergence results

For a fixed value of m, we can establish some strong convergence results for
P, with the Aubin theorem. Previously, we proved that w,,, is bounded into
C%0,T; H*(Q)?). As hy,p, is bounded into L2(0,T; L?()), we have

Up.n P, bounded into L?(0, T; L*(2)?)

hence
div (tpm,n Fom,n) bounded into L*(0,T; H™(Q)) .

We thus deduce that Bhé“;'" is bounded into L%(0,T; H *(2)). The Aubin the-
orem with :

Bm.n bounded into L?(0,T; L*(©2)) and % bounded into L?(0,T; H~'(Q)) ,
therefore gives
hm,n — hy  strongly in L*(Q) .

In the same way, it is clear that u,, , converges strongly to u,, in L?(Q).
It is possible to obtain an error estimate by substracting (2.18) from (4.60),
multiplying by A, n — by, and integrating over (2. We obtain

1d
__”hm,n - hm”2 = / div (Umhm)(hm,n - hm)
2dt ey
- / le [um,n(hm,n - hm)](hm,n - hm)
Q

- / Aiv () Fomm — o) (4.73)
Q

therefore,

i = b 22y < i = Bonll s gy (187 (i) 20

N | =
&.|Q.

1Y (i Fom) | 2c)
- /Q Aiv [t (o — )] (B — o)+ (4.74)
The last term on the right-hand side of (4.74) is changed to
/Qdiv [ (homn = B)] (B — him) = % /Qdiv (U)o — b)) . (4.75)
Integrating (4.74) in time, it comes
U [ (8) = o ()22 < 2o = Bl 2 g ( iy (i) 2
— B (0)122

—/ div (wmn) (hmn — hm)? (4.76)
Q
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Finally, as h,,, converges strongly to h,, in L*(Q),
ANEN /Y >N, (hmmn—hm)> < (hmm —hm) <1.

Thus,
Sltlp [ ,n () — hm(t)”i%n) < Alhmn — hm||L2(Q) (2||div (umhm)”LZ(Q)

21V (i) |2 + 1Y ()2 )
o, (0) = Fom (0) 2. - (4.77)

We can obtain some stronger convergence results if we argue as in2.

4.4. Numerical resolution method

Theorem 2.2 proves that the set composed of the functions p; which are solutions
to problem (P2), constitute an orthogonal basis of H'(Q). This basis is used for
the projection of the continuity equation. We thus obtain m + n equations of the
form

diL”i

prali Fi(xj,zx) + Hi(y;)
dy;

ar = @i(l'jayk)

The functions F;, H; and ©; are obtained by integration on the domain of basis
functions. Contrary to the methods using the characteristics, it is not necessary to
compute the trajectory and to evaluate integrals on the domain for each time step.
However, the presence of several non linear terms are costly in terms of CPU time.

5. Global nonlinear Galerkin method

In the previous section, we justified the use of the Galerkin method to solve
the continuity equation. We will now apply the nonlinear Galerkin method to
the momentum and continuity equations. This method allows us to reduce the
simulation time.

5.1. Description of the method

We define up, n = Ym,n + 2m,n With

Y = Y wi(D)p(x) and zmn = Y zi(t)p(x) (5.78)
i=1 i=mi+1
and hy,.p = Gm,n + NMim,n With
k=1 k=nq+1
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solutions of the following problem (V7 )

Wm,n
( ot 7<pi) + b(ym,na Ym,n,» <Pz) + b(ym,na Zm,n, ‘pz) + b(zm,na Ym,n, ‘pz)

+(a(ym,n)7§0i) + (a(zm,n)acpi) + A((ym,nacpi))

—({m,n,divgoi) - (nmm,diwpi) = (f, <pi), Voi,i=1,...,m; (5.80)

(8%27”,“) - (ymmCmm,gradpk) - (ym,nnmm,gradpk)

- (meCmma gradpk) =0, Vpr, k=1,...,m (5.81)

(Z202) 4 b ot + (0).01) + A (200

—(Cmm,divsoi) = (f, soi), oi,Yi=mi+1,...,m (5.82)

(B’ZZ“ vpk) - (ym,nCm,n,gradpk) =0, Vp,k=ni+1,...,n (5.83)

where b(, , ) represents the nonlinear terms.

5.2. Weak convergence results

If € and &' are two positive constants, then we obtain the following result

Theorem 5.5 All the constants are defined as in Theorem 2.1, except for B, which
is defined by B = (A — 3 — max(e,£'))/V2.
Let ug €V, hg € L? and f € L*(0,T, H~1(Q)?) satisfying

2. ) B\’
2\ ||f||L2(o,T;H—1(Q)) + lyom + Zom||L2(Q) +4e1 <0 C

(0] 20 < 6 <§>

c
Then
® 2mn — 0 weakly in L*(0,T; V).
® 2mn — 0 strongly in L*(0,T; L?(Q2)?).
® Ym.n — 0 weakly in L*(0,T;V) and weakly in L>(0,T; L*(Q)?)-*.
e V§>0,Ym,IN(m)/

Vn > N(m), fQ Cm,n© dz dt — fQ hO dr dt <§ VO € LY(0,T;L>(Q)).
) 9ymn bounded in L*(0,T; H3(Q2)?)

o (curlym na(Zmn), @) 22 — 0 strongly in L*(0,T).
o (curl 2o n@(Ymn), @) p2(qy2 — O strongly in L*(0, T).
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® (Ym.nZm.n,div 4,0)122(9)2 — 0 strongly in L*(0,T).

* (Ym.nTm.n Vpi)L2(Q)2 — 0 strongly in L'(0,T).

® (Ym.n,Cm.n) converges weakly to (um, hm) in L?(0,T; LY(Q)) for ¢ < 2 where
(U, him) s the solution of (Vi) .

e Vm > 0, there exists n(m) such as (Ym, n(m) Gm,n(m)) converges weakly to
(u, h) solution of (V) in L'(Q) x L'(Q).

The three main steps of the theorem proof are the following:

e Estimate of (,», and ny,,, according to ym, ., and 2y, ..
e a priori estimate for y,, , and 2, n.
e Passage to the limit.

Proof.

(i) Estimate of (p,n and ny,,n according to Ym., and zpm, p

First, we estimate |(m,nlz2(a) + |1m,nllz2) according to ””m’n||i°°(o,T;L2(m2)'

In order to obtain this estimate, we set pr = (m,n in (5.81) and pr, = Nm,n in
(5.83) and we add the two equations

1d
5& ["Cm,n"z%n) + ”nm,n"z?(m] - (ym,ncm,navcm,n)

- (ymmCmma vnm,n) - (Zm,nCmma vam)

—(ym,nnm,n,vcm,n) =0. (5.84)
Since we have
(vmnConnr V) = =3 (G ¥ ) (585)
(2o Vmn) = =5 (G liv 20 (5.86)
and
(ym,nCm,n,Vnmm) = _(ymmnmmavam) - (Cm,nnmm,div ymn) ;
we obtain
el + ImnlZa) + 2 (o iv i)

+%( 2o iV 2 ) + (Gt i g ) = 0 (5.87)

We can write the following estimate

d
E [”nmm"i?(n) + ||Cm7n||%2m)] S ["nmm"i?‘(n) + ”(m,n”%%m]

. [||div Yol o ey + Idiv zm,nnmm] . (5.88)
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Using the Gronwall lemma, we obtain V7' > 0,

”nm,n“iZ(n) + ”Cfn’n"i%n) < ("nm’n(o)”i%n) + "Cm,n(o)"i%m)

T
exp ( /0 [”divym,n”mom)+||diVZm,n||Loo(m] dt>(5.89)

(ii) a priori estimate of Yy, ,, and zpy, p
The energy equation is obtained by setting ¢; = ym,, in (5.80) and ¢; =
Zmn in (5.82). Then, by adding the two equations, we obtain
1/d d
3 (lmabae + 35lomali ) + 4 (manlt + lomal)
- (Cm,na div ym,n) - (nm,na div ym,n)

. 1 .
- (Cm,n: div Zm,n) - 5 (y?n,n, div ym,n)

—(ymmzmm, div ymn) — %(y?nn, div zmn)
= (£o9mn) + (£ 2mn) - (5.90)

The nonlinear terms and the terms with 7,,,, and (,,, are not necessarily
bounded. In order to solve this difficulty, we argue as in Theorem 3.3. First,
we write

T T
/ / N iV Y, A d E -I-/ / Cmndiv 2z, dQ dt
o Ja 0o Ja

< ”nm:n"L‘x’(O,T;Lz(Q)) ||diV ym7n||L1(0.T;L2(9))

Gl e 0,702 0 145V Zmanl 1, 71200y 5 (5-91)

T T
/ / N, iV Y, A d E -I-/ / Cmndiv 2z, dQ dt
o Ja 0o Ja

S T ||77m,n"Loo(o,T;L2(m) "ym7n”L2(0‘T;v)

FT Gl oo o.02200y) 12monl 200y - (5:92)

and

Therefore, with € and &’ arbitrarily chosen, we obtain

T T
/ / N iV Yo A d E -I-/ / Cmndiv 2z, dQ dt
0o Ja o Ja

2 2
< CET2 (||77m,n||L°°(o,T;L2(n)2) + ||<m7n||L°°(0,T;L2(Q)2))
2 2
+e "ym,n"L2(0,T;v) + EI ||Zm,n"L2(o,T;v)
2 2
< T2 (P2 sty + 1ol

2
+ max(g, &) lwmnli2 00 - (5.93)
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Next, we bound the right-hand side as follows
1 A
(£ymn) + (Fr2mn) < 55171y + Slimanl?
the nonlinear terms are bounded as in section 3

1

5 (92 41V ) + (U Zmns AV ) < V2Ot 2o ttml - (5.94)

By integrating the energy equation over time, we obtain the following esti-
mate

1

2 2
2 (”ym7n”co(0‘T;L2(n)) + ||Zm7n||CO(O’T;L2(Q)))

el KA A max(s,s'>) V3C gl

L2(0,T;V) 2 L™ (0,T;L2(Q))
2 2
_CET2 (”nm,n"Lw(o‘T;LZ(Q)Z) + ||<m7n||L°°(0‘T;L2(Q)2))
2.2
S X ||f||L2(o,T;H*1(Q)) . (595)

We must estimate the term

T
I oxp ( | (1 ) gy + 14 2] ) dt)
0
Then, we argue as in section 4 with a small time step Ty, ,,. If n is given and

Ve1 > 0, then there exists T, , > 0 such that, for each t, t < T, ,, we have

1
Z||U”m7n(t)||i‘0(07t;L2(Q)2) - Cst2 ("nmm(o)”%%n) + "{m,n(o)”%%m) :

t
. €xXp (/0 (||diV Ymon (T oo gy + [div Zm’n(T)”Loom)) dr>
1
> Jlumn(0)[2q) — &1 - (5.96)

We need to verify that T, , does not go to zero as n goes to infinity. T,
is defined such that the following equation is satisfied:

1 2
Z ||um7n||CO(O‘TO’n;L2(Q)) - czTOQ,n ("nm7n(0)”i2(g) + "Cm,n(o)"z?(m) .

To,n
exp ( /0 (1% Y (D) )+ I Zi i (D ) dT>

1

= lemn ()20, — 1 - (5.97)

We now suppose that T, , does not exist such that (5.97) is satisfied for
each value of n. This means that

Ty +0asn — oo,
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and then
2
"um,n”co(o,TO,n;LZ(n)) - ”um’n(o)”i%m —deyasn — o0,

which is impossible.

We thus obtain the inequality:

1d A C
ZE"Um,n”i%n) + |um7n|3 {(A 37 max(s,s')) - Enym,n"ﬂ(m
1 1
< gl 1o~ limn O +21 (599

If we set B = (A — 3 —max(e,e'))//2, then the estimates are obtained by
choosing the data such that :

B — Clum,nlz@ > 0.

For each value of ¢, we must have :
B
[ n ez < C-

To prove this point, we argue as in”.

We deduce that ¢y, ,, and 2y, ,, are bounded in C°(0, Ty; L?()?)NL*(0, To; V)
and that we extract two sequences, still denoted by y,,,, and z,,,,, which
converge weakly to yy, and z;;, as n = +oo0.

In the same way (., and 9y, are bounded in L*°(0,T,, L?(2)) and we
can extract two sequences, still denoted by (p,.n, and 9,,,, which converge
weakly-* to (%, and nJ,.

The previous argument is true for ¢ € [0,7p[. As all the functions are
continuous, it is possible to extend the result on [0,T[, VT > 0.

(iii) Passage to the limit
Owing to the definition of 1, y, it is evident that :
Vpg, / Dm,nPk =0 when n; >k,
Q

and 1m n — 0 weakly in L°°(Q), as n — +o0.
It therefore follow that

/ NmnYmngradpy — 0 asn — oo . (5.99)
Q

Next, as 2, is bounded in L?(0,T;V), we can prove, using an argument
similar to that of section 3.1, that:

Zmm — 0 strongly in L?(Q) as n — +oo .
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Finally, with the properties of the basis, we have

1
(Mmyn, div or) = =A7 (Mmon,Pk) — 0 as n — +o00 . (5.100)

By using the same argument as in the global Galerkin method, we can prove
that:

/(ym,n{m,n —ymCr)p = 0asn — +oo . (5.101)
Q

We deduce that (y,, () is a solution to problem (V,,,). Since this solution
is unique, we necessarily have (y,, (r,.n) = (Um, o).

The convergence of Yy, n (resp. (m,n) t0 Up, (resp. hp,) is not uniform with
m and we can not directly conclude that ym, n (resp. (m,n) converges to u
(resp. h). As in the case of the global Galerkin method, However, with a
judicious choice of m and n, we can obtain the difference between y,, , and u
(resp. (m,n and h) which is as small as we wish. O

5.3. Strong convergence results

As in section 4.3, we can establish some strong convergence results for ¢, , with
the Aubin theorem, for a fixed value of m. First we deduce that

Cm,n — hm  strongly in L*(Q) ,

with the Aubin theorem.

In the same way, we prove that y,, ,, converges strongly to u,, in L*(Q).

It is possible to obtain an error estimate by substracting (2.18) from (5.81),
multiplying by (m,n — b and integrating over ). We obtain

1d

> 1. Cm,n - hm i2 = / div umhm Cm,n - hm

>= Loy = [ div Gomn) )
- /g; le (um,nCm,n) (Cm,n - hm)

- /S; div (ym,nnm,n)(gm,n —hm) , (5.102)
and finally, as in section 4.3,

1[G 8) — o D0, < G~ Pl g (2108 i)
+2||div (Um,nhm)||L2(Q) + ||div (um’n)”LZ(Q)

L2018V Y, w2y ) + Fimn(0) = B (O)]22 s, - (5.103)

6. Numerical applications

6.1. Computation
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In order to compare the results presented here with previous results, we make
the following assumptions :

The studied domain is a square with 1000 kilometers in length. If we change the
spatial and temporal scales, this square is transformed into a square of one unit in
length.

We consider a fluid layer of density p, and mean elevation of 200 meters, which
moves on a fixed fluid layer of density p; (> p2). We replace the acceleration of the
gravity with a coefficient of reduced gravity ¢’ defined by

g pL— P2

P1

?

here, ¢’ =2.1072m.s~2.

The boundary conditions express waterproof conditions on all the boundaries.
The surface stress is the wind stress tensor used by P. Orenga! and F.J. Chatelon?.

The space discretization used for the integrations and the method of the charac-
teristics is 1860 elements uniformly distributed over the domain. The real time step
is approximatively 15 minutes. The coefficient of eddy viscosity is 1071 m?.s71.
This coefficient is chosen sufficiently small in order to obtain a significant represen-

tation of the fluid circulation on the first 60 eigen functions for velocity.

6.2. Remarks

With the method of the characteristics, we evaluate the water elevation on the
mesh points. We have to interpolate the value on each element and to make nu-
merical integrations on these elements. The cost of this method is proportional to
the number of elements.

On the other hand, when we use the Galerkin method, the space discretization is
only made for the computation of the constant coefficients (once for a given domain)
and the representation of results. The computation costs are (nearly) independent
of the mesh, but they directly depend on the dimension of the space to which the
solution belongs.

Thus, comparison of the different methods is problematic, to which we add
the optimization of algorithm and the use of different stability criteria for each
numerical scheme. Although we have sought, where possible, to optimize codes and
parameters, the results may not be optimum.

The advantages of the global nonlinear Galerkin method as compared to the
global Galerkin method are presented in*. In particular, a comparison was made
in the present study, between the method of the characteristics and the Galerkin
method in solving the continuity equation.

6.3. Numerical scheme
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The particular geometry of the domain allows us to obtain an analytical solution
to problems (P2) and (P3). In a general case, these problems are solved with
ModulEf, the finite elements software developped by the INRIA. If we use Hermite’s
finite element with three degrees of freedom, we directly obtain the gradient and
the Curl of the functions without numerical differenciation.

We have chosen a method of quadrature in order to accurately integrate the
diffusion term?. This method allows us to use a greater time step than in the
classical methods and it is particularly adapted to high frequencies. The other

terms are integrated with an implicit Euler scheme.

6.4. Results and discussion

Theoretically, the method of the characteristics for the continuity equation gives
the best approximation of the solution. Then, we use as reference value, the results
obtained using the usual Galerkin method for the momentum equation and the
method of the characteristics for the continuity equation.

(i) Comparison between the usual Galerkin method and the method of the char-
acteristics

First, we compare the results obtained using the method of the character-
istics and the Galerkin method according to the number of eigen functions.
We use the notion of potential energy (Ep) ; this notion corresponds to the
energy stored by the deformation of the fluid layer®:

1 _
Ep= §pg(h — h)? (6.104)

where h represents the reference state and p the density of the fluid which is
supposed to be constant. During the decomposition of the variations in water
elevation by the Galerkin method, the potential energy is given by:

Ep(hm,n) = p—;] > i (6.105)

In the same way, when we use the method of the characteristics, it is nec-
essary to evaluate the terms (h,,,div ¢;), which correspond to v/A;(hpm,p:).
These are the L2-projections of water elevation on the basis {p1,p2,...Pm}
(to within about a multiplicative coefficient). The potential energy can be
approximated by:

~ %i( m, Dk )2 (6.106)
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The evolution of potential energy for the approximations of water elevation
for 10, 20 and 30 eigen functions is presented in Fig. (1).

Potential energy

3.0x10" T T
caract.
] E;ai: n=30
Ga: n=20
2.0x10 i Ga:n=10
1.0x16
.//’»
5.4x10° L ; T
1.0x1¢ 1.0x1¢ 2.0x1¢

Fig. 1. Comparison between the characteristics and the Galerkin method according to the number
of eigen functions.

If we take into account an increasing number of eigen functions, we reduce
the oscillations. However, if the number of p; eigen functions (used for ele-
vation) is greater than the number of grad p;, functions (used for velocity, see
subsection 2.2 then it appear a high level of numerical instability. It should
be noted that the Galerkin method with 30 eigen functions gives a small
overestimate of the final potential energy.

In Fig. 2 to 5, we present the simulation results generated using either the
Galerkin method with 30 eigen functions or the method of the characteristics
to solve the continuity equation.
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Characteristics Galerkinn =30

Fig. 2. Variations in water elevation Fig. 3. Variations in water elevation
(characteristics). (Galerkin (n=30)).
Characteristics Galerkin n =30

Fig. 4. Velocity field (characteristics). Fig. 5. Velocity field (Galerkin n=30).
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We observe a good correspondence between these results. They justify the
use of the Galerkin method which is less costly in terms of computation time.

Comparison between the usual Galerkin method and the nonlinear Galerkin
method

Several numerical results have been given in*. We simply recall the main
steps of the simulation.

The choice of the cut frequency between the large and small components
(my and n4) is done by using energy criteria. Thus, m; is determined by
comparing the ratio of the kinetic energy associated with y,,, and z,,,, and a
reference value. We recall that the kinetic energy of u,, is given by :

1 1 &
Ee(upm) = 5||um||iz(m =3 ZXE (6.107)
i=1

We define two constants, €, and €,. Thus, the values of m; and n; are
determined from the relations :

. Ec(zm.n)
- M M, Z8Emn) o L 1
my mln{ /Ymy >  Belgmn) = € } (6.108)
. Ep(1m.n)
= ——= < . .
ny = min {N/Vm > N, Eplomn) = €h (6.109)

Note that with these definitions, the values of m; and n; may change over
time in order to adapt to the circulation dynamics.

According Jauberteau®, we have also implemented a temporal multilevel
adaptative method using a V-cycle numerical scheme.

7. Conclusion

This work allows us to validate the solution approximation for shallow water
equations, using the Galerkin method for both of the model equations. Moreover,
it reveals the theoretical justification of the nonlinear Galerkin method for both
equations and completes the numerical results presented in?.
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