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We propose an effective model to describe the Raman scattering experiments in crystalline mate-
rials with body-centered tetragonal (BCT) lattice. Our model takes into account different emerging
spin liquid states. The states display the breaking of lattice translation symmetry from a body-
centered tetragonal (BCT) to simple tetragonal (ST). The breaking of lattice translation symmetry
results in a folding of the Brillouin zone, which translates itself into either a gap or a pseudogap.
This (pseudo) gap can be observed in the Raman spectra for each of the irreducible symmetries that
we investigate. We introduce an alternative approach to the effective mass approximation to treat
the A2g symmetry based on resonant process. The results for the A2g symmetry show that there
is a Raman response associated with a particular spin liquid phase which also produces a gap if we
include modulation effects linked to a specific local staggered order. We also discuss the relevance
of this result for the problem of hidden order in URu2Si2 and to the A2g results referred by recent
experiments. Complementing these analysis, we use the standard effective mass approximation to
analyze the responses associated with each state for the A1g, B1g and B2g irreducible symmetries.

PACS numbers: 71.27.+a, 78.30.-j, 75.10.Kt

I. INTRODUCTION

Raman spectroscopy has become an indispensable ex-
perimental tool for understanding the physics of strongly
correlated systems. It has been used to characterize ex-
citations in cuprates [1–3], iron-based superconductors
[4, 5], heavy fermions [6–8] and more recently in systems
that exhibit elementary excitations with a topological
character [9, 10]. This experimental technique can pro-
vide a wealth of quantitative and qualitative information
about the electronic behavior and the lattice dynamics
of systems [11]. It also contains information about the
unconventional charge and spin dynamics, such as the
possible existence of unconventional “chiral” spin state
and charge currents [12, 13].

In this article, we present an effective theory to model
Raman scattering experiments of new ordered states in a
body-centered tetragonal (BCT) lattice. Similar effective
models were proposed with the purpose of investigating
the hidden order phase in URu2Si2 [14–16]. In a general
manner, this paper makes use of our previous work [17],
where we have demonstrated the possibility of stabilizing
both the Antiferromagnetic (AF) and the spin liquid (SL)
phases in this particular lattice structure. The phase dia-
gram shows the competition between these two phases by
the variation of one parameter that characterizes either
the spin or the orbital degeneracy. Here we shall consider
the interplay between different spin liquid states. With
the aim of applying the symmetry analysis of Harima et
al. [18] to that Raman data, we shall relate each phase
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with a particular space (point) group that will be intro-
duced by means of a specific parameter. Each of these
states break the lattice translation symmetry from BCT
to simple tetragonal (ST) which translates into distinct
Raman signatures that are related to different parame-
ters present in our model.

In the case of the space group No 139 (D4h point
group), associated with the fully symmetric BCT lattice,
the polarization of the incident and the scattered light
set in the experiment maps the excitation modes asso-
ciated with the irreducible representations of the crys-
tal structure. We shall focus in the A1g, A2g, B1g B2g

symmetries. A standard approach that one can use to
simplify the analysis is the effective mass approximation,
which assumes that there is no transference of momen-
tum between the experimental setup and the sample. As
a consequence of that, the “effective density” measured
by Raman is weighted by a factor which is proportional
to linear combinations of the second derivative of the dis-
persion of the system with respect to the components of
momentum. However, this assumption cannot provide
any signal in A2g. Thus, we introduce an alternative
approach for A2g, that takes into account the resonant
effects of the scattering process.

The outline of the paper is as follows. In section II we
present our effective model. We introduce the effective
Hamiltonian with the specific parameters that take into
account the possible phases associated with each space
group. In section III, we describe how we can obtain the
signal for the A2g symmetry and show our numerical re-
sults for it. We also discuss the connection between the
real experimental finding for URu2Si2 in this particular
symmetry and the possible spin liquid scenarios. In sec-
tion IV, we shall describe our theoretical approach and
numerical results for the Raman response for the A1g, B1g
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and B2g symmetries. In section V, we discuss our most
significant results and their relation to other experiments.
Finally, soon after that we present our conclusion.

II. THE MODEL

A crucial ingredient to build an effective model is the
underlying lattice symmetry that we want to address.
Here, we propose a Hamiltonian that describes spinless
fermions that are moving throughout the sites of a BCT
lattice by means of a kinetic hopping term. This effective
phenomenological model can emerge from a realistic mi-
croscopic approach when correlations stabilize SL states
[17, 19] or any other commensurate state with a folded
Fermi surface, like e.g., the orbital density waves [14],
Fermi surface instability [15] or spin-density waves [16].
In this work, we do not consider further effects of fluc-
tuations on top of those correlated effects. Instead, we
focus on low energy Fermi liquid-like excitations of these
states with the specific BCT lattice broken symmetry.

We can write down the Hamiltonian as

H =
∑
i

(E0 +meiQ·Ri)c†i ci +
∑
〈i,j〉

tijc
†
i cj (1)

The operators c†i and ci represent the creation and annihi-
lation of spinless fermions at a given site i with position
Ri. The parameter E0 adjusts the chemical potential
while m defines a commensurate local staggered order
(LSO). The hopping tij connects nearest neighbors on
the BCT lattice, but, besides that, it may also break the
BCT symmetry down to the ST lattice symmetry.

In the Paramagnetic (PM) phase, the lattice structure
is BCT symmetric. We assume that the system suffers
a phase transition to a particular state with a lower lat-
tice symmetry, namely the simple tetragonal (ST). This
lowering of symmetry is characterized by a folding in the
Brillouin zone (BZ) from the BCT lattice into the ST
one. The Z and Γ points of the first BZ of the ST and
BCT, respectively, are connected by the nesting vector
Q = {1, 1, 1}.

The possible states we consider are represented in
Fig.1. Their relation with the point group symmetries
(space group) and the model parameters is summarized
in table I. We start in the framework of a normal PM
state with the system having its structure defined by the
BCT space group No 139 (I4/mmm, D4h). We assume
that it can pass from this normal state to a new phase de-
fined with three different ST space groups which could be
associated with the No 123 (P4/mmm, D4h), the No 126
(P4/nnc, D4) or the No 128 (P4/mnc, C4h). Moreover,
the point groups D4 and C4h have the same selection
rules in a Raman experiment as the initial point group
D4h [18].

We introduce appropriate parameters that capture the
space groups of the different ordered states. As we men-
tion previously, the parameter meiQ·Ri can account for

t1

t2

t3

(a) (b) (c)

(d)

FIG. 1. Schematic representation of the four possible ordered
states that we consider in our model. Figure (a) shows the
paramagnetic phase that displays the full BCT lattice struc-
ture with space group No 139. Figure (b), displays the Anti-
ferromagnetic state, which has the simple tetragonal lattice,
with space group symmetry No 123.In (c), we represent the
modulated SL phase, associated with the space group No 126.
In (d), we display the chiral SL phase, that is related to the
space group No 128.

TABLE I. Summary of the point groups and phases that spec-
ify each of them. We determine whether the point groups
break or not the symmetries of D4h. The operations are Time-
reversal symmetry (T R), inversion symmetry (I), rotations
of π/2 (C4) and reflections related to xy plane.

Label in
Fig.(1)

(a) (b) (c) (d)

Phase PM LSO MSL CSL
Space
group

No 139
(I4/mmm)
D4h

No 123
(P4/mmm)
D4h

No 126
(P4/nnc)
D4

No 128
(P4/nmc)
C4h

Model
parameters

m = 0,
∆m = 0,
∆c = 0

m 6= 0,
∆m = 0,
∆c = 0

m = 0 or
m 6= 0,
∆m 6= 0,
∆c = 0

m = 0 or
m 6= 0,
∆m = 0,
∆c 6= 0

Lattice
structure

BCT ST ST ST

T R X X X x
I X X x X
C4 X X x x
Pxy X X x X

some commensurate local staggered order (LSO) with
local (onsite) order parameters. The space group No
128 (P4/mnc) characterizes a chiral spin liquid (CSL)
phase with complex nearest neighbors hopping parame-
ter tij = t1 ± i∆c. The space group No 126 (P4/nnc)
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characterizes a modulated spin liquid (MSL) phase with
a real nearest neighbor hopping tij = t1 ± ∆M . In this
definitions, m, ∆c and ∆m are real positive quantities.

Since the c’s operators represent fermions, the mag-
netic state, specified by the parameter m, is justified by
the fact that the fermions here are like spinons in a de-
confined phase which have an intrinsic magnetic moment.
They lead to the formation of SL phases and represent
the elementary excitations of the system, which possess
the general character of being fractionalized [20].

If the hopping parameter tij is complex, its imaginary
part is associated with the parameter ∆c. The sign choice
in the definitions of tij relates itself to the orientation of
the link between two neighboring sites at different planes.
In approaching a site, we consider the plus sign, and if
the link leaves the site, we choose the minus sign (see
Fig.1(d)) instead. If tij is real, we add the term ∆m

to the hopping between the first neighbors at different
planes, that is associated with the MSL phase, which
is schematically illustrated in Fig.1(c). The choice of
the plus or minus sign if tij is real represents the kind
of bond between the first neighbors at different planes.
The other real cases are tij = t2 for first neighbors in-
plane and tij = t3, for the second neighbors in-plane, see
Fig.1(a). Indeed, in this work, for the sake of clarity, we
do not investigate the possibility of the in-plane ordering
that might be associated with different lattice symmetry
breaking.

By using the Fourier decomposition of the ci operator

ci =
1√
N

∑
k

eik·Rick, (2)

where the sum in k runs over the first Brillouin zone
of the BCT lattice, we write down the Hamiltonian in
matrix representation with a folded Brillouin zone from
the BCT to the ST (see appendix A). The Hamiltonian
in second quantized form becomes

Ĥ =
∑
k

Ψ†khkΨk, (3)

with the sum over k now running over the first Brillouin
zone of the ST lattice (see a more detailed calculation in
Appendix A). Using the definition of the two-component
spinor Ψk = (ck, ck+Q)t, it follows that

hk =

(
εk V ∗k
Vk εk+Q

)
, (4)

where εk = E0 + t1γ
1
k + t2γ

2
k + t3γ

3
k and Vk = m +

i∆SLfSL(k). ∆SL can either be ∆m or ∆c if we choose
the space group to be that of either a modulated or chiral
spin liquid, respectively. fSL(k) is defined as

fc(k) = 8 sin

(
kxa

2

)
sin

(
kya

2

)
cos

(
kzc

2

)
, (5)

fm(k) = 8 sin

(
kxa

2

)
sin

(
kya

2

)
sin

(
kzc

2

)
, (6)

The derivation of the γ’s factors is made in the appendix
A. The off-diagonal term Vk couples the two bands which
are connected to each other by a nesting wave vector Q.
The structure factors are defined as

γ1k = 8 cos

(
kxa

2

)
cos

(
kya

2

)
cos

(
kzc

2

)
, (7)

γ2k = 2(cos (kxa) + cos (kya)), (8)

γ3k = 4 cos (kxa) cos (kya) , (9)

where a and c are the ST lattice constants.

The symmetry operations which we address in our
model are respectively the time-reversal (T R) symme-
try, the inversion symmetry I, the four-fold rotational
symmetry C4 (π/2) and the two reflection symmetries
concerning the planes Px/y. The T R invariance requires
that Vk = V ∗−k, which is the case for the modulated SL
while for the chiral SL case, we must break the time-
reversal symmetry. Concerning the C4 (π/2) rotations,
the modulated and chiral spin liquid break that rota-
tional symmetry. The MSL phase breaks the reflection
symmetry concerning the plane Pxy while CSL preserves
it.

The diagonalization of the effective Hamiltonian de-
fined by Eq.(3) and Eq.(4) gives the following dispersion
bands

E±k =
εk + εk+Q

2
±

√
|Vk|2 +

(
εk − εk+Q

2

)2

. (10)

This dispersion is defined precisely in the ST Brillouin
zone that results from the folding of the BCT Brillouin
zone. When computing the correlation function, we have
to take into account the dispersion of these two bands.

In the space group No 139, depending on the polariza-
tion of the incident and of the scattered lights, we can
decompose the excitation modes into six irreducible rep-
resentations of the D4h point group. They are the A1g,
A2g, B1g, B2g and two modes Eg. Our focus will be on the
A2g symmetry. Since the effective mass approximation,
which is mostly used to analyze the Raman scattering is
not able to produce any signal for the A2g, we present an
alternative approach to studying this particular symme-
try based on resonant scattering [12]. Later on, we may
complement our analysis by computing the responses in
other symmetries, like A1g,B1g and B2g, by using the ef-
fective mass approximation, that we know can produce
a signal in Raman scattering in these symmetries. Our
calculation take as the Raman response the contribution
of the imaginary part of the correlation function, which
might be defined in terms of a effective density or current
operator (resonant process). The response is weighted
by a respective vertex, which is associated with the irre-
ducible symmetry under investigation.
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III. THE A2g SYMMETRY

As we have mentioned in the end of in the previous
section that the effective mass approximation is not able
to produce any response in the A2g symmetry. The inter-
esting feature about A2g is that it is usually associated
with excitations that possess a chiral nature, as it was
pointed out to be the case for Mott insulators used to
describe the high-Tc cuprates systems [1, 12].

In this context, for example, the denomination “Mag-
netic Raman scattering” refers to the scattering by the
spin degrees of freedom which are associated with the
fluctuations of a chiral operator [1, 12]. This type of scat-
tering is dominated by resonant contributions, which are
produced by the current operator instead of the effective
density correlation function [2]. In order to obtain sig-
natures of this particular symmetry, we have to consider

a different correlation function, which in our context will
play the role of a resonant scattering.

We define an operator that, in the framework of our
effective non-interacting model, is essentially the current-
current commutator at equal time,

M̂µν(q, τ) = [ĵµ(q, τ), ĵν(q, τ)], (11)

with the current operator being defined as

ĵµ(q, τ) =
∑
k

Ψ†k+q/2(τ)γ̃µR(k)Ψk−q/2(τ), (12)

where γ̃µR(k) is the matrix which originate from the
derivatives of hk with respect to the component kµ. The
index R in the vertex is a symbol for resonant contribu-
tion. We can extract the signal for A2g by computing the
following correlation function

χ̃A2g (q, iωn) = − 1

V

ˆ β

0

dτ eiωnτ 〈TτM̂A2g (q, τ)M̂A2g (−q, 0)〉. (13)

The Tτ is the time-ordering operator, V is the volume of the Brillouin zone, and the operator M̂A2g (q, τ) = M̂xy(q, τ)−
M̂yx(q, τ). At this point we can make q→ 0 without loss of generality, and then, we find that

χ̃A2g (iωn) =
1

βV
∑
k,n

Tr
[
γ̃
A2g

R (k)Gk(iνn′ + iωn)γ̃
A2g

R (k)Gk(iνn′)
]
. (14)

We use the finite temperature representation of the
Green’s function, where β is the usual inverse of the
temperature 1/kBT and ωn = 2nπ/β is a bosonic Mat-
subara frequency. The imaginary part is obtained by
performing the analytical continuation in the frequency
domain iωn → ω + iδ, with δ being a small scattering
rate. The Green’s functions Gk can be expressed di-
rectly in terms of the elements in their eigenbasis, i.e.
G±k (iνn′) = 1/(iνn′ − E±k ), by invoking the Ek eigenval-
ues in Eq.(10), with νn′ = (2n+1)π/β being the fermionic
Matsubara frequency. Notice that we can define a differ-
ent vertex for that A2g symmetry, that differs from the
one coming from the effective mass approximation (see
next section), that now happens to be defined as

γ̃
A2g

R (k) =
∂hk
∂kx

∂hk
∂ky
− ∂hk
∂ky

∂hk
∂kx

. (15)

This vertex definition resembles the commutation re-
lation between the first derivatives of hk with respect
to the components kx and ky. It is nonzero if we take
the derivatives of Eq.(4) and it represent the vertex that
could be associated with a Resonant process. Regarding
that a resonant Raman process must have a fourth order
vertex, our correlation function in Eq.(14) satisfy this re-
quirement. In the Appendix B, we explain how we can
extract the A2g response in terms of a matrix algebra by

making use of the direct Pauli matrices.

Proceeding with the numerical analysis, we compute
the correlation function for A2g in Eq.(14). We take the
T → 0 limit and keep t1 activated. The plots in Fig.2
represent the results for the A2g symmetry at the modu-
lated and chiral SL phases. Whereas in Fig.3 we display
the feature of the Raman response in the presence of the
m parameter.

In Figs.2(a)-(b), we vary the values of parameters for
the spin liquids. The space groups for each of these fig-
ures are the Nos 126 and 128, respectively. By increasing
the values of ∆m or ∆c, in both cases, we observe the en-
hancement of the signal by increasing the values of ∆m or
∆c. The lineshape for both phases are similar assuming
a Drude response. No gap is observed for both states.

We also verify the effect of varying m for both ∆m and
∆c fixed. The results are shown in Fig.3(c)-(d). In this
situation, we have the presence of the gap as a conse-
quence of m. However no significant change is observed
in the lineshape, for both symmetries. Note that, since
the space groups Nos 126 and 128 are subgroups of the
No 123, the coexistence between the parameter m with a
non zero ∆m or ∆c still corresponds to those particular
groups.

At this point, we would like to make a connection be-
tween our theoretical results and the hidden order (HO)
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FIG. 2. The Raman response corresponding to A2g symmetry.
Figures (a) display the Raman signal when we increase the
values of ∆m, while in (b) we vary the ∆c parameter. No gap
is observed even though the intensity of the signal is increased
when the δ’s are increased. No signal is observed when ∆c =
∆m = 0. We set t1 = 1.0 meV and use once again a small
scattering rate δ = 0.035meV.

phase in URu2Si2. Despite almost forty years of inves-
tigation, the nature of this mysterious phase remains a
puzzle. A vast arsenal of experimental techniques have
been employed over the years to investigate the HO phase
(for a recent review see [21, 22]), and, more recently, the
Raman scattering [7, 8, 23, 24] should be included in this
list. The results from Raman provided new experimental
constraints for the theoretical propositions to explain the
HO. We briefly summarize some of these results.

The first studies have evidenced that the HO phase
presents a sharp excitation at 1.7 meV and a gap in the
electronic continuum below 6.8 meV. These signatures
have only a A2g symmetry [7, 8]. On top of that, the
study in [8] also reported a peak in A1g. The Raman
spectra present signatures (of the A1g and A2g symme-
tries) in the HO phase. They interpret that the symme-
try broken by the HO parameter results in crystal field
states with distinct chiral properties. They defined this
ordering as being a commensurate hexadecapolar order
[25].

Our results show that the A2g symmetry displays some
signals when one of the two parameters ∆c or ∆m of the
spin liquid phases are active. Otherwise, no signal is
expected. This result opens the possibility for the two
spin liquid states: the modulated SL with space sym-
metry group No 126 (P4/nnc) and the chiral SL, with
point symmetry space No 128 (P4/mnc). It clearly elim-
inates the purely commensurate LSO state, which does
not provide any signal in A2g symmetry. Nevertheless,
we cannot distinguish with exactitude which SL phase is
more or less the most appropriate because the Raman
signatures look the same for the modulated and the chi-
ral SL. Indeed, similarly to what we have found for A1g

and B2g symmetries, the chiral SL and the modulated
SL become pseudogapped phases when m = 0. The gap
is uniquely observed only when m is taken into account.
Therefore, in order to choose which SL phase is more

0 5 10 15 20
 (meV)

0

1

2

3

4

5

6

7

8

′′ (
) (

a.
u.

)

(a)
m=0.5

m (meV)

0.3
0.5
0.8

0 5 10 15 20
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7.5
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12.5
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17.5

20.0
(b) c=0.5

 m (meV)

0.3
0.5
0.8

FIG. 3. The Raman response for A2g symmetry when we have
the presence of m. In (a), we have the modulated SL phase,
which corresponds to state No 126. while (b) displays the
spectra for the chiral SL phase, which corresponds to lattice
symmetry No 128. The presence of m is signalized by a gap
opening in both phases.

appropriate to describe the HO, we must also consider
other properties, like the point group symmetry, to make
more precise predictions about the HO in URu2Si2.

In the framework of the cuprates systems [26], the A2g

symmetry may account for the appearance of excitations
in which quantum fluctuations destroy the Néel order,
with the elementary excitations having a fractional char-
acter with a chiral nature [12, 27, 28]. This may favor the
choice of chiral SL phase as the natural framework for the
appearance of such excitations. However, in their analy-
sis, Harima et al [18] suggested that the space group No
128 might be incompatible with some nuclear resonance
experiments on URu2Si2. On the other side, space group
No 128 is compatible with the commensurate chirality
density wave state discussed in ref.[8].

IV. THE RAMAN RESPONSE FOR A1g AND
B2g SYMMETRIES

A. The effective density response

As a complement to the analysis in the A2g symmetry,
we shall discuss the signatures in other irreducible sym-
metries of the D4h point group, i.e., A1g, B1g and B2g.
Even if there is no experimental indication of B1g and
B2g at the HO state, our discussion here may cover, in a
general manner, systems with BCT lattice structure. We
calculate the Raman response by employing the effective
density-density correlation function. For this purpose,
we consider the limit of small momentum transfer, which
allows us to use the standard effective mass approxima-
tion to calculate the appropriate Raman vertex for each
particular symmetry.

The physical quantity observed experimentally is the
Raman scattering cross-section. This quantity is deter-
mined by the dynamical structure factor S̃(q, iω), which
is directly related to the imaginary part of the Raman
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response χ̃ through the fluctuation-dissipation theorem

S̃λ(q, ω) = − 1

π
[1 + nB(ω)]Im[χ̃λ(q, ω)]. (16)

In this equation, nB(ω) is the Bose distribution func-
tion and λ stands for the particular symmetry of the
Raman excitation. The Raman response measures the
“effective density” fluctuations produced by the density-
density correlation function

χ̃λ(q, iωn) = − 1

V

ˆ β

0

dτeiωnτ 〈Tτ (ρ̃λ(q, τ)ρ̃λ(−q, 0))〉, (17)

where ρ̃λ is the effective density operator. The effective
polarization-dependent density operator [2] is written as

ˆ̃ρλ(q, τ) =
∑
k

Ψ†k+q/2(τ)γλ(k)Ψk−q/2(τ) (18)

where γλ(k) is the matrix which originate from the sec-
ond derivatives of hk. Then, it follows that the density-
density correlation function can be written as

χ̃λ(iωn) =
1

βV
∑
k,νn′

Tr[γλ(k)Gk(iνn′ + iωn)γλ(k)Gk(iνn′)].

(19)

All the analytical steps to develop this correlation func-
tion follows what we have done in the previous section for
the analysis of the A2g symmetry. For each one of the ir-
reducible representations we have to write an appropriate
vertex which corresponds to each of these symmetries. If
we consider the effective mass approximation limit, with
q→ 0, these vertices are defined simply as

γA1g (k) =
∂2hk
∂k2x

+
∂2hk
∂k2y

, (20)

γB1g (k) =
∂2hk
∂k2x

− ∂2hk
∂k2y

, (21)

γA2g (k) =
∂2hk
∂kx∂ky

− ∂2hk
∂ky∂kx

. (22)

γB2g (k) =
∂2hk
∂kx∂ky

+
∂2hk
∂ky∂kx

. (23)

Next, with that in hand, we shall present the numerical
evaluation of Eq.(19). We note that, for our model, it is
not possible to obtain results for the B1g symmetry and,
indeed, with the effective mass approximation, the vertex
for A2g symmetry vanishes identically.

B. Numerical results

Our numerical analysis follows the same procedure
done in the previous section, but now, we use the cor-
relation functions in Eq.(19) and extract its imaginary
part as the Raman spectra. We calculated all the results
in the limit of T → 0. We concentrate on the response
provided by A1g and B2g, since the B1g, in this case, does
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FIG. 4. The Raman signals for the A1g ((a)) and B2g sym-
metries ((b)) in the state No 123, characterized by m param-
eter. In both cases, we clearly see the presence of the gap for
different values of m. In this analysis, we use of t1 = 1.0 meV
and small phenomenological scattering rate δ = 0.035 meV in
the imaginary part of the self-energy in the Green’s function.

not provide any Raman signature. We do not observe any
Raman signal for the general PM phase associated with
the space group No 139. This typical phase has the space
group associated with the full BCT lattice. We observe
some signal if only one of the parameters that break the
lattice translation symmetry is activated.

In Fig.4 we present the results concerning the A1g and
B2g symmetries. In this analysis, we keep only the hop-
ping t1 active while varying the parameters that specify
each space group with lower symmetry. In this particu-
lar case, we test the variation of m describing the state
No 123. Fig.4(a) shows the Raman spectra for the A1g

symmetry. We vary the values of m and observe the pres-
ence of a gap followed by an electronic continuum. The
signal vanishes for values of ω ≈ 15.5 meV , and the gap
widens when we increase the values of m. In Fig.4(b),
we show the spectra for the B2g symmetry case. We also
observe the presence of the gap, but the signal features
a quasielastic response, analogous to the ones predicted
theoretically in ref.[29] for iron systems.

Fig.5 displays the responses for the spin liquids states.
The state No 126, which is characterized by the ∆m pa-
rameter, denotes the MSL phase. Their Raman response
for A1g and B2g are shown in Fig.5(a-b), respectively. In
both symmetries, there is no presence of the gap. For A1g

the lineshape characterizes itself by a quasielastic narrow
peak followed by an electronic continuum that spreads up
and moves progressively to high energy when we increase
the values of ∆m. In the B2g symmetry, the spectra dis-
play a quasielastic broad peak for a small ∆m = 0.3 meV
and transform themselves into a electronic continuum for
large values of ∆m.

Fig.5-(c)-(d) show the Raman signals for the state No
128, the CSL which is characterized by ∆c parameter.
Once again there is no presence of gap for the A1g and
B2g symmetries. For the A1g case, the spectra distinguish
themselves by a quasielastic response with a narrow peak
which is followed by a small electronic continuum. The
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FIG. 5. The Raman spectra for the A1g and B2g symmetries.
Figure (a)-(b) show our results for the modulated SL phase
(space group No 126) at A1g and B2g respectively. In con-
trast, ((c)-(d)) show the responses for the chiral SL phase
(space group No 128). For this analysis, we use the values
of t1 = 1.0 meV and small phenomenological scattering rate
δ = 0.035 meV in the imaginary part of the self-energy in the
Green’s function.

electronic continuum does not spread up by increasing
the values of ∆c and seems to be suppressed by large
values of this parameter, in contrast to what happened
in the modulated spin liquid case. In the B2g symmetry,
we observe the evolution of a quasielastic response to a
structureless curve by increasing the magnitude of ∆c.
Afterwards, we look at the cases when we have m acti-
vated together with the parameters that discriminate the
spin liquid phases. Our results are shown in Fig.6 and
Fig.7.

In Fig.6, we activate the parameter m and observe its
effect in the presence of ∆m. In Fig.6(a)-(c), we set a
fixed value of m = 0.5 meV while varying ∆m. In the
A1g symmetry, we observe the presence of the gap fol-
lowed by a quasielastic peak which increases by increas-
ing the value of ∆m. Further, we have the presence of
an electronic continuum that becomes more robust as we
increase ∆m and moves progressively to high energies as
we increase the value of ∆m. In Fig.6(c), we also set the
same value of m = 0.5 meV as we vary the ∆m in the
B2g symmetry. We observe the evolution of the signal
by increasing the value of ∆m. In all cases, it features
the presence of the gap but is starting from a quasielas-
tic broad peak and goes to a electronic continuum. In
Fig.6(b)-(d), we fix the value of ∆m = 0.5 meV , while
varying m. Although the spectra of A1g and B2g are
in contrast with each other, in both cases, we can ob-
serve the presence of a gap which widens as we increase
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FIG. 6. The Raman spectra for A1g and B2g symmetries when
we keep m together with the ∆m, the MSL parameter (space
group No 126). In (a)-(c), we display the Raman signals for m
fixed in the A1g and B2g symmetries, respectively. In (b-d),
we fixed the value of ∆m while vary the m parameter. The
description of the spectra is discussed further on the text.
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FIG. 7. The Raman spectra for A1g and B2g symmetries for
non-zero m and the ∆c SL parameter (space group No128).
In (a-c), we display the Raman signals for m fixed in the
A1g and B2g symmetries, respectively. In (b-d), we fix the
value of ∆c while varying the m parameter. See the text more
comments.
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the value of m, suggesting that the parameter m is the
responsible for its appearance.

The results showed in Fig.7 display the spectra for A1g

and B2g symmetries in the chiral SL phase. In Fig.7(a)-
(c), we show the Raman signals when we fix the value of
m parameter while varying ∆c. We can observe the pres-
ence of a gap when m 6= 0 for both symmetries. For A1g

symmetry, Fig.7(a), the curve moves progressively along
the frequency axis when we increase the value of ∆c. The
line shape exhibits a quasielastic peak and a small elec-
tronic continuum. The electronic continuum appears to
be suppressed, by increasing ∆c and then turn the re-
sponse into a quasielastic peak. For the B2g symmetry,
as shown in Fig.7(c), when we increase the values of ∆c,
the signal evolves from a quasielastic response to a broad
and structureless spectrum. In Fig.7(b)-(d), we fix the
value of ∆c while varyingm for A1g and B2g, respectively.
In both cases, the lineshapes of the spectra are not dras-
tically altered, but we see the presence of the gap and its
enlargement by the increase of the m parameter.

With this extensive analysis, we can predict that the
electronic Raman signal will display clear signatures of
the opening of a gap which is a consequence of m pa-
rameter. In the case when either ∆m or ∆c is activated
and keeping m = 0, the gap does not manifest itself.
Since we consider only the presence of t1 in all of the
analysis of the spectra, the phases exhibit the nesting
condition εk±Q = −εk. The perfect nesting condition
manifests itself when the system is unstable against the
short wavelength order, like spin (charge) density-wave
or the formation of particle pairs in the superconduct-
ing case. In this framework we conclude that the com-
mensurate LSO parameter m is the main responsible for
this instability that gives rise to the gap in the Raman
spectrum. We are aware that no gap is observed experi-
mentally in URu2Si2 for neither A1g nor B2g symmetry.
Our interpretation is that, in a multiband system like
URu2Si2, some electronic continuum in these symmetries
is also provided from weakly correlated charge degrees of
freedom that are not taken into account in the effective
model Hamiltonian studied here. The situation is differ-
ent with A2g because these ”light electrons” are simply
not active in such a symmetry.

V. DISCUSSIONS AND CONCLUSIONS

The main conclusive result concerning our Raman re-
sponses is the appearance of a gap that manifests it-
self for the specific A1g and B2g symmetries. We have
shown that this gap is a consequence of the commensu-
rate LSO discriminated specifically by the m parameter.
Similar responses were observed by Raman scattering in
the iron-based superconductor materials [4], though this
time for different symmetries (B1g and B2g). The spectra
of these materials display many spin-density-wave gaps
as expected in a band-folding itinerant picture of multi-
band systems.
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FIG. 8. The density of states (DOS) for the various phases
considered in our model. We set the Fermi level E0 at zero
and keep t1 activated in all phases.

Why does not this gap manifest in the other states
that break the lattice translation symmetry? In fact, the
answers is that rather than a real gap, what we have is a
pseudogap that it is reminiscent from the SL phases. We
can confirm this fact by computing the density of states
(DOS) ρ(ω) =

∑
k δ(ω−E

±
k ). In Fig.8, we plot the DOS

for the various phases considered here. In Fig.8(a), we
show the DOS for the PM state. For a homogeneous
hopping t1, the DOS has singularities at ω = −8t1 meV ,
ω = 8t1 meV and at ω = 0. In Fig.8(b), we observe
the evolution from the previous plot when we activate
m. The singularity now is placed at ω = 0.5 meV , which
corresponds to the values that we set for m. We see
clearly the presence of a small gap of twice the order of
magnitude of this m parameter. For the two purely SL
phases Fig.8(c) and Fig.8(e), the two bands touch each
other when ω = 0. In the modulated SL, it vanishes for
ω = 0 while in the chiral SL it is finite at ω = 0. Then,
when we turn m on Fig.8(d) and Fig.8(f), we observe
the presence of the gap again (we have extrapolated the
value of m to see if the gap is proportional to its value).
Another important result is the fact that only band fold-
ing with m 6= 0 is not sufficient for obtaining a signal
in A2g. To pick up signal the in the A2g, it is also re-
quired the presence of an SL order term, i.e., at least
∆m or ∆c should be different from zero. Unfortunately,
our non-interacting model is not able to reproduce the
quasielastic peak placed inside the gap, which requires
considering more effects due to interactions.

In summary, we proposed an effective model to de-
scribe Raman scattering experiments in systems that dis-
play the BCT lattice. We have in mind the perspective
of stabilizing two different spin liquid states. They are
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the modulated SL and the chiral SL phases. Concerning
the experimental evidence that is well established with
Raman scattering response namely the A2g symmetry in
the HO phase, we found that both SL phases present
similar Raman responses. In particular, these responses
show gapped but non-zero electronic continuum in A2g

even at the non-interacting level. The gap is open by the
local staggered m parameter, but the A2g continuum is
activated by either a chiral SL or a modulated SL order.
To select the best candidate to explain the hidden order
phase, since both spin liquids give very similar responses,
we consider the fact that the existence of time-reversal
symmetry breaking in the HO phase remains controver-
sial [30–32]. If we assume that the HO does not break this
symmetry, we pick out the modulated SL as the plausible
candidate for this non-conventional phase. There is also
the possibility of analyzing the A2g signal by applying
pressure. In this case, a full track of the A2g signal could
be obtained from the HO to the AF phase. Thereby, we
could expect that the Raman signatures under applied
pressure might predict to be those of the state 123. This
means that we predict, in the AF phase a vanishing (or
a strong decay) of the electronic continuum in the A2g

symmetry.
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Appendix A: Deriving the dispersion relations

The purpose of this appendix is to clarify the deriva-
tions of the relations that were presented in the section
II. More precisely the two structure factors fm(k) and
fc(k), associated with the modulated SL and chiral SL,
respectively. We take the Hamiltonian in Eq.(1)

H =
∑
i

(Eo +meiQ·Ri)c†i ci +
∑
〈i,j〉

tijc
†
i cj . (A1)

The sum in sites are related with the BCT lattice. The
Hamiltonian can be seen as a sum H = H0 + Ht, where

H0 =
∑
i(Eo+meiQ·Ri)c†i ci and Ht =

∑
〈i,j〉 tijc

†
i cj . Let

us concentrate on the hopping term

Ht =
∑
〈i,j〉

tijc
†
i cj . (A2)

We developed the calculation for a general hopping
ti,j and at the end we will concentrate only in the first
neighbors inter-plane, since the in-plane relations can be
derived in the same fashion as for square lattice. For the
hopping inter-plane, we have

tij = t1 ± i∆c, (A3)

and

tij = t1 ±∆M . (A4)

The sign plus or minus take into account the kind of link
between two sites, as explained in section II.

By using the Fourier transform in Eq.(2), we rewrite
the Hamiltonian and we end up with

H =
1

N

∑
k,k′

c†kck′
∑
i

e−i(k−k
′)·RiERi(k

′),

(A5)

where we defined ERi
(k′) =

∑
δ ti,i+δe

ik′·δ and have con-
sidered j = i + δ, with δ being a first neighbor vector.
The sum in k runs over the first Brillouin zone of BCT.
The next step is to split the sum in the BCT-Brillouin
zone as being a sum of two tetragonal lattices, where we
assumed that the BCT is bipartite in two sub-lattices A
and B. We end up with four terms

H =
1

N

∑
k,k′

c†kck′
∑
i

e−i(k−k
′)·RiERi

(k′)

+
1

N

∑
k,k′

c†kck′
∑
i

e−i(k−k
′)·RiERi(k

′ + Q)

+
1

N

∑
k,k′

c†k+Qck′
∑
i

e−i(k+Q−k′)·RiERi
(k′)

+
1

N

∑
k,k′

c†kck+Q

∑
i

e−i(k−Q−k
′)·RiERi(k

′ + Q).

(A6)

Now the sums in k run over the T-lattice. But the sums
in i run over the BCT lattice.

We can also split the sum in the BCT-Lattice in a sum
for sub-lattice A and B. This requires that ti,i+δ = tAδ
if Ri ∈ A or ti,i+δ = tBδ if Ri ∈ B. The condition tBδ =(
tAδ
)∗

preserves the hermiticity of the Hamiltonian, which
give us the relation between EB(k′) = (EA(k′))∗. We

know that 1
N

∑
Ri
e−i(k−k

′)·Ri = 1
2δkk′ and e−iQ·Ri =

±1 if Ri belongs to A or B, respectively. Then,

H =
1

2

∑
k

c†kck[E(k) + E∗(k)]

+
1

2

∑
k

c†k+Qck+Q [E (k + Q) + E∗ (k + Q)]

+
1

2

∑
k

c†k+Qck [E (k)− E∗ (k)]

+
1

2

∑
k

c†kck+Q[E (k + Q)− E∗ (k + Q)]. (A7)
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We can write the Hamiltonian in a matrix representation,
as follows

H =
∑
k

Ψ†kh
′
kΨk, (A8)

with the definition of Ψk = (ck, ck+Q)t and

h′k =

(
E(k)+E∗(k)

2
E(k+Q)−E∗(k+Q)

2
E(k)−E∗(k)

2
E(k+Q)+E∗(k+Q)

2

)
. (A9)

By taking the definition of E(k), the hopping ti,j and
considering the wave vector Q = {1, 1, 1}, we can rec-
ognize the following terms when doing the sum in the δ
neighbors vectors

E(k) + E∗(k)

2
= t1γ

1
k + t2γ

2
k + t3γ

3
k, (A10)

E (k + Q) + E∗ (k + Q)

2
= −t1γ1k + t2γ

2
k + t3γ

3
k, (A11)

E (k + Q)− E∗ (k + Q)

2
= ±i8∆slγ

sl
k , (A12)

E(k)− E∗(k)

2
= ∓i8∆slγ

sl
k . (A13)

If we add the contribution from m and E0 we recover the
hk matrix in Eq.(4) defined in section II.

We would like to highlight the derivation of the k de-
pendence in Vk, which came from the ∆’s in ti,j . We take
the first neighbors inter-plane. In this case, the sum in
δ take in to account the eight different neighbors inter-
plane on the BCT lattice. They are listed in the table
(II) and represented in the Fig.9. The first sum in δ
taking the t1 term produce the γ1k and the second sum
give us fSL(k). This last terms can be fm(c) or fm(k)
depending on the definition of tij . This complete our
demonstration of the relation that have been presented
so far in that section.

TABLE II. the eight first neighbours interplane for the BCT
lattice.

δi (x, y, z)

δ1 (a/2, a/2, c/2)
δ2 (−a/2, a/2, c/2)
δ3 (−a/2,−a/2, c/2)
δ4 (a/2,−a/2, c/2)
δ5 (−a/2,−a/2,−c/2)
δ6 (a/2,−a/2,−c/2)
δ7 (a/2, a/2,−c/2)
δ8 (−a/2, a/2,−a/2)

δ1
δ2δ3 δ4

δ5
δ6 δ7

δ8
x
y

z

FIG. 9. The BCT lattice with its eight first neighbors inter-
plane. The values of each unitary vector are listed in table
(II) bellow.

Appendix B: Extracting the A2g response

We shall show now how to extract a non-zero signal
for the symmetry A2g. Consider the expression for the
vertex for A2g defined in section III, as

γ̃A2g (k) =
∂hk
∂kx

∂hk
∂ky
− ∂hk
∂ky

∂hk
∂kx

. (B1)

This is analogous to the commutation

γ̃A2g (k) =

[
∂hk
∂kx

,
∂hk
∂ky

]
. (B2)

We can make use of the Pauli matrices together with an
identity, and rewrite hk as

hk = Ak1 + Re(Vk)σ1 + Im(Vk)σ2 +Bkσ3, (B3)

with

Ak =
εk + εk+Q

2
, (B4)

Bk =
εk − εk+Q

2
. (B5)

By using the notation, Im(Vk) = V ′′k and Re(Vk) = V ′k,
the commutator can be written as[

∂hk
∂kx

,
∂hk
∂ky

]
=

(
∂V ′k
∂kx

∂V ′′k
∂ky

− ∂V ′′k
∂kx

∂V ′k
∂ky

)
[σ1,σ2]

+

(
∂V ′′k
∂kx

∂Bk

∂ky
− ∂Bk

∂kx

∂V ′′k
∂ky

)
[σ2,σ3]

+

(
∂Bk

∂kx

∂V ′k
∂ky
− ∂V ′k
∂kx

∂Bk

∂ky

)
[σ3,σ1](B6)

By using the commutation relations for the Pauli matri-
ces, we have[

∂Ek

∂kx
,
∂Ek

∂ky

]
=

(
∂V ′′k
∂kx

∂Bk

∂ky
− ∂Bk

∂kx

∂V ′′k
∂ky

)
2iσ1

+

(
∂Bk

∂kx

∂V ′k
∂ky
− ∂V ′k
∂kx

∂Bk

∂ky

)
2iσ2

+

(
∂V ′k
∂kx

∂V ′′k
∂ky

− ∂V ′′k
∂kx

∂V ′k
∂ky

)
2iσ3. (B7)
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In our model, we have explicitly defined the form of Vk.
By doing so, all the terms that involve derivatives with
respect to its real part are identically vanishing. The
only term that survives is the fist one on the right hand
side. Therefore, we have that

γ̃A2g (k) =

(
∂V ′′k
∂kx

∂Bk

∂ky
− ∂V ′′k
∂ky

∂Bk

∂kx

)
2iσ1. (B8)

From this result, we can check if the γA2g (k) is in-
variant under time reversal symmetry or not. For spin-
less particles, the time reversal operator T is directly
connected to the complex conjugation operator K, i.e.,
T = K. If a particular operator is invariant under time
reversal symmetry, this means that

TÂT−1 = Â. (B9)

For our operator γA2g (k) It follows that

T γ̃A2g (k)T−1 = −
(
∂V ′′k
∂kx

∂Bk
∂ky

− ∂V ′′k
∂ky

∂Bk
∂kx

)
2iσ1

(B10)

However, time reversal operation also changes momen-
tum from k→ −k. Here we keep in mind the definitions
of Bk in Eq.(B5) and Vk = m + i∆c/mfc/m(k). The
function Bk is always even because of the dispersion εk.
For the imaginary part of Vk, we have to consider the
two spin liquid dispersions. For the chiral spin liquid γck
is even, while for the modulate spin liquid γmk is odd.
Therefore

fc(−k) = fc(k), (B11)

fm(−k) = −fm(k). (B12)

These results show that, in terms of time reversal sym-
metry, only the modulated SL has a γ̃A2g (k) time reversal
invariant, as it pointed out [16, 33, 34] if the HO does not
break this symmetry. In contrast, for the chiral SL, there
is a breaking of the time reversal symmetry [27].
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