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Abstract

This paper focuses on underwater acoustic (UA) communications and proposes a decentralized

spectrum sharing method for noncooperative orthogonal frequency-division multiplexing systems in

interference channels. The problem is formulated as a noncooperative game where the players are UA

communication systems aiming at finding the power allocation on subcarriers that maximizes a utility

function related to their information rate. Realistic assumptions regarding the UA context are formulated.

Frequency-selective and randomly time-varying channels are considered. Each system is constrained in

average power and adapts its power allocation strategy only with local knowledge of its channel statistics

and noise plus interference power spectral density. This knowledge is obtained through a feedback link

from the receiver. Estimation errors on the channel statistics are taken into account, thanks to a robust

reformulation of the game. We show that an efficient decentralized spectrum sharing can be achieved

when all players use a water-filling strategy against each other iteratively. Simulations results are obtained

on synthetic but realistic channels. In configurations where the UA communication systems are in close

areas, significant increases of spectral efficiencies can be expected compared to the conventional uniform

power allocation. Results on channels sounded at sea support our conclusions.
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I. INTRODUCTION

The underwater acoustic (UA) propagation channel is shared by several heterogeneous entities that use

acoustic waves to communicate, navigate or infer information about the marine environment. Although

initiatives have been taken [3], the time and frequency activity of UA devices is yet not restricted

by regulatory bodies. Moreover, the usable bandwidth decreases with the transmission distance and

frequency [4]. Thus, the availability of a physical resource for UA communication systems varies with

time, frequency, as well as with the number and location of other active sound sources [5]. In the

absence of regulation, the simultaneous anarchical access to the UA channel by several sources can

lead to mutual interference that degrades the reliability of communication systems. Several examples of

jamming by external sound sources have been reported in the recent literature [6], [7]. As the ongoing

and future development of underwater applications is likely to increase the anthropogenic acoustic noise

[8], there is an NEed for better coexistence of various sound sources in the UA transmission channel.

A possible approach to improve the reliability of UA communications corrupted by interfering sounds

is to mitigate them at the receiver [6], [7], [9]. However, it often requires some prior knowledge of

the interfering waveforms [6], [7], or the ability for receivers to decode messages from other users [9].

An alternative strategy is to allow communicating devices to learn autonomously their best transmission

strategies thanks to repeated interactions with their environment. This environment being partly constituted

by other users. This approach is more flexible as it is a decentralized way to deal with noncooperative

UA devices competing for the same resource.

The benefits of adaptive modulations for single-user UA communications have been shown in several

recent works [10]–[14]. The joint optimization of modulation orders and frequency allocations under

a bit error rate constraint is proposed in [10] for UA OFDM systems. Based on previous work, [11]

studied the achievable rates over Rician-fading channels for UA-OFDM communications implementing

different practical power allocation strategies. The authors in [12] propose an algorithm that enables the

transmitters to adapt their power according to the large scale fading of the channel, with the objective

of maintaining a constant signal to noise ratio (SNR) at the receiver side. Other adaptive schemes were

proposed more recently in [13], where an OFDM transmitter can switch between several configurations

according to a performance metric feedback by its receiver. A decision tree-based adaptive modulation

is also proposed in [14].

Advances have been realized in the development of Media Access Control (MAC) protocols for mul-

tiuser UA communications, whose objective is to avoid collisions between acoustic signals by allocating
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different codes, time slots or frequency bands to network users. A good survey of these techniques can be

found in [15], [16]. To the best of our knowledge, most of the research efforts on resource allocation for

multiuser UA communications have focused on homogeneous systems evolving within the same network.

We consider here noncooperative systems as a more general framework to deal with the interference

problem in UA communications. By noncooperative, we mean that several UA communication systems

are competing for the use of the same physical resource without the ability to exchange their channel

knowledge to agree on a fair sharing scheme. Going further, it also means that they may not be

aware that other devices are also trying to use this common resource. Nevertheless, by some form

of repeated interactions with their surrounding environment, all transmitters should be able to optimize

their parameters to avoid situations where none of them is reliable. This optimization can be done on the

basis of some metrics on the communication link quality sent back from receivers to their corresponding

transmitters.

The study of interactions between several independent decision-makers (or agents) with conflicting

interests can be mathematically formalized by game theory. Within this framework, each UA channel

user is considered as a player choosing among strategies (e.g., its transmission power or rate, or its

coding/modulation scheme) to maximize its own objective function, also called utility function. Solving

a game consists in finding a choice of strategies that drives the players to an equilibrium state. These

tools have been used successfully in the field of terrestrial communications during the past decade [17],

[18]. Nevertheless, the assumptions of known time-invariant channel or known channel realizations are

often made in the cited works and references therein. In the UA context, these assumptions can hardly

be valid because of random time-varying fading processes typical of UA channels.

In this paper, a formulation of the competitive spectrum sharing problem for UA communication

systems as a noncooperative game is proposed, and extends recent works on the topic [1], [2]. Every

transmitter/receiver pair is a player who wants to find the power allocation that maximizes a performance

metric related to its information rate, under average power constraint. Communications based on OFDM

are considered since it is well suited to spectrum sharing issues. The problem is solved according to the

Nash Equilibrium (NE) solution [19], which is appropriate to noncooperative setups. This equilibrium is

defined as a joint choice of strategies such that none of the agents has an interest to unilaterally deviate

from. In the context of this work, it corresponds to a spectrum sharing where every communication

link plays its optimal strategy in the sense that it cannot choose another strategy unless it pays the

price of a rate loss. In practice the agents involved in the game can learn an equilibrium through

repeated interactions with each others [17], [20]. This learning process is actually implemented by iterative
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algorithms, distributed among the agents, which compute a solution of the game.

This study proposes an iterative, distributed spectrum sharing algorithm for noncooperative UA-OFDM

communications, where each transmitter/receiver pair can determine its optimal power allocation only

on the basis of a local and possibly erroneous knowledge of the interference environment. The proposed

method takes explicitly into account realistic constraints imposed by the UA context. A randomly time-

varying frequency-selective UA channel is considered. The transmitters update their power allocation

using a water-filling strategy based on a statistical channel state information (CSI), which is supposed

to be sent back periodically by their corresponding receivers. A robust spectrum sharing strategy is

proposed. This approach allows the users in competition to be more conservative about how they use

their power budget by favoring their best subchannels. It is experimentally shown that this behavior can

be highly beneficial in some situations. More specifically, the robust method is able to drive UA-OFDM

systems toward spectrum sharing strategies that are Pareto superior to the NE. These strategies increase

utilities reached by at least one channel user, without being detrimental to the others. This improvement

in equilibrium efficiency is done without introducing centralized control, coordination or information

exchange between users.

The paper is organized as follows. Section II describes the transmission and channel models and

states the spectrum sharing problem. Section III defines the set of players with their strategies and

utility functions, then formulates the problem as a noncooperative game. A solution based on the Nash

Equilibrium is given in Section IV, where it is assumed that UA users have perfect knowledge of their

channel and noise plus interference statistics. In Section V, this assumption of perfect knowledge is

relaxed. A robust game that takes estimation errors into account is formulated. The proposed spectrum

sharing strategies are evaluated by means of simulations on synthetic channels in Section VI. Results

on channels sounded at-sea are given in Section VII and confirm the relevance of our approach, before

conclusion in Section IX.

Notations: Uppercase and lowercase boldface letters, e.g. A, x, denote matrices and vectors, respec-

tively. The superscript T denotes transposition. The identity matrix of size N ×N is IN . The Hadamard

product is denoted by ⊙. L2 denotes the vector space of random variables with finite variance. a mod n

is the remainder of the Euclidean division of a by n. The matrix of size N ×N having the N−elements

vector x on its diagonal and zeros elsewhere is denoted by diag(x). Finally, E{.} denotes expectation.
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II. PROBLEM STATEMENT

An UA interference channel is considered where a finite set M = {1, · · · ,M} of OFDM transmit-

ter/receiver pairs are in competition for the use of the same bandwidth B divided into N subcarriers

whose spacing is ∆f . In the following, the transmitter/receiver pairs are called (communication) links,

users or players interchangeably. Focusing on noncooperative setups, each receiver treats the interference

of unwanted transmitters as additive colored noise. The channel is assumed to be frequency-selective

and time-varying. Its coherence bandwidth and coherence time are, respectively, greater than ∆f and

the OFDM block duration T = Ts + Tg , with Ts = 1/∆f where Tg the cyclic prefix duration. For the

sake of ease of presentation, the transmission parameters N , B, ∆f , and Tg are the same for all users.

Having different transmission parameters for each user would not change the spectrum sharing solution

proposed in the following.

Let xi(n) ∈ CL be a vector of L zero-mean i.i.d. input symbols sent by the transmitter i ∈ M on

the nth subcarrier. For any i ∈ M and n ∈ {1, · · · , N}, the symbols xj 6=i(n) sent by the transmitters

j ∈ M, j 6= i, are independent of xi(n). Each transmitter i is subject to its own power constraint

N
∑

n=1

pi(n) ≤ Pmax
i , (1)

where pi(n) is the power allocated by i on the nth subcarrier.

After cyclic prefix removal and discrete Fourier transform, the channel output observed over L OFDM

symbols by the receiver i on the nth subcarrier can be written as

yi(n)
∆
= hii(n)⊙ xi(n) +

∑

j 6=i

hji(n)⊙ xj(n) +wi(n), (2)

where wi(n) ∼ CN (0, σ2
i (n)IL) is a Gaussian noise independent of both xi(n) and xj 6=i(n), and hji(n) ∈

CL are L realizations of a random variable hji(n) modeling the channel between transmitter j and receiver

i at the nth subcarrier. Each player i only has a statistical knowledge of its own channel hii(n), which is

assumed statistically stationary during a block of L symbols.1 For any player i, nothing is known about

hji(n) or its realizations if j 6= i. Doppler effects are assumed to be compensated and it is not assumed

that users are synchronized.2

In situations where several communication systems are in the same geographical area and try to access

simultaneously to the same physical resource, it may be that some or none of them are actually reliable,

1Block-stationarity is an approximation since, in practice the taps statistics can be slowly time-varying [21], [22].

2Intercarrier interference due to OFDM symbols misalignment between the different users is not explicitly taken into account

here as, in light of [23], it does not change significantly the problem formulation.
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due to a strong interference level. Our goal is to allow noncooperative users to share the available

spectrum more efficiently by choosing judiciously the subcarriers on which they allocate their power.

This choice must be made such that each link maximizes some performance criterion that depends on

the ambient soundscape in which it operates. Automatic adaptation of the transmit power requires that

transmitters have some knowledge on their acoustic environment, namely the channel state and perceived

interferences. Practically, this can be made possible via a feedback link from their intended receivers.

Given that other systems are also accessing the channel, the performance of one particular system depends

on the actions taken by the others. The UA-OFDM users involved in our problem are said to be agents

with conflicting interests.

Stated mathematically, M constrained maximization problems have to be simultaneously solved. For

each individual problem the optimization variable is the power allocation vector pi of the transmitter

i ∈ M, and optimal solutions p⋆
i depends on the optimal strategic choices p⋆

−i made by all others active

transmitters:

p⋆
i = argmax

pi

ui(pi,p
⋆
−i) ∀ i ∈ M

subject to pi ∈ Pi

(3)

where ui(pi,p−i) is the objective function of player i. The vector pi = [pi(1), · · · , pi(N)]T ∈ RN
+ is the

power allocation strategy on the N subcarriers of transmitter i, and p−i =
[

pT
1 , · · · ,p

T
i−1,p

T
i+1, · · · ,p

T
M

]T

are the strategies chosen by all the other transmitters. In the following, the concatenated power allocation

choices of all players will be called a strategy profile (or a joint strategic choice) and denoted as

p =
[

pT
1 , · · · ,p

T
M

]T
. The set Pi of feasible power allocation strategies of transmitter i is defined

as:

Pi
∆
=

{

pi ∈ R
N
+ :

N
∑

n=1

pi(n) ≤ Pmax
i

}

. (4)

Section III presents a formulation of the problem as a noncooperative game.

III. NONCOOPERATIVE SPECTRUM SHARING GAME

The set of problems (3) can be written as a Nash Equilibrium problem of a noncooperative game G

defined as the following triplet [18]

G
∆
=
{

M, {Pi}i∈M , {ui}i∈M
}

, (5)

where M is the set of players of the game, {Pi}i∈M are their strategy spaces, and the objectives

{ui}i∈M are their utility functions. The next step is to formulate utility functions that are compliant with
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the assumptions formulated previously regarding the UA transmission and channel models, and whose

noncooperative maximization drives the M OFDM systems towards an efficient spectrum sharing strategy.

A utility function related to the theoretical information rate is chosen here. This choice is reasonable

as it suits any type of communication system, without implementation-specific considerations. Because

the low propagation speed of acoustic waves coupled with the fast fading part of the channel prohibits

the feedback of the instantaneous CSI, this criterion can be related only to some average information

rate. Assuming that the duration of L OFDM symbols is much greater than the channel coherence time,

a standard figure of merit would be the ergodic capacity [24]

ri(pi,p−i) = α

N
∑

n=1

E {log (1 + SINRi(n))} , (6)

where α = (NT∆f)−1 and SINRi(n) is the signal-to-interference plus noise ratio of link i on subcarrier

n:

SINRi(n) =
|hii(n)|

2pi(n)

σ2
wi
(n) +

∑

j 6=i |hji(n)|
2pj(n)

. (7)

Solving (3) with ri as the utility functions would require that each communication link i has the

knowledge of the probability distributions of hji(n), ∀j ∈ M and ∀n ∈ {1, · · · , N}. While realizations

of hii(n) could be estimated at the receiver i using pilot symbols, the interference from transmitters j 6= i

cannot be distinguished from noise in the noncooperative setup considered here. To overcome this issue,

we adopt a robust approach where the optimization is made considering the most harmful interference.

Let fhji
denote the probability density function of hji(n). The performance metric for the worst case

optimization problem can be obtained by minimizing the ergodic capacity according to the cross channels

distributions. Thus we define the utility functions ui as

ui(pi,p−i) = min
fhji,i6=j :hji∈L2

ri(pi,p−i) (8)

= α

N
∑

n=1

E

{

log

(

1 +
|hii(n)|

2pi(n)

σ2
wi
(n) +

∑

j 6=i E{|hji(n)|
2}pj(n)

)}

(9)

≈ α

N
∑

n=1

log

(

1 +
eE{log(|hii(n)|2)}pi(n)

σ2
wi
(n) +

∑

j 6=iE{|hji(n)|
2}pj(n)

)

, (10)

where the last approximation is desirable to derive analytical expressions for the best response strategies

of the players (see Section IV). Detailed derivations of (9) and (10) are provided in Appendix A.

No assumption is made regarding the probability distributions of hji(n). The statistical CSI on each

subchannel n will be denoted as

γi(n)
∆
=

eE{log(|hii(n)|2)}

σ2
wi
(n) +

∑

j 6=i E{|hji(n)|
2}pj(n)

, (11)
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thus,

ui(pi,p−i) = α

N
∑

n=1

log (1 + γi(n)pi(n)) . (12)

Note that if one assumes a specific distribution for the channels, (11) may be expressed in closed-form.

An example is given in Appendix A where a Rician channel is considered [21], [25], [26].

It must be stressed that ui should not be understood as an achievable rate for UA systems in the

sense of [27], [28], but rather as an optimization criterion useful to automatically drive noncooperative

UA systems toward a more efficient spectrum sharing strategy than the usual uniform power allocation

strategy.

Formulated with ui as the utility functions, solving (3) noncooperatively requires that the communi-

cations links only have little and local knowledge about their environment - namely only statistics on

their direct subchannel hii(n) and noise plus aggregate interference power spectral density (PSD). It is

important to note that they do not have to distinguish the noise and the interference from other users.

Practically, each system would have to estimate its direct channel statistics and the sum of interferences

and noise should be treated as one term of additive colored noise. Furthermore, using long-term statistics

(e.g., with an integration time of several seconds) can reduce the receiver’s feedback activity and cope

with issues related to outdated CSI caused by long feedback delays that are typical in UA channels.

IV. ITERATIVE WATER-FILLING SOLUTION

A. Best-response functions and Nash Equilibrium

The competitive maximization problem (3) can be solved by finding a Nash Equilibrium (NE) for the

game G. In game theory, an NE is a solution concept that is optimal with respect to the selfish behavior

of the players. Mathematically, it can be defined as follows [17]:

Definition 1. an NE of the game G in (5) is a strategy profile p⋆ such that ∀ i ∈ M and ∀ pi ∈ Pi, we

have

ui(p
⋆
i ,p

⋆
−i) ≥ ui(pi,p

⋆
−i). (13)

In the present context, the M UA spectrum users are said to be at an NE when their joint strategic

choice p⋆ =
[

p⋆ T
1 , · · · ,p⋆ T

M

]T
of power allocation is such that any link willing to deviate by choosing

another pi 6= p⋆
i would experience a loss of information rate. A theorem stated by Debreu, Glicksberg

and Fan [29, Theorem 1.2] guarantees the existence of a (pure strategy) equilibrium in any game whose

strategic spaces Pi are non-empty compact and convex sub-sets of an Euclidian space and whose utility
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functions ui(pi,p−i) are continuous in p and quasi-concave in pi. One can verify that the game defined

in (5) fulfills these conditions.

Another interpretation of the NE solution can be given by defining the best response of a player to

the strategies chosen by the others [18]:

Definition 2. Given a fixed strategic choice p−i ∈ RN
+ of his opponents, the best responses BRi(p−i)

of the player i to p−i is the set of strategies for that player p⋆
i defined as

BRi(p−i)
∆
= {p⋆

i ∈ R
N
+ : ui(p

⋆
i ,p−i) ≥ ui(pi,p−i), ∀ pi ∈ Pi}. (14)

This means that at an NE, all players i ∈ M play their best responses p⋆
i ∈ BRi(p

⋆
−i) simultaneously.

The best response function of a player i to a fixed nonnegative p−i corresponds to the unique solution

of (3) and can be found by solving the Karush-Kuhn-Tucker system of equations associated to the dual

problem of (3) [30]. This yields the water-filling solution ∀ i ∈ M and ∀ n ∈ {1, · · · , N}

p⋆i (n) =

[

λi −
1

γi(n)

]+

, (15)

where [x]+ denotes max(0, x), γi(n) is defined in (11) and λi is the water level chosen by the player i

to satisfy its average power constraint (1) with equality.

Thus, an NE of the game G in (5) is attained when all the communications links adopt the single-user

water-filling power allocation strategy against each other, using the statistical CSI (11). In practice, an

NE of G may emerge as a result of a learning process where all the agents involved in the problem

interact by best-responding to each others repeatedly [17], [29]. In our context, this will consist in

implementing an iterative water-filling process distributed among the different UA channel users. The

sequential water-filling is considered, where the players update their power allocation strategy one after

the other according to the solution (15). Note that this particular implementation would not require

explicit synchronism between the communication links if we simply assume that the systems have the

same update frequency but start their transmission at different times. This choice is primarily motivated

by the ease of implementation it offers, but a totally asynchronous update scheme is also possible where

the users may have different update periods and have outdated information about the interference PSD.

Interested readers are referred to [31], [32] for more details.

Depending on the channel statistics, there can be multiple equilibria and the convergence of iterative

best response algorithms may not be guaranteed. Section IV-B is devoted to the analysis of the equilibria

of (5) and the convergence of the sequential water-filling algorithm.
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B. Nash Equilibrium uniqueness and convergence of iterative water-filling algorithms

Sufficient conditions ensuring the uniqueness of the NE and the convergence of iterative water-filling

algorithms have been given in [33], [34] in the case of known time-invariant channels. It is possible

to follow the same developments to find sufficient conditions on the channel statistics guaranteeing the

uniqueness in the game G. Let Q ∈ RM×M be defined as

[Q(n)]ij
∆
=







E{|hji(n)|2}

eE{log(|hii(n)|2)} if i 6= j

0 otherwise
(16)

Theorem 1. Game G admits a unique NE if

ρ(Q(n)) < 1, ∀n ∈ {1, · · · , N} , (17)

where Q(n) is defined in (16) and ρ(Q(n)) is its spectral radius (i.e., the supremum among the absolute

values of its eigenvalues).

Proof: See Appendix B.

The convergence of iterative best response algorithms is not guaranteed - not even if the NE is unique

- except for some particular types of games [17]. We here focus on sequential water-filling, for which

the convergence conditions have been given in [34, Theorem 1] in the case known channel realizations.

As for the previous theorem, similar convergence conditions can be derived using the channel statistics.

Let Qmax ∈ RM×M be defined as

[Qmax]ij
∆
=







maxn
E{|hji(n)|2}

eE{log(|hii(n)|2)} if i 6= j

0 otherwise
(18)

Theorem 2. If the following condition is satisfied

ρ(Qmax) < 1, (19)

then the sequential water-filling algorithm converges to the unique NE of game G.

Proof: See Appendix C.

These two conditions can be physically interpreted according to the average interference level perceived

by each receiver [33]. When the interference is high, (17) holds false. Thus, multiple NE may exist and

users will reach one of them by iteratively best-responding to each other (provided that the implemented

algorithm converges). The initial power allocation strategy of the players determines which of the NE is

finally reached. In this case, as the interferences become stronger, the optimal strategies will tend towards
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the frequency-division multiple access (FDMA)-like power allocations where all the users communicate

using orthogonal frequency bands [33], [35]. The sufficient conditions ensuring the uniqueness of the

NE and the convergence of the iterative water-filling can be met when all the users are far enough from

each other. However, having (19) not satisfied does not mean that the algorithm cannot drive the players

towards a spectrum sharing that is efficient from a practical point of view. As the simulations will show,

an iterative water-filling policy can be highly beneficial even if both (17) and (19) hold false.

Up to now, it has been assumed that the channel statistics are known from the players. Section V

presents a suitable solution for erroneous knowledge of the statistical CSI in the more realistic situation

where it has to be estimated.

V. ROBUST GAME

Solving the game G with utility functions expressed as in (12) necessitates that each player has a perfect

knowledge of the statistical CSI (11). In practice, the receivers would have to estimate the direct channels

with pilots symbols. Any estimator produces errors, thus the statistical CSI cannot be perfectly known.

However, it is possible to apply the same reasoning as in the case of unknown interference channels

by formulating a robust optimization problem against the worst case estimation error. A similar robust

rate maximization game under bounded channel uncertainty was also proposed in [36]. Nevertheless a

limitation of this work is the assumption that the channel gains hji are deterministic and known by

all the players. This is hardly verified in the UA context. In the following, it is still assumed that the

only information that each receiver can retrieve from the multiuser environment is the sum of noise and

overall interference PSDs, as well as statistics on its direct channel (between itself and its corresponding

transmitter).

We consider an estimator γ̂i(n) of γi(n) as a continuous random variable with finite variance such

that ∀ n = 1, · · · , N we have

E {γ̂i(n)} = γi(n) (20)

σ2
γ̂i
(n)

∆
= E

{

(γ̂i(n)− γi(n))
2
}

. (21)

The estimator is thus assumed to be unbiased.

The uncertainty on the estimation of the statistical CSI is conveyed by the variance σ2
γ̂i
(n). It is

assumed that the estimator produces bounded errors. We define the set of statistical CSI producing

bounded estimation errors as:

Γi
∆
=
{

γi ∈ R
N
+ : |γ̂i(n)− γi(n)| ≤ ǫi(n),∀ n = 1, · · · , N

}

, (22)
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where ǫi(n) is the error bound on the subchannel n.

The above assumption is reasonable since the uncertainty on the random variable γ̂i can be bounded

with high probability by virtue of Bienaymé-Chebychev’s inequality. For any ǫi(n) ∈ R+ and whatever

the probability distribution of γ̂i(n) (provided σ2
γ̂i
(n) is finite), we have:

P [|γ̂i(n)− γi(n)| ≤ ǫi(n)] ≥ 1−
σ2
γ̂i
(n)

ǫ2i (n)
. (23)

The uncertainty on the values taken by the CSI estimator is taken into account by adopting a robust,

maximin power allocation approach. The robust game is thus written as

G̃
∆
=
{

M, {Pi}i∈M , {ũi}i∈M
}

, (24)

where {ũi}i∈M are new utility functions corresponding to the worst case uncertainty, i.e:

ũi(pi,p−i)
∆
= min

γi∈Γi

α

N
∑

n=1

log (1 + γi(n)pi(n))

= α

N
∑

n=1

log
(

1 + [γ̂i(n)− ǫi(n)]
+ pi(n)

)

.

(25)

This new game can be solved according to the NE and yields the following robust water-filling solution:

p̃⋆i (n) =

[

λi −
1

[γ̂i(n)− ǫi(n)]
+

]+

, ∀ n ∈ {1, · · · , N} . (26)

The robust game presented here can be viewed as a penalization of the utility functions given in (12)

by a term representing some uncertainty about the channels statistics. The effects of such a mecanism

will be to make the players more conservative about how they split their power budget on the different

subchannels. As the numerical results will show, this behavior can be desirable since it can drive the

whole systems towards a more efficient operating point than the NE resulting from the water-filling policy

(15).

VI. NUMERICAL RESULTS ON SYNTHETIC CHANNELS

The benefits of the proposed spectrum sharing method is evaluated by simulation on synthetic UA

channels first. UA-OFDM systems accessing the same channel are considered and define the set of players

- or users - M in both games G and G̃. Communications take place at the same time and in the same

bandwidth B = 6 kHz, centered on fc = 12 kHz. The bandwidth is divided into N = 256 subcarriers.

The subcarrier spacing is ∆f = 23.43 Hz, the OFDM block duration is T = 57.7 ms, including a cyclic

prefix duration of Tg = 15 ms. All the players i ∈ M have a power budget Pmax
i = N . In the initial state,

they all distribute their power uniformly on the N subcarriers. A reference signal to noise ratio (SNR)
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without interference at a 1 km transmission distance is fixed to 20 dB for all users. If the transmission

distance varies during the simulations, the SNR varies accordingly to the path loss. The PSD of the noise

is modeled as a linear decay of 18 dB/decade on the frequency scale.

The channels hji are synthetized using a realistic channel simulator described in [37], [38]. This

simulator produces synthetic Rice fading UA channels and proceeds as follows: according to input

parameters describing the transmission geometry (namely, ranges and depths), a power-delay profile

is obtained via a ray tracing model. Time fluctuations are then generated by entropy maximization of the

Doppler spectrum, given as inputs the mean Doppler spread of the fast fading part σD and Rice factor

of the main path Kmax. The Rice factors of the secondary paths decrease exponentially with the delays.

For all the simulation scenarios described here, the Doppler spread and Rice factor are set to σD = 1

Hz and Kmax = 10 dB, respectively. The simulator integrates also physical propagation models for the

path losses and frequency-dependent attenuation from absorption (given by Thorp’s formula) [4]. Once

the impulse responses are generated, the channels coefficients hji(n) for the subcarriers n = 1, · · · , N

are simply obtained via discrete Fourier transform from which the statistics of average channel gains

E{|hji(n)|
2} and Rice factors Ki(n) are extracted to compute the statistical CSI γi(n) given in (38). An

example of time-varying frequency responses from the simulator for a two-players game is depicted in

Figure 1.
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Fig. 1. Time-varying frequency responses of UA channels from the simulator [38].
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For the game G, perfect knowledge of γi(n) is assumed when the players update their strategy according

to the water-filling equation (15). On another hand, it should be estimated when considering the game G̃.

The estimators γ̂i(n) are supposed to be unbiased, and their variances σ2
γ̂i
(n) can thus be lower bounded

by the Cramer-Rao bound on the parameter γi(n). We denote this bound by I−1(γi(n)), where I−1 is

the inverse of the Fischer information matrix of γi(n). The estimators γ̂i(n) are modeled as Gaussian

random variables with mean γi(n) and variances σ2
γ̂i
(n) = R × I−1(γi(n)), with R a positive constant

that allows to generate estimators with different performance, or levels of uncertainty. As the parameter

γi(n) is necessarily positive, the Gaussian distribution is truncated to avoid non-positive values of the

estimate. The uncertainty bound is then computed as ǫi(n) = k×σγ̂i
(n), with k a non-negative constant.

In order to evaluate systems performance when the estimation errors are not taken into account, we will

set k = 0 and call these games as non-robust games. The water-filling strategies of each player are then

computed on the basis of the penalized CSI estimator, as described by equation (26).

Both games are repeated for several iterations. The systems are supposed to start the communications

one after the other in the initial state of uniform transmit PSD on the whole bandwidth. Then the game

is solved through sequential water-filling: at each iteration l, the user l mod M + 1 updates its power

allocation strategy according to either (15) or (26), depending on which game is played. The update

period of each system is assumed to be equal to the channel observation time, which is here set to

Tobs = 30 s. This also corresponds to the period during which the receiver aggregates channel and

noise plus interference statistics before feeding it back to its transmitter. Channels statistics are assumed

invariant while the game is played.

In the following, systems performance will be expressed according to their utility functions. Though

utility functions will be shown in bits per second per hertz (bits/s/Hz) because they are homogeneous to

a capacity, they should not be understood as an achievable rate but rather as an optimization metric or as

a measure of how good is the actual spectrum sharing for the considered system. The latter interpretation

fits well with the meaning of utility functions within the field of game theory [29].

A. Two particular scenarios

We focus on shallow water scenarios and set the water depth to 50 m. Two-players games modeling

different level of interferences are first considered. The depth of each terminal is arbitrarily fixed between

5 and 20 meters and the distance between each transmitter and its intended receiver is dii = 1 km.

1) High interference setup: A high interference scenario is considered where we set ∀ i, j 6= i ∈ M,

dji/dii = 1.5. The path loss from the interfering transmitter and a given receiver is 4 dB less than from
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the intended transmitter. The channels used to compute the statistical CSI of all users are those of Figure

1. The estimators variances are set to σ2
γ̂i
(n) = R × I−1(γi(n)) with R = 4. The uncertainty bound is

set to ǫi(n) = k × σγ̂i
(n) with k = 0 and k = 3. The choice k = 3 guarantees that estimation errors are

bounded with probability greater than 88%, whatever their probability distribution (see Eq. (23)). For the

Gaussian model chosen here, this probability is equal to 99.7 %. The utility functions of the nonrobust

and robust games are the sample averages over 100 realizations of the estimators random variables γ̂i.

Figure 2 depicts the utility functions of the two UA OFDM links for both games, evolving with the

iterations.
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Fig. 2. Utility functions of the players - High interference setup, dji/dii = 1.5, dii = 1 km.

The utility values at iteration zero corresponds to the initial state of uniform power allocation. A clear

improvement for both users at the end of each game can be seen. Each player have multiplied its initial

utility by at least two in the game with perfect knowledge of the statistical CSI (R = 0). For both players,

more than 90% of the final utility is reached before 5 iterations, which corresponds to less than 1 min 30

s considering the 30 s update period per player. This convergence time could be reduced with a smaller

update period but only at the price of increased feedback activity of the receivers and higher estimation

variance, since the update period corresponds also to the integration time of the channel statistics.

Note also that in this setup, the sufficient conditions for uniqueness and convergence ((17) and (19))

hold false. In the non-robust game, where estimations errors are not taken into account (R = 4, k = 0),

users reach smaller utilities. However one can see that the robust game (R = 4, k = 3) yields higher

utilities than the game with perfect knowledge of the CSI. Although it seems counter-intuitive, this result

can be explained by the conservative behavior of the players in this game. Since their utility functions

are penalized by the uncertainty bound ǫi(n), they are less inclined to allocate their power on subcarriers
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Fig. 3. Last power allocation - Known channel statistics, high interference setup.
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Fig. 4. Last power allocation - nonrobust game for one realization of γ̂i, high interference setup.

where the channel is not sufficiently good and/or where the interference is too high. Furthermore, each

time a user decides to not use a particular subchannel, it lets an extra degree of freedom to the other

user for which it should be easier to allocate its power on this particular portion of bandwidth. As a

consequence, the robust game can lead to a more efficient spectrum sharing from the point of view of

the whole system. This behavior can be clearly seen in Figures 3, 4 and 5 where are shown the power

allocations at the end of the game with perfect knowledge, and a realization of the power allocations at

the end the nonrobust and robust games, respectively. The power level on each subcarrier is shown in

percentage of the average power constraint Pmax
i of the user.

In the game with perfect knowledge, it can be clearly seen that the allocations strategies are consistent

with the frequency channels of Figure 1. For instance, User 2 has more incentive to use the low-frequency

subchannels since there is a higher channel gain. Furthermore, as the channel h11(t, f) of the User 1

offers a smaller gain in the band near 11 kHz, User 1 has less incentive to use these subcarriers and thus
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Fig. 5. Last power allocation - Robust game for one realization of γ̃i, high interference setup.

generates less interference to User 2. The power allocation of User 1 on subcarriers from 9 to 10 kHz is

explained by the interference channel gain |h21(t, f)|
2 from transmitter 2 to receiver 1. Roughly speaking,

the same spectrum sharing shape can be seen for the nonrobust game in Figure 4. Nevertheless, the power

allocations are less correlated with the overall channel state since estimation errors make the players more

inclined to simultaneously use the same subchannels. Even if users still interfere on several portions of

the spectrum, in the robust game the power allocation strategies tend to be closer to an FDMA-like

spectrum sharing. This confirms the conservative behavior of the users in this penalized game.

Interestingly, it has been theoretically proven that a sum-rate optimal3 spectrum sharing is FDMA

when the crosstalk between the different users is sufficiently high [39]. In the previously cited reference,

a locally optimal FDMA power allocation is found by means of a centralized algorithm, assuming the

knowledge of all the direct channels. In contrast here, - and recalling what has been shown in [36] in

a different context - our present work shows that UA communication links can get close to an FDMA

spectrum sharing in an autonomous manner even by assuming only little and possibly erroneous local

knowledge about the environment.

2) Low interference setup: In this second setup, a case of lower interferences is considered, where

dji/dii = 3. The transmission distance is dii = 1 km. New channel frequency responses are generated

for this scenario. The power received from the interferer is approximately ten times lower than from the

transmitter of interest. Robust an non-robust games are run with the same parameters as before. Utility

functions are shown in Figure 6.

As the interference power is decreased because of greater distances between the users, these ones are

3Or Pareto-optimal, in game-theoretic terms.
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Fig. 6. Utility functions of the players - Low interference, dji/dii = 3, dii = 1 km.

less prone to take the multiuser interference into account and share the spectrum using orthogonal bands.

Thus, the gain in utility resulting from the water-filling strategy is smaller compared to the initial flat

transmit PSD. Nevertheless, the conservative behavior of the players in the robust game is still visible

and yields higher values for their utility functions at the final states of the game.

B. General behavior

The behavior of UA-OFDM users involved in the games G and G̃ in more general scenarios is now

studied. Focus is put on the performance evaluated in terms of average utility per player as a function

of the interference power (or equivalently on the distance separating each receiver from the interfering

transmitters), the estimation variance of the CSI, and the number of players in the game. We consider

transmissions in an area whose radius varies from 0.5 km to 8 km. The water depth is still fixed to 50

meters. For each size of the transmission area, 400 games G and G̃ were run with terminals immersed

at random depths and distances. The minimum distance separating two terminals is fixed to 250 m.

The reference SNR is still fixed to 20 dB at 1 km and channel parameters σD, Kmax remain fixed as

specified at the beginning of this section. The resulting utilities are averaged over both the realizations

of the transmission geometry and of the random variables γ̂i.

In order to compare our work with existing, practical spectrum sharing policies, the averaged utilities

are also evaluated for

• Single-user water-filling strategies (i.e. considering no interference),

• Naive users adopting the conventional flat power allocation strategy,
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Fig. 7. Average utility per player against the area of the transmission zone. Two players, reference SNR = 20 dB at 1 km.

• A FDMA spectrum sharing obtained thanks to a centralized algorithm provided in [39, Algorithm

2], which supposes a perfect statistical knowledge of all the subchannels hii(n) and of the ambient

noise.

1) Influence of the interference power: We first evaluate how the amount of interference affects the

behavior of two players by examining how their average utilities evolve with the size of the transmission

area. Results are depicted in Figure 7 and show a strong improvement compare to the naive uniform

power allocation strategy in small size areas. As the interfering links become far apart, each link has less

incentive to share the bandwidth with the others, and the benefits that can be expected from sharing the

spectrum decreases with the size of the transmission zone. The power allocation becomes more correlated

to the channel frequency-selectivity and the noise than to the behavior of other users. Consequently, the

average utility per player tends to the single-user case as the distance between the users tends to infinity.

In the robust game, the conservative behavior of all players leads to better operating points which are

closer to an optimal FDMA-like spectrum sharing strategy, especially when the interference power is

high.

2) Influence of the CSI estimation variance: In order to investigate the influence of the CSI estimators

quality on the systems performance, two-player games are run with the same parameters as previously

but with different values of R - recalling that σ2
γ̂i
(n) = R × I−1(γi(n)), with I−1(γi(n)) the Cramer-

Rao Bound on the CSI parameter. Several robust games are compared with the NE solution with perfect

knowledge of the channel statistics (dashed lines) and with the FDMA solution proposed in [39, Algorithm

2]. Results are depicted in Figure 8.
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Fig. 8. Influence of the estimators quality on the robust games. Two players, reference SNR = 20 dB at 1 km.

Interestingly, results show that higher estimators variances σ2
γ̂i
(n) (or higher uncertainty about the

channel quality) can sometimes yield higher utilities. Though being seemingly counter-intuitive, this can

be interpreted as follows: as the estimators variances increases, in some situations the users become more

reluctant to allocate power on subcarriers that are not good enough given a fixed uncertainty bound.

In other words, since the uncertainty on the channel quality is conveyed by the estimators variances,

increasing those variances makes users more conservatives about their power budget. Note also that

increasing the interference power implies an increase in estimation variance, which explains why this

phenomenon is more often observed in small transmission areas. However, and as the results suggest, there

is obviously some threshold above which an higher uncertainty about the channel becomes detrimental.

3) Influence of the number of players: Games are now run with more players and focus is on the

average utility per user as a function of their number. The number of user ranges from 2 to 8. Each

terminal is immersed randomly within a circle of 1.5 km radius, the minimum distance between any

transmitter and receiver being constrained to be greater than 250 m. We consider the same three games

as before, with estimators γ̂i(n) having variances σ2
γ̂i
(n) = 4 × I−1(γi(n)) and uncertainty bounds

ǫi(n) = 0 for the non-robust game and ǫi(n) = 3×σγ̂i
(n) for the robust game. The games are run during

50 iterations from the initial state of uniform transmit PSD on the whole bandwidth for all players. Since

the geometry is randomly chosen, the process is repeated 100 times and the utilities of each player at

the end of the games are averaged over these 100 realizations.

Results are depicted in Figure 9. Not surprisingly, the average utility per player diminishes as the

August 25, 2017 DRAFT



21

2 3 4 5 6 7 8

Number of players

0

0.5

1

1.5

2

2.5

3

A
ve
ra
g
e
u
ti
li
ty

p
er

u
se
r

Nash
Robust Nash R = 4, k = 3
Non-robust Nash R = 4
FDMA
Naive
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Fig. 10. Configuration of the sea trials.

number of users accessing the same bandwidth in the same geographical area increases. Most importantly,

it can be observed that the proposed spectrum sharing methods show a strong improvement in terms of

utility compared to the naive strategy and that the robust games still performs better than the perfect

knowledge game.

VII. RESULTS ON CHANNELS SOUNDED AT SEA

A. Experiment setup

The proposed decentralized power allocation strategy is here illustrated with real channel measurements

recorded off the coast of Toulon, France, in July 2015. Three transmitter-receiver pairs were deployed

according to the configuration depicted in Figure 10. Three hydrophones RX1, RX2 and RX3 were

immersed at depths of 4 m, 12 m and 16 m respectively, at the same fixed location. The channels from

one transmitter to the receivers were sounded at three different locations, corresponding to TX1, TX2
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Fig. 11. Measured channels frequency responses.

and TX3. The signal to noise ratios (SNR) for each link were approximately 15 dB, 12 dB and 9 dB

from the nearest to the farthest transmitter.

Measurements of the channel impulse responses were obtained by successive matched filtering to

a known probe signal transmitted repeatedly. The probe signal used during the experiments was a m-

sequence of 511 BPSK chips transmitted at a rate of 8.7 kbps. Such a sequence can capture arrivals delayed

up to 58 ms and channel estimates can be updated up to 17 times per second. The channel sounding

duration was Tobs = 25 seconds. Measurements were made at a carrier frequency fc = 10.5 kHz and

time-varying Doppler shifts were mitigated by the iterative resampling procedure presented in [40], [41].

The processing gain offered by the m-sequence is 27 dB. The measured channels are thus considered as

the ground-truth from the point of view of the multiuser system simulated next. Consequently, their Rice

factors and averaged frequency responses are said to be the perfectly estimated statistics in the following.

Thus, the game G will be run with players based on this knowledge when they implement sequentially

the water-filling strategy (15). The time-varying frequency responses in a 6 kHz bandwidth centered on

fc are shown in Figure 11. The Rice factors Ki(n) for the direct frequency subchannels are between 1.4

dB and 6 dB in average depending on the link, and with higher Rice factors for subchannels with high
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Fig. 12. Power allocations at the end of the games - Real channels, robust game.

gains.

B. Simulation of the spectrum sharing game

The behavior of three UA OFDM links implementing the distributed water-filling solutions (15) and

(26) is simulated next, on the basis of the channels sounded at-sea. The three users share the same

bandwidth B = 6 kHz centered on fc and divided into N = 256 subcarriers. The subcarriers spacing,

block duration and cyclic prefix duration are the same as for the simulations on synthetic channels. Each

user has a power constraint Pmax
i = N . The initial states for both games G and G̃ are the uniform power

allocation strategy for the three users. Games are then run during 30 iterations, on the same basis as

the simulations on synthetic channels. The period at which each user updates its strategy is equal to the

channel observation time of 25 s. The users play one after the other and only one user plays per iteration.

Thus, the update period corresponds to three consecutive iterations. Each user implements its water-filling

based on the CSI given in (38).4 For the nonrobust and robust games, the estimators variances are set to

σ2
γ̂i
(n) = R × I−1(γi(n)) with R = 4 and the uncertainty bounds are ǫi(n) = k × σγ̂i

(n) with k = 2.

The value chosen for the latter parameter guarantees that the estimators γ̂i(n) produce errors below the

uncertainty bound with probability equal to 95.4%

The last power allocations of the robust game are depicted in Figure 12, which are consistent with

the frequency responses of Figure 11. User 1 takes advantage of the transmission geometry, it has less

incentive to share the bandwidth with its competitors and thus occupies more subchannels. Therefore,

4Tests have been conducted and have shown that no significant differences in the results can be seen whether Rice fading is

assumed or not in this experiment.
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Fig. 13. Utility functions of the players - Real channels. Plain line : perfect knowledge of the statistical CSI, stars : nonrobust

game (R = 4, k = 0), dashed : robust game (R = 4, k = 2).

Users 2 and 3 have to share the subcarriers where User 1 has allocated less or no power. Having its best

channel gain between 7.5 kHz and 10.5 kHz, its not surprising that User 3 has more incentive to allocate

its power on these subcarriers, avoiding the ones where User 1 is already present. The power allocation

of User 2 is more difficult to interpret. This player has the disadvantage to experience better channel

gains on subcarriers where both |h11(t, f)|
2 and |h12(t, f)|

2 are high: these subchannels are both those

User 1 is inclined to use and through which User 2 experiences most interference from that player. On

another hand, Users 2 and 3 interfere the most to User 1 on subcarriers ranging from 8 kHz to 10.5 kHz.

Consequently they have some opportunity to push User 1 out of some subcarriers on this band. This is

particularly true in the robust game, thanks to the conservative behavior of User 1.

Utilities achieved at each iterations for both games are shown in Figure 13. At the end of the game, all

users have multiplied their utilities by at least two in the game with perfect knowledge of the statistical

CSI. As expected, performance are diminished in the nonrobust game. Estimations errors are less harmful

for players 2 and 3 compared to player 1, their situations regarding the transmission geometry being the

preponderant factor on their performance. In this particular setup, all players in the robust game have

increased their utilities, even above those in the perfect knowledge case. This confirms with experimental

data that the robust game proposed is able to reach operating points that are Pareto superior to the Nash

equilibrium without information exchange between players, cooperation, or centralized control.
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VIII. PRACTICAL ASPECTS

Some practical aspects related to convergence time of iterative water-filling algorithm to an equilibrium,

CSI estimation and channel stationarity assumptions must be stressed. It should be mentioned that these

three parameters are linked together by the choice of the period of time Tobs on which the channel

statistics are integrated, which corresponds also to the update period of the power allocation strategies

of each player. In a practical setup, each player could have its own update period which results in an

asynchronous water-filling algorithm rather than the sequential update we presented so far. However,

this does not change the following comments. The channel stationarity time should be greater than the

convergence time of the iterative water-filling algorithm. It is then expected that the iterative nature of

the procedure is able to track the larger scale fading. For the sequential algorithm, convergence time is

mainly dependent on the update period Tobs. Provided that the channel statistics are indeed stationary,

increasing this period should reduce the CSI estimation variance and thus produce a spectrum sharing that

fits better to the global channel state. However, this would be done at the price of a longer convergence

time. In addition, the period Tobs should be chosen large in comparison to the feedback link delay which

depends on the distance between a receiver and its transmitter. Note that if the channel statistics are not

stationary during the whole period Tobs, this would result in an estimation error against which the robust

game can provide a solution. Finally, the more users there are sharing underwater channel in the same

area, the more difficult it will be to reach an equilibrium (recall also that the conditions (17) and (19)

on the uniqueness of an NE and the convergence of iterative algorithms would hardly be met).

IX. CONCLUSION

An efficient spectrum sharing method distributed between interfering UA OFDM systems has been

proposed. Tools from game theory allowed us to devise a noncooperative solution, which only necessitates

that each communication link has a local and statistical knowledge about its environment. The proposed

method copes with realistic constraints of the UA context - namely, the impossibility for systems in

different networks to exchange information about their channel states, the double selectivity and the

random nature of most UA channels, as well as the low propagation speed of UA waves. Erroneous

knowledge of the statistical CSI has also been taken into account by a robust formulation of the initial

game. Utility functions are minimized on the set of CSI for which estimators lie within an uncertainty

bound that can be parameterized. Simulation results on synthetic and real UA channels have shown the

effectiveness of the proposed spectrum sharing strategy. In medium and high interference setups, utility

functions of the players can be multiplied by at least a factor of two compared to the naive uniform
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transmit PSD. Furthermore, in some situations, it is possible to get close to the FDMA strategy while

requiring much less information to be known by the players. Though real and synthetic shallow water

channels have been considered for simulations, the same spectrum management strategy could also be

applied in deep waters. Many extensions of this work are possible. First, it should be noticed that the

Nash Equilibrium solution proposed here is unfair in the sense that the achieved spectrum sharing could

be good for some users and not for the others. Simulations on real channels have shown that a player

can take advantage of its initial situation without caring for the other systems evolving in the same area.

This calls for the study of mechanisms able to improve the equilibrium efficiency or even create implicit

cooperation between players. Games with pricing could be a path of investigation toward decentralized

and noncooperative method to reach operating points that are Pareto superior to the NE. The quantity of

information that receivers have to feedback can also be a problem for practical systems. A complementary

but similar game has been studied in another work [42], where UA-OFDM communication links are aimed

at minimizing their transmission power under information rate constraint. A natural extension of both

[42] and this paper are satisfaction games [43], [44] where players do not aim at maximizing their utility

but only at finding a strategy that guarantees a minimum satisfaction level. This type of game could

reduce the feedback information to only one bit. Further extensions of this works could also consider

interactions between heterogeneous systems, e.g sonars and communications systems. To conclude, future

works on the topic should also evaluate the benefits of our method for practical system implementations.

Measuring the possible BER improvements provided by our approach during at-sea trials by considering

practical coding and modulation schemes could be a relevant example.
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APPENDIX A

DERIVATION OF UTILITY FUNCTIONS ui(pi,p−i)

A. Minimization Against the Worst Case Cross-Channels Distributions

The ergodic capacity of the player i is given by

ri(pi,p−i) ∝
N
∑

n=1

E {log (1 + SINRi(n))} (27)
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with SINRi(n) defined by

SINRi(n) =
|hii(n)|

2pi(n)

σ2
i (n) +

∑

j 6=i |hji(n)|
2pj(n)

(28)

and where the expectation in (27) is evaluated according to the joint probability distribution of the

hji, i, j ∈ M.

The proposed utility function is

ui(pi,p−i) = min
fhji,i6=j :hji∈L2

ri(pi,p−i) (29)

To solve this probem, the minimum ergodic capacities of all subchannels n ∈ {1, · · · , n} can be

equivalently found.

E {log (1 + SINRi(n))}
(a)
= Ehii

{

Ehj 6=i,i

[

log

(

1 +
|hii(n)|

2pi(n)

σ2
i (n) +

∑

j 6=i |hji(n)|
2pj(n)

)

∣

∣

∣

∣

hii

]}

(b)

≥ Ehii

{

log

(

1 +
|hii(n)|

2pi(n)

σ2
i (n) +

∑

j 6=i Ehji
{|hji(n)|2} pj(n)

)} (30)

Using (28) and conditional expectations, we can write equation (30)-(a). Inequality (30)-(b) then follows

from Jensen’s inequality, since the function under the conditional expectation is convex in hji(n). The

solution of problem (29) is given by the right-hand side of inequality (30)-(b), which is an equality for

gaussian interference (a commonly used assumption in practical systems). This proves (9).

The game could be defined with (9) as utility functions. However, the water-filling solution would not

have a closed-form expression as in (15) and convergence and NE uniqueness conditions cannot be found

easily. This justifies the need to obtain a utility function expressed as the right member of (10). We first

rewrite the utility function as

ui(pi,p−i) =

N
∑

n=1

Ehii

{

log

(

1 +
|hii(n)|

2pi(n)

ζi(n)

)}

=

N
∑

n=1

Ehii

{

log

(

1 +
elog |hii(n)|2pi(n)

ζi(n)

)}
(31)

where,

ζi(n) = σ2
i (n) +

∑

j 6=i

E
{

|hji(n)|
2
}

pj(n).

Noticing that ui(pi,p−i) is then convex in log |hii(n)|
2 yields the following inequality

ui(pi,p−i) ≥
N
∑

n=1

log

(

1 +
eE{log |hii(n)|2}pi(n)

ζi(n)

)

, (32)

August 25, 2017 DRAFT



28

which ends the proof. It can be shown numerically that, with the real data used in Sec. VII or under

under Rice fading assumptions, (32) is a tight lower bound of (31).

�

B. Approximation Under the Rician Fading Channel Assumption

If one makes the choice to model the UA channel fading process as Rician, we have that hii(n) ∼

CN (µii(n), σ
2
ii(n)) ∀ n ∈ {1, · · · , N} and thus their squared modulus follow a non-central chi-squared

law. Inequality (32) can be rewritten using the expected logarithm of non-central chi-squared variable

formula, which can be found in [45, Equation (209)]. Let us recall this formula and adapt it to our needs

and notations in the following theorem:

Theorem 3. Let H ∼ CN (0, 1), µ ∈ C and σ ∈ R+ \ {0}. Then, we have

E
{

log |µ+ σH|2
}

= log σ2 + log
|µ|2

σ2

−Ei

(

−
|µ|2

σ2

)

.

(33)

with Ei(−x) the exponential integral function defined, for x > 0, as

Ei(−x)
∆
= −

∫ +∞

x

e−t

t
dt. (34)

It is possible to rewrite hii(n) = µii(n) + σii(n)H with H ∼ CN (0, 1). The Rice factor Ki(n) and

channel gain of hii(n) are defined as

Ki(n)
∆
=

|µii(n)|
2

σ2
ii(n)

(35)

E
{

|hii(n)|
2
}

= |µii(n)|
2 + σ2

ii(n). (36)

Applying Theorem 3 to the expected logarithm in inequality (31) with the two definitions above yields

E
{

log |hii(n)|
2
}

= log σ2
ii(n) + logKi(n)− Ei (−Ki(n))

= log

(

Ki(n)

Ki(n) + 1
E
{

|hii(n)|
2
}

)

− Ei (−Ki(n)) .

(37)

Equation (11) then becomes

γi(n) =
gi(n)E{|hii(n)|

2}

σ2
wi
(n) +

∑

j 6=i E{|hji(n)|
2}pj(n)

, (38)
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where

gi(n) =
Ki(n)

Ki(n) + 1
e−Ei(−Ki(n)). (39)

Note that no consensus exists regarding the statistical modeling of UA communication channels. The

interested reader is referred to [21], [25], [26], [46], [47], which - among other works - can give an idea

of the variety of existing statistical channel models for UA communications. Under the Rician fading

assumption, the expression (38) only depends on channel parameters - the Rice factor and channel gain

- for which efficient estimation methods exist (see for instance [48] for a practical Rice factor estimation

method).

�

APPENDIX B

PROOF OF THEOREM 1: UNIQUENESS OF THE NASH EQUILIBRUM

In general, only sufficient conditions can be given for guaranteeing NE uniqueness in games whose

utility functions are concave and strategy spaces are closed, convex and bounded. These conditions can

be obtained by prooving that utility functions are diagonally strictly concave, which imply NE uniquess.

This notion of diagonal strict concavity has been first introduced in [49]. We recall this notion and adapt

it to our needs in the following theorem:

Theorem 4. Let G =
{

M,P = P1 × · · · × PM , (ui)
M
i=1

}

be a game with convex, closed and bounded

strategic spaces Pi and utility functions being continuous in p ∈ P and concave in pi ∈ Pi, ∀ i ∈ M.

Any vector p ∈ P can be decomposed as p =
[

pT
1 , · · · ,p

T
M

]T
. If ∀ p,p′ ∈ P, p 6= p′, ∃ i ∈ M such

that the following holds

(

p′
i − pi

)T
∇pi

ui(p) +
(

pi − p′
i

)T
∇pi

ui(p
′) > 0, (40)

then the Nash Equilibrum of game G is unique.

Proof: See [49, Theorem 2].

Then, the main idea is to suppose two different NEs p,p′ ∈ P = P1 × · · · × PM and to find what

are the conditions on the channel statistics that satisfy Theorem 4.

First, ui(pi,p−i) is rewritten as

ui(pi,p−i) ∝
N
∑

n=1

log

(

1 +
Hii(n)pi(n)

σ2
i (n) +

∑

j 6=iHji(n)pj(n)

)

(41)
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where

Hji(n)
∆
=







eE{log |hii(n)|2} if i = j,

E
{

|hji(n)|
2
}

otherwise
(42)

We have ∀ n ∈ {1, · · · , N},

[∇pi
ui(p)]n =

Hii(n)

σ2
i (n) +

∑M
j=1Hji(n)pj(n)

. (43)

Let p,p′ ∈ P = P1 × · · · × PM and suppose p 6= p′. Using the above definitions in condition (40)

yields that p and p′ cannot be both NE if ∃ i ∈ M such that

N
∑

n=1

(

p′i(n)− pi(n)
) Hii(n)

ξi(n)
×

M
∑

j=1

Hji(n)
(

p′j(n)− pj(n)
)

> 0 (44)

where

ξi(n) =



σ2
i (n) +

M
∑

j=1

Hji(n)pj(n)



×



σ2
i (n) +

M
∑

j=1

Hji(n)p
′
j(n)



 > 0. (45)

It can be shown that [33, Appendix B] a sufficient condition to have (44) true is ∃ i ∈ M, ∀ n ∈

{1, · · · , N}

∣

∣p′i(n)− pi(n)
∣

∣+ sign
(

p′i(n)− pi(n)
)

×
∑

j 6=i

Gji(n)
(

p′j(n)− pj(n)
)

> 0 (46)

with Gji(n) defined for j 6= i as

Gji(n)
∆
=

Hji(n)

Hii(n)
, ∀ n ∈ {1, · · · , N} . (47)

Starting from this point, the same steps as in [33, Appendix B] can be applied and yield the condition

of Theorem 1 when translated in terms of the channel statistics.

�

APPENDIX C

PROOF OF THEOREM 2: CONVERGENCE OF ITERATIVE WATER-FILLING

The water-filling operator can be seen from the point of view of the whole system as a mapping from

P = P1×· · ·×PM to itself. Let p =
[

pT
1 , · · · ,p

T
M

]

∈ P be the concatenation of all the power allocation

vectors pi ∈ Pi. The water-filling mapping can be defined as

WF (p) = (WFi(p−i))
M
i=1 (48)
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where ∀ n ∈ {1, · · · , N}

[WFi(p−i)]n =

[

λi −
σ2
i (n) +

∑

j 6=iE
{

|hji(n)|
2pj(n)

}

eE{log(|hii(n)|2)}

]+

. (49)

an NE p⋆ of the game G is by definition a fixed point of the best response mapping defined by (48) [18,

Proposition 3.1], i.e.

p⋆ = WF (p⋆) (50)

The key argument to prove convergence of iterative algorithms based on the mapping (48) to an NE is

to show that this mapping is a block-contraction (see [34, Appendices B and C]). We recall this notion

in the following definitions [50]:

Definition 3 (Block-maximum norm). Let X = X1 × · · · × XM ⊆ Rn where each Xi is a nonempty

Euclidean subspace of Rni endowed with the Euclidean norm denoted by ||.||2, and where n = n1 +

· · ·+nM . Any vector x ∈ X can be decomposed as x =
[

xT
1 , · · · ,x

T
M

]T
. The block-maximum norm on

Rn is defined as

||x||block = max
i

||xi||2 (51)

Definition 4 (Block-contraction mapping). Let T : X → X where X is defined as in Definition 3.

Any vector x ∈ X can be decomposed as x =
[

xT
1 , · · · ,x

T
M

]T
and ∀ x ∈ X we have T (x) =

[T1(x), · · · , TM (x)] where each Ti : X → Xi is the ith block-component of T . ( T is called a block-

contraction mapping of modulus β if it verifies ∀ x,y ∈ X

||T (x)− T (y)||block ≤ β||x− y||block. (52)

with β ∈ [0, 1). Such a mapping has a unique fixed-point x⋆ = T (x⋆).

Suppose now a sequential algorithm to find a fixed point of such mapping T , which updates a vector

x on a block-wise basis, i.e. at each iteration t ∈ N we have ∀ i ∈ {1, · · · ,M}

xi(t+ 1) =







Ti(x(t)) if (t+ 1) mod M = i

xi(t) otherwise.
(53)

Such an algorithm is called the Gauss-Seidel algorithm based on mapping T [50]. We have now the

following convergence theorem:

Theorem 5 (Convergence of Gauss-Seidel Block Iterations [50]). If T : X → X is a block-contraction

mapping, the sequence computed by the Gauss-Seidel algorithm (53) based on mapping T converges

geometrically to the unique fixed point of T from any initial point.
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The sequential iterative water-filling described in Section IV can be identified to a Gauss Seidel

implementation of the water-filling mapping defined in (48). Using the interpretation of the water-filling

operator as an Euclidean projector on a convex set [34] we can rewrite (49) as

WFi(p−i) =



−σi −
∑

j 6=i

Hjipj





Pi

(54)

where

σi
∆
=

[

σ2
i (1)

eE{log(|hii(1)|2)}
, · · · ,

σ2
i (N)

eE{log(|hii(N)|2)}

]T

, (55)

Hji
∆
= diag





[

E
{

|hji(1)|
2
}

eE{log(|hii(1)|2)}
, · · · ,

E
{

|hji(N)|2
}

eE{log(|hii(N)|2)}

]T


 , (56)

and [.]Pi
denotes the Euclidean projection on Pi. Thus, we can follow the same steps as the proofs in

[34, Appendices B and C] to show that the water-filling mapping of our game is a block-contraction

under the condition of Theorem 2.

�
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