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Abstract

In this paper we give upper bounds on the tail or the quantiles of the one-sided
maximum of a nonnegative submartingale in the class L logL or the maximum of a
submartingale in Lp. Our upper bounds involve the entropy in the case of nonnegative
martingales in the class L logL and the Lp-norm in the case of submartingales in Lp.
Starting from our results on entropy, we also improve the so-called bounded differences
inequality. All the results are based on optimal bounds for the conditional value at risk
of real-valued random variables.

1 Introduction
This paper is motivated by the question below. Let (Mk)0≤k≤n be a real-valued sub-
martingale in L1. Define M∗

n = max(M0,M1, . . . ,Mn). How to provide an upper bound
on the tail or the quantiles of M∗

n under some additional integrability conditions on the
submartingale?

In order to explain our results, we need the definition of the quantile function of a
random variable X and some basic properties of this function.

Definition 1.1. Let X be a real-valued random variable. The tail function HX is defined
by HX(t) = IP(X > t). The quantile function QX is the cadlag inverse of HX .

The basic property of QX is: x < QX(u) if and only if HX(x) > u. This property
ensures that QX(U) has the same distribution as X for any random variable U with the
uniform distribution over [0, 1].

Definition 1.2. The median µ(X) of a real-valued random variable X is defined by
µ(X) = QX(1/2).

Let us now recall Doob’s maximal inequalities. Below we assume that the random
variables M0,M1, . . . ,Mn are nonnegative. The first inequality is in fact due to Ville
(1939, Theorem 1, page 100): for any x > 0,

IP(M∗
n ≥ x) ≤ x−1IE(Mn) or, equivalently, QM∗n(1/z) ≤ zIE(Mn) Ville (1939)
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for any z ≥ 1. From the fact that QMn(U) has the same law as Mn, Ville’s inequality is
equivalent to

QM∗n(u) ≤ u−1
1∫
0

QMn(s)ds for any u ∈]0, 1]. (1.1)

Clearly one cannot derive upper bounds on IE(M∗
n) from this inequality. Doob (1940,

Theorem 1.1 or 1953, p. 314) proved the more precise inequality

IP(M∗
n ≥ x) ≤ x−1IE

(
Mn 1M∗n≥x

)
for any x > 0. Doob (1940)

Assume now that the random variable Mn is in the class L logL of real-valued ran-
dom variables X such that IE(|X| log+ |X|) < ∞. Applying Ville’s inequality to the
submartingale (Mk log+Mk)0≤k≤n, one immediately gets that, for any x > 1,

IP(M∗
n ≥ x) ≤ (x log x)−1IE(Mn log+Mn).

This inequality proves that the tail ofM∗
n is at most of the order of (x log x)−1 as x↗∞.

Nevertheless, first the upper bound tends to ∞ as x↘ 1, even under the normalization
condition IE(Mn) = 1 and, second, the quantities involved here fail to be homogeneous.
Therefore, it seems clear that the above upper bound can be improved.

We now recall the known results for nonnegative submartingales in the class L logL.
Up to now, upper bounds on IE(M∗

n) have paid more attention than upper bounds on the
tail of M∗

n. Starting from his inequality, Doob (1953, p. 317) obtained the upper bound

IE(M∗
n) ≤ e

e−1

(
IE(Mn log+Mn) + 1

)
, where log+ x = max(0, log x). (1.2)

Define now the integrated quantile function Q̃X of a real-valued integrable random vari-
able X by

Q̃X(u) = u−1
u∫
0

QX(s)ds for any u ∈]0, 1]. (1.3)

In mathematical finance, Q̃X is called conditional value at risk of X. Clearly QX ≤ Q̃X .
Blackwell and Dubins (1963) derived from the Doob inequality the upper bound

QM∗n(u) ≤ Q̃Mn(u) for any u ∈]0, 1]. (1.4)

Later Dubins and Gilat (1978) proved the optimality of (1.4).
For a nonnegative random variable X, Q̃X is known as the Hardy-Littlewood maximal

function assoicated with X. Hardy and Littlewood (1930, Theorem 11) proved that

1∫
0

Q̃X(u)du ≤ c
(
IE(X log+X) + 1

)
for some universal positive constant c, which gives an alternative proof of (1.3), up to
the constant. The above inequality is usually called L logL inequality of Hardy and
Littlewood. Gilat (1986, Theorem 3) proved that the two-parameter inequality

1∫
0

Q̃X(u)du ≤ cIE(X logX) + d (1.5)

holds for any c > 1 and any d ≥ e−1c2(c − 1)−1. In particular, if c = e/(e − 1) then
(1.5) holds true with d = e/(e − 1). Using (1.4), it follows that (1.2) holds true with
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IE(Mn logMn) instead of IE(Mn log+Mn). The martingale counterpart of (1.5) may be
found in Osekowski (2012, Theorem 7.7). Curiously (1.2) and (1.5) fail to be homoge-
neous, since they are not invariant under the multiplication of the submartingale or the
random variable X by a constant factor, so that one can have some doubts about their
optimality.

Starting from Doob’s inequality and introducing the entropy ofMn, Harremoës (2008)
improved Gilat’s result. For a nonnegative real-valued random variable X such that
IE(X > 0) and IE(X log+X) <∞, define the entropy H(X) of X by

H(X) = IE
(
X logX

)
− IE(X) log IE(X). (1.6)

Under the above conditions H(X) is finite. Furthermore H(X) ≥ 0 and H(X) = 0 if and
only if X is almost surely constant. Assuming thatM0 = 1, as in Ville (1939), Harremoës
(2008) derived from Doob’s inequality the upper bounds

IE(M∗
n)− 1 ≤ IE(Mn logM∗

n) ≤ H(Mn) + log IE(M∗
n). (1.7)

Defining the function g : [1,∞[ 7→ [0,∞[ by g(x) = x− 1− log x, (1.7) implies that

IE(M∗
n) ≤ g−1

(
H(Mn)

)
, (1.8)

where g−1 : [0,∞[ 7→ [1,∞[ is the inverse function of g. Harremoës (2008, Theorem 4)
also proved that (1.8) is tight. It appears here that the entropy is the adequate quantity
for nonnegative submartingales in the class L logL. In the present paper we will obtain
estimates for the tails or the quantiles of M∗

n involving entropy. In order to get these
estimates, we give a covariance inequality in Section 2. Next, in Section 3 we derive
upper bounds on the tail function of M∗

n from (1.4) and this covariance inequality. We
also prove that our main inequality is sharp for positive martingales with given entropy
and expectation.

Assume now that the random variable Mn fulfills the stronger moment condition
IE|Mn|p <∞ for some p > 1. For any real y, let y+ = max(0, y). By the Ville inequality
applied to the nonnegative submartingale (Mk − a)p+,

IE(M∗
n ≥ a+ x) ≤ x−pIE

(
(Mn − a)p+

)
for any x > 0 and any real a. (1.9)

Setting a = IE(Mn) in the above inequality, we obtain a deviation inequality for M∗
n

around IE(Mn). This inequality proves that the tail of M∗
n is at most of the order of x−p

as x↗∞. However, the upper bound tends to ∞ as x↘ 0. Recall now the Tchebichef-
Cantelli inequality (see Tchebichef (1874)1 and Cantelli (1932), Inequality (19), p. 53):
for any real-valued random variable X in L2 and any positive x,

IP(X ≥ IE(X) + x) ≤ σ2/(x2 + σ2), where σ2 = VarX. Tchebichef (1874)

We refer to Savage (1961) for a review of probabilities inequalities of the Tchebichef type
with a complete bibliography. This inequality is equivalent to the upper bound

QX(1/z) ≤ IE(X) + σ
√
z − 1 for any z > 1. (1.10)

1The left hand side version of this inequality follows immediately from the result of Tchebichef (1874)
stated on the last line of p.159 and the first line of p.160, by taking the limit as l tends to ∞.
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For instance (1.10) ensures that µ(X) ≤ IE(X) + σ. In Section 4, we give a maximal
version of (1.10) for submartingales in Lp. In the special case p = 2 our result yields

QM∗n(1/z) ≤ IE(Mn) + ‖Mn − IE(Mn)‖2
√
z − 1 for any z > 1, (1.11)

which is an extension of the above bound to maxima of submartingales. We then apply our
results to martingales in Lp for p in ]1, 2] and we compare the so obtained upper bounds
on QM∗n with the upper bounds that can be derived from the minimization of (1.9) with
respect to a. These upper bounds are based on von Bahr-Esseen type inequalities. In
particular, in order to make a fair comparison of the results that can be derived from
(1.9) with the extension of Tchebichef-Cantelli’s inequality to martingales in Lp, we prove
a one-sided von Bahr-Esseen type inequality in the Annex.

In Section 5, we consider maxima of martingales (Mk)0≤k≤n in Lp for p > 2. The
two-sided maximum |M |∗n is defined by

|M |∗n = max(|M0|, |M1|, . . . , |Mn]) (1.12)

Let
σ = ‖Mn‖2 and Lp = σ−p IE|Mn|p. (1.13)

By Theorem 7.4 in Osekowski (2012),

IP(|M |∗n ≥ σx) ≤ (Lp/x)p or, equivalently, Q|M |∗n(1/z) ≤ σ(zLp)
1/p. (1.14)

Our aim in Section 5 is to give more precise bounds when IE(M0) = 0. Assume for
instance that p = 4. Let X be a centered real-valued random variable in L4. Set
σ = ‖X‖2. Cantelli (1932, p. 56) obtained the inequality below: for any x > 1,

IP(X ≥ σx) ≤ L4 − 1

L4 − 1 + (x2 − 1)(max(x2, L4)− 1)
, Cantelli (1932)

where L4 = σ−4IE(X4). Cantelli’s inequality is equivalent to the quantile inequality

QX(1/z) ≤ σ
(
1 +

√
(min(z, L4)− 1)(z − 1)

)1/2 for any z > 1. (1.15)

As shown by Cantelli (1932), this inequality improves the basic inequality

QX(1/z) ≤ σ(zL4)
1/4 for any z > 1. (1.16)

In Section 5, we obtain extensions of (1.15) to martingales in Lp for some p > 2. For
instance, if p = 4, our result yields

Q|M |∗n(1/z) ≤ σ
(
1 +

√
(min(z, L4)− 1)(z − 1)

)1/2 for any z > 1, (1.17)

where σ and L4 are defined in (1.13), which improves (1.14) in the case p = 4.
To conclude this paper, we consider sub-Gaussian martingales. As pointed by Ledoux

(1996), entropy methods have interesting applications to concentration inequalities. In
Section 6, we apply the results of Section 3 to sub-Gaussian martingales. With this aim
in view, we introduce the notion of entropic sub-Gaussian random variable. We then
prove that entropic sub-Gaussian random variables satisfy more precise tail inequalities
than the usual sub-Gaussian random variables. Finally, in Section 7, we apply the results
of Section 6 to the so-called bounded differences inequality.
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2 A covariance inequality involving entropy
Throughout this section X is a nonnegative real-valued random variable. We assume
that IE(X log+X) <∞ and IE(X) > 0. The main result of this section is the covariance
inequality below.

Theorem 2.1. Let X be a nonnegative random variable satisfying the above conditions
and η be a real-valued random variable with finite Laplace transform on a right neighbor-
hood of 0. Then

IE(Xη) ≤ inf
{
b−1
(

IE(X) log IE
(
ebη
)

+H(X)
)

: b ∈]0,∞[
}
.

Proof. A shorter proof can be done using the duality formula for the entropy (see
Boucheron et al. (2013), Section 4.9 for this formula). However a self-contained proof is
more instructive (see Remark 2.1 below). Define the two-parameter family of functions
ϕa,b by

ϕa,b(x) = (x/b) log(x/a) for any x > 0 and any positive reals a and b, (2.1)

with the convention 0 log 0 = 0. Clearly

Xη ≤ ϕa,b(X) + ϕ∗a,b(η), where ϕ∗a,b(y) = sup{xy − ϕa,b(x) : x ∈ [0,∞[ }. (2.2)

Next the function x 7→ xy−ϕa,b(x) takes its maximum at point x = aeby− 1, from which

ϕ∗a,b(y) = (a/b) exp(yb− 1). (2.3)

It follows that
Xη ≤ b−1

(
X logX −X log a+ a exp(bη − 1)

)
. (2.4)

Taking the expectation in the above inequality,

IE(Xη) ≤ b−1
(
IE(X logX)− IE(X) log a+ (a/e)IE

(
ebη
) )
. (2.5)

Let us now minimize the upper bound. Deriving the upper bound with respect to a, we
get that the optimal value of a is a = eIE(X)/IE(ebη). Choosing this value in (2.5), we
get that

IE(Xη) ≤ b−1
(
IE(X logX)− IE(X) log IE(X) + log IE

(
ebη
) )

for any b > 0, (2.6)

which implies Theorem 2.1.

Remark 2.1. Notice that the proof of Theorem 3 in Gilat (1986) is based on the inequality
Xη ≤ ϕ1,b(X) + ϕ∗1,b(η), where b = 1/c and η = log(1/u). The minimization with respect
to a is omitted, which leads to a suboptimal inequality. The same default appears in the
proof of Theorem 7.7 in Osekowski (2012).

Remark 2.2. From (2.6) we also have

H(X) ≥ sup
{
bIE(Xη)− IE(X) log IE

(
ebη
)

: b ∈]0,∞[
}
. (2.7)

Recall now the well-known upper bound

IE(M∗
n) ≤

1∫
0

QMn(u) log(1/u)du, (2.8)

which is a direct byproduct of (1.4). If E(Mn) = 1, from (2.8) and (2.7) applied with
X = QMn(U) and η = log(1/U),

H(Mn) ≥ sup
{
b IE(M∗

n) + log(1− b) : b ∈]0, 1[
}

= g
(

IE(M∗
n)
)
, (2.9)

which gives a proof of (1.8).

5



3 Bounds on the tail of M ∗
n involving entropy

The main result of this section is the upper bound below on conditional value at risk of
X. This upper bound has a variational formulation. From this upper bound we will then
derive explicit upper bounds on the tail function of M∗

n.

Theorem 3.1. Let X be a nonnegative random variable, such that IE(X) = 1 and
H(X) = H for some H in ]0,∞[. Let Q̃X be defined by (1.3). Then, for any z > 1

Q̃X(1/z) ≤ ψH(z) where ψH(z) = inf
t>0

t−1
(
H − log z + log

(
ezt + z − 1

) )
. (a)

An other formulation of ψH is

ψH(z) = z inf
{(
H − log z + log(c+ z − 1)

)
/ log c : c > 1 }. (b)

Furthermore

ψH(z) = z for any z ≤ eH and ψH(z) < z for any z > eH . (c)

Conversely, for any H in ]0,∞[ and any z > 1, there exist a nonnegative random variable
Y such that

IE(Y ) = 1, H(Y ) = H and Q̃Y (1/z) = ψH(z). (d)

Proof. We start by the proof of (a). From Theorem 2.1 applied to the random variables
QX(U) and B = z 1zU≤1,

Q̃X(1/z) ≤ inf
t>0

t−1
(
H + log

(
z−1ezt + 1− z−1

) )
,

which implies (a). To prove (b) it is enough to set t = z−1 log c in the definition of ψH .
Then ezt = c, which gives (b).

To prove (c) and (d), we separate two cases. If H ≥ log z,

H − log z + log(c+ z − 1) ≥ log(c+ z − 1) ≥ log c.

Hence, ψH(z) ≥ z by Theorem 3.1(b). Now

lim
c→∞

(
H − log z + log(z + c− 1)

)
/ log c = 1, (3.1)

which ensures that ψH(z) = z. Let Y = eH 1U≤e−H . Then IE(Y ) = 1, H(Y ) = H and

Q̃Y (1/z) = z
1/z∫
0

QY (s)ds = z
1/z∫
0

eH 1s≤e−Hds = z = ψH(z).

which proves (d) in the case z ≤ eH . If H < log z, define

B = z 1zU≤1, Zt = exp(tB) and Yt = Zt/IE(Zt). (3.2)

Set

RB(t) = z−1(etz − 1 + z), `B(t) = logRB(t) and f(t) = t−1(H + `B(t)). (3.3)

(RB is the Laplace transform of B). By definition, ψH(z) is the minimum of f . Now

f ′(t) = t−2
(
t`′B(t)− `B(t)−H

)
.
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Next `B is infinitely differentiable, strictly convex and has the asymptotic expansion

`B(t) = − log z + zt+O(e−zt) as t ↑ ∞.

It follows that g : t 7→ t`′B(t) − `B(t) is continuous, strictly increasing and satisfies
lim0 g = 0 and lim∞ g = log z > H. Hence there exists a unique t0 > 0 such that
g(t0) = H and f has a minimum at t = t0. Furthermore, since f ′(t0) = 0,

ψH(z) = `′B(t0) < z. (3.4)

which proves (c) in the case z > eH . Let then Y = Yt0 , where Yt is defined in (3.2):
IE(Y ) = 1 and, with the notations introduced in (3.3),

H(Y ) = IE
(

(t0B − `B(t0)) exp(t0B)/RB(t0)
)

= t0`
′
B(t0)− `B(t0) = H.

Furthermore, by (3.4),

Q̃Y (1/z) = et0z/RB(t0) = `′B(t0) = ψH(z), (3.5)

which gives (d) and completes the proof of Theorem 3.1. �

Remark 3.1. For any nonnegative random variable X and any positive α, Q̃αX = αQ̃X

and H(αX) = αH(X). Hence Theorem 3.1(a) implies that, for any nonnegative random
variable X such that IE(X) > 0 and H(X) <∞,

Q̃X(1/z) ≤ IE(X)ψH(z) for any z > 1, where H = H(X)/IE(X). (3.6)

Remark 3.2. From (1.4) and the above Remark, Theorem 3.1 applied to nonnegative
submartingale (Mk)0≤k≤n yields

QM∗n(1/z) ≤ IE(Mn)ψH(z) for any z > 1, where H = H(Mn)/IE(Mn). (3.7)

By Theorem 3.1(c), ψH(z) < z for any z > eH . Consequently, if IE(Mn) log z > H(Mn),
then ψH(z) < z and (3.7) improves Ville’s inequality. If IE(Mn) log z ≤ H(Mn), then
ψH(z) = z and (3.7) does not improve Ville’s inequality.

Remark 3.3. Let µ be any law on [0,∞[ with finite entropy. From Lemma 2 in Dubins
and Gilat (1978), there exists a nonnegative continuous time martingale (Mt)t∈[0,1] such
that M1 has the law µ and M∗

1 = sup{Mt : t ∈ [0, 1] } has the Hardy-Littlewood maximal
distribution associated to µ, which means that QM∗1

= Q̃M1. Hence Theorem 3.1 provides
an optimal upper bound, at least for continuous time martingales, which shows that Ville’s
inequality cannot be improved if z ≤ eH .

We now give upper bounds on the tail function of M∗
n. For an integrable random

variable X, let H̃X denote the tail function of the Hardy-Littlewood maximal distribution
associated with the law of X. By definition, if U is a random variable with the uniform
distribution over [0, 1]

H̃X(t) = IP(Q̃X(U) > t) for any real t, (3.8)

where Q̃X is given by (1.3). From (1.4),

HM∗n ≤ H̃Mn . (3.9)

Hence it is enough to bound up H̃Mn . Thus the upper bound below on H̃X will be the
main ingredient for proving maximal inequalities.
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Theorem 3.2. Let X be a nonnegative random variable, such that IE(X) = 1 and
H(X) = H for some H in ]0,∞[. For x > 0, let p = H̃X(x + 1) and v = p/(1 − p).
Define the function L∗v by

L∗v(y) =

(
v + y

v + 1

)
log

(
1 +

y

v

)
+

(
1− y
v + 1

)
log(1− y) if y ∈ [0, 1] (3.10)

and L∗v(y) = +∞ for y > 1. Define also the nonnegative function h by

h(x) = (1 + x) log(1 + x)− x for x ≥ −1 and h(x) = +∞ for x < −1. (3.11)

Then
L∗v(vx) ≤ H or, equivalently, ph(x) + (1− p)h(−vx) ≤ H.

Proof. For any positive v, define the Bernoulli type random variable ξ by

IP(ξ = 1) = v/(1 + v) and IP(ξ = −v) = 1/(1 + v).

Let
Lv(t) = log IE

(
etξ
)

= log
(
vet + e−vt

)
− log(1 + v). (3.12)

Define the Legendre-Fenchel dual L∗ of the convex and increasing function L : IR+ 7→ IR+

by
L∗(x) = sup{xt− L(t) : t > 0} for any x ≥ 0. (3.13)

Then L∗ is convex and increasing. From formula (2.55), page 29, in Bercu et al. (2015),
the Legendre-Fenchel dual L∗v of Lv is given by (3.10). Now the inversion formula below
holds true (see Bercu et al. (2015), page 57):

L∗−1(x) = inf{t−1(L(t) + x) : t > 0} for any x ≥ 0. (3.14)

With the above notations, if ψH is the function already defined in Theorem 3.1(a),

ψH(z)− 1 = v−1 inf
t>0

t−1
(
H + Lv(t)

)
= v−1L∗−1v (H) if v = (z − 1)−1. (3.15)

Applying now Theorem 3.1(a) with z = 1/p and noticing that Q̃X(p) = x + 1 (thanks
to the continuity of Q̃X), we get that x ≤ ψH(1/p) − 1. From (3.15), this inequality
is equivalent to vx ≤ L∗−1v (H). Since L∗v is nondecreasing and L∗v(L

∗−1
v (H)) ≤ H, this

inequality implies the first part of Theorem 3.2.
Now, by identity (2.66) in Bercu et al. (2015),

L∗v(vx) = v(1 + v)−1h(x) + (1 + v)−1h(−vx) = ph(x) + (1− p)h(−vx), (3.16)

which concludes the proof of Theorem 3.2. �
We now derive explicit upper bounds on H̃X from Theorem 3.2.

Theorem 3.3. For any x > 0, let h0 = x2/2 and h1 = (1 + x) log(1 + x)− x. Under the
assumptions of Theorem 3.2,

H̃X(x+ 1) ≤ 2H
/(

2H + h1 +
√
h21 + 4H(h0 − h1)

)
< H/(H + h1). (a)

Hence, if x ≤
√

2H, then H̃X(x+ 1) ≤ H/(H + h0).
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From Theorem 3.3 and (3.9), we immediately get the corollary below.

Corollary 3.1. Let (Mk)0≤k≤n be a nonnegative submartingale such that IE(Mn) > 0 and
H(Mn) <∞. Set H = H(Mn)/IE(Mn). With the same notations as in Theorem 3.3, for
any x > 0,

IP
(
M∗

n ≥ IE(Mn)(1 + x)
)
≤ 2H

/(
2H + h1 +

√
h21 + 4H(h0 − h1)

)
< H/(H + h1). (a)

Consequently

IP
(
M∗

n ≥ IE(Mn)(1 + x)
)
≤ 2H/(2H + x2) for any x in [0,

√
2H ]. (b)

Remark 3.4. The above bounds own the same structure as the Tchebichef-Cantelli in-
equality. Note that the first upper bound in (a) is equivalent H/(H + h1) as x↗∞.

Remark 3.5. Setting x =
√

2H in Corollary 3.1(b), µ(M∗
n) ≤ IE(Mn)(1 +

√
2H ). This

result improves the trivial upper bound µ(M∗
n) ≤ 2IE(Mn) iff H < 1/2.

Proof of Theorem 3.3. Let x > 0. We start by proving that

ϕv(x) := L∗v(vx) ≥ v(1− v)h(x) + v2(x2/2) for any v > 0 and any x > 0. (3.17)

To prove (3.17), we derive ϕv twice:

ϕ′′v(x) = v(1 + x)−1(1− vx)−1 = p
(
(1 + x)−1 + v(1− vx)−1

)
, (3.18)

where p = v/(1 + v) (see Bercu et al. (2015), page 34). Deriving again,

ϕ(3)
v (x) = p

(
−(1 + x)−2 + v2(1− vx)−2

)
≥ p(v2 − 1)(1 + x)−2. (3.19)

Next, integrating this inequality and using the initial condition ϕ′′v(0) = p(1 + v),

ϕ′′v(x) ≥ p(1− v2)(1 + x)−1 + pv(1 + v) = v(1− v)h′′(x) + v2, (3.20)

since p(1+v) = v. Finally, integrating twice this inequality and using the initial conditions
ϕ(0) = ϕ′(0) = 0, we get (3.17).

Let p = H̃X(x+ 1), v = p/(1− p), h1 = h(x) and h0 = x2/2. From Theorem 3.2 and
(3.17),

v2(h0 − h1) + vh1 −H ≤ 0. (3.21)

In the above inequation h0 − h1 > 0. Solving this inequation of order two with respect
to v, we obtain that

v ≤ (−h1 +
√

∆ )/(2h0 − 2h1), where ∆ = h21 + 4H(h0 − h1).

Now (−h1 +
√

∆ )/(2h0 − 2h1) = 2H/(h1 +
√

∆ ). Consequently

v ≤ 2H

h1 +
√

∆
:=

A

B
. (3.22)

Since p = v/(1 + v), it follows that p ≤ A/(A+B), which gives the first part of (a). The
second part of (a) follows by noting that 4H(h0 − h1) > 0.
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If furthermore x ≤
√

2H, then h0 ≤ H, which implies that

h21 + 4H(h0 − h1) ≥ h21 + 4h0(h0 − h1) = (2h0 − h1)2.

From the above inequality and the fact that 2h0 − h1 > 0,

2H
/(

2H + h1 +
√
h21 + 4H(h0 − h1)

)
≤ 2H/(2H + 2h0),

which ends up the proof. �
Numerical comparisons. To conclude this section, we compare Corollary 3.3 with
usual tail inequalities for maxima of martingales. Here we assume that (Mk)0≤k≤n is a
positive martingale such that IE(Mn) = 1. Then, by the Ville inequality

IP(M∗
n ≥ 1 + x) ≤ 1/(1 + x). (3.23)

Next, let h be defined by (3.11): by the Ville inequality applied to the nonnegative
submartingale (h(Mk − 1) )0≤k≤n,

IP(M∗
n ≥ 1 + x) ≤ H/h1 where H = H(Mn) and h1 = h(x). (3.24)

Finally, by Corollary 3.1, if h0 = x2/2 and h1 = h(x),

IP(M∗
n ≥ 1 + x) ≤ 2H

/(
2H + h1 +

√
h21 + 4H(h0 − h1)

)
(3.25)

which implies the weaker inequality

IP(M∗
n ≥ 1 + x) ≤ H/(H + h1). (3.26)

Below I give the numerical values of the above upper bounds for H = 1/2 and x =√
e− 1 = 0.649, x = 1, x = 2, x = 4, x = 8, x = 24 and x = 99.

Ineq. x= 0.649 x=1 x=2 x=4 x=8 x=24 x=99
(3.23) 0.607 0,500 0,333 0,200 0,1111 0,04000 0,01000
(3.24) 2.847 1.294 0,386 0,123 0,0425 0,00885 0,00138
(3.25) 0.670 0,500 0,247 0,100 0,0382 0,00848 0,00135
(3.26) 0.822 0,564 0,278 0,110 0,0407 0,00878 0,00138

From Remarks 3.2 and 3.3, Inequality (3.23) is optimal for x ≤ eH − 1, which motivates
the choice x =

√
e−1 for the first column. One can see that (3.25) gives better estimates

for x = 2 and x = 4 than (3.24) and (3.26). For x = 99 or x = 24, (3.24) and (3.26) are
nearly equivalent and (3.25) remains more efficient than (3.26).

4 Tchebichef type inequalities
At the present time the Tchebichef-Cantelli inequality has not yet been extended to
random variables in Lp, for arbitrary p > 1. In this section we give an extension of this
inequality to the Hardy-Littlewood maximal distribution associated with the law of a
random variable X in Lp. Next we apply this result to submartingales in Lp. So, let
(Mk)k∈[0,n] is a submartingale in Lp. From Gilat and Meilijson (1988), the nonnegativity
assumption can be dropped in (1.4). Hence, in order to bound QM∗n , it is enough to
bound up Q̃X for a random variable X in Lp.
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Theorem 4.1. Let p be any real in [1,∞[ and X be a real-valued random variable in Lp.
Let Q̃X be defined by (1.3). Then

Q̃X(1/z) ≤ IE(X) + z1/p(1 + (z − 1)1−p)−1/p‖X − IE(X)‖p for any z > 1. (a)

Conversely, for any p > 1 and any z > 1, there exists a random variable X in Lp such
that

IE(X) = 0, ‖X‖p = 1 and Q̃X(1/z) = z1/p(1 + (z − 1)1−p)−1/p. (b)

If furthermore X has a symmetric law, then

Q̃X(1/z) ≤ ‖X‖1 + (z/2)1/p(1 + (z/2− 1)1−p)−1/p‖ |X| − ‖X‖1 ‖p for any z > 2. (c)

Remark 4.1. If p = 2, the upper bound is equal to IE(X) + σ
√
z − 1, where σ is the

standard deviation of X. Since QX ≤ Q̃X , it implies (1.10). For p > 1, the upper bound
tends to IE(X) as z ↘ 1, which proves that Theorem 4.1 is efficient for any value of z.

Remark 4.2. Assume that IE(X) = 0. If p = 2, from Remark 4.1, Theorem 4.1(a) is
equivalent to the tail inequality H̃X(x) ≤ σ2/(σ2 + x2). For p in {3, 4, 3/2, 4/3}, one can
also derive explicit tail inequalities from Theorem 4.1(a).

Applying (1.4), we immediately get the corollary below.

Corollary 4.1. Let p be any real in [1,∞[ and (Mk)k∈[0,n] be a submartingale in Lp:

QM∗n(1/z) ≤ IE(Mn) + z1/p(1 + (z − 1)1−p)−1/p‖Mn − IE(Mn)‖p for any z > 1. (a)

If furthermore Mn has a symmetric law, then

QM∗n(1/z) ≤ ‖Mn‖1+(z/2)1/p(1+(z/2−1)1−p)−1/p‖ |Mn|−‖Mn‖1 ‖p for any z > 2. (b)

Remark 4.3. For z = 2, Corollary 4.1(a) yields

µ(M∗
n) ≤ IE(Mn) + ‖Mn − IE(Mn)‖p. (4.1)

In particular (4.1) ensures that the median of M∗
n is less than IE(Mn) + ‖Mn− IE(Mn)‖1.

Note however that (4.1) is an immediate consequence of Ville’s inequality applied to the
submartingale

(
(Mk − IE(Mn))+

)
0≤k≤n.

Remark 4.4. For p = 2, in the symmetric case, one can prove that Corollary 4.1(b) is
strictly more efficient than Corollary 4.1(a) for any z > 2.

Proof of Theorem 4.1. Clearly it suffices to prove the result in the case IE(X) = 0.
Then Q̃X(1) = 0. Set u = 1/z. For any b in [0, 1],

u Q̃X(u) = u Q̃X(u)− b Q̃X(1) =
1∫
0

QX(s)
(
1s≤u − b

)
ds. (4.2)

For p = 1, choosing b = 1/2 in (4.2), we get that

u Q̃X(u) ≤ 1
2

1∫
0

|QX(s)|ds = 1
2
IE|X|,

11



which implies Theorem 4.1(a) in the case p = 1. For p > 1, applying the Hölder inequality
on [0, 1] with exponents p and q = p/(p − 1) to the functions QX and 1[0,u] − b, we get
that

u Q̃X(u) ≤ σp
(
u(1− b)q + (1− u)bq

)1/q
or, equivalently,

Q̃X(u) ≤ σpz
1/p
(
(1− b)q + (z − 1)bq

)1/q
. (4.3)

We now minimize the upper bound with respect to b. Let f(b) = (1 − b)q + (z − 1)bq.
Then f is strictly convex and

q−1f ′(b) = −(1− b)q−1 + (z − 1)bq−1 = 0 iff z − 1 = (1− b)q−1/bq−1.

Next 1/(q − 1) = p− 1. Consequently the critical point b0 exists and

1− b0 = b0(z − 1)p−1, whence b0 = 1/
(
1 + (z − 1)p−1

)
.

Setting b = b0 in (4.3), we then get that

Q̃X(u) ≤ σpz
1/p(z − 1)1/q

(
(z − 1)p−1 + 1

)−1/p
,

which gives Theorem 4.1(a).
We now prove Theorem 4.1(b). Let X be the Bernoulli random variable defined by

IP
(
X = z

1
p (1+(z−1)1−p)−

1
p
)

= 1/z = 1−IP
(
X = −(z−1)−1z

1
p (1+(z−1)1−p)−

1
p
)
. (4.4)

Then IE(X) = 0 and Q̃X(1/z) = z1/p(1 + (z − 1)1−p)−1/p). Furthermore

IE|X|p =
(

(1/z)z + (1− 1/z)(z − 1)−p z
)
(1 + (z − 1)1−p)−1 = 1,

which ends up the proof of Theorem 4.1(b).
To prove (c), it suffices to prove that, for any real-valued random variable X in L1

with a symmetric law,

Q̃X(1/z) = Q̃|X|(2/z) for any z > 2, (4.5)

and next to apply (a) to the random variable |X|. Now, for any symmetric random
variable X and any positive x, H|X|(x) = 2HX(x), which implies that QX(s) = Q|X|(2s)
for any s < 1/2. Hence, for any z > 2,

Q̃X(1/z) = z
1/z∫
0

Q|X|(2s)ds = (z/2)
2/z∫
0

Q|X|(u)du,

which proves (4.5). Hence Theorem 4.1(c) holds true. �
We now apply Corollary 4.1 to martingales in Lp for p in ]1, 2] and we compare the

so obtained upper bound with the upper bound that can be derived from (1.9). So, let
(Mk)k∈[0,n] be a martingale in Lp. Let

Xk = Mk −Mk−1 and ∆p = IE|X1]
p + · · ·+ IE|Xn|p. (4.6)

By Proposition 1.8 in Pinelis (2015),

IE|Mn|p ≤ IE|M0|p +Kp∆p where Kp = sup
x∈[0,1]

(
pxp−1 + (1− x)p − xp

)
. (4.7)

As shown by Pinelis (2015), for p < 2 the constant Kp is strictly larger than 1. Further-
more this constant is decreasing with respect to p and tends to 2 as p↘ 1.

From (4.7) and Corollary 4.1, we get the corollary below for martingales.
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Corollary 4.2. Let p be any real in ]1, 2] and (Mk)k∈[0,n] be a martingale in Lp such that
M0 = 0. Then

QM∗n(1/z) ≤ (Kp∆p)
1/pz1/p(1 + (z − 1)1−p)−1/p for any z > 1.

Now, from Proposition 8.1(b) in the Annex, under the conditions of Corollary 4.2,

IE
(

(Mn + t)p+
)
≤ tp + ∆p for any t ≥ 0. (4.8)

Starting from (1.4) and applying the above inequality, one obtains the theorem below.

Theorem 4.2. Let p be any real in ]1, 2] and (Mk)k∈[0,n] be a martingale in Lp such that
M0 = 0. Set q = p/(p− 1). Then

QM∗n(1/z) ≤ ∆1/p
p z1/p

(
1− z1−q

)1/q for any z > 1.

Proof. We prove Theorem 4.2 in the case ∆p = 1. The general case follows by dividing
the random variables Xk by ∆

1/p
p . From (1.4)

QM∗n(1/z) ≤ z
1/z∫
0

QMn(s)ds ≤ −t+ z
1/z∫
0

(QMn(s) + t)+ds for any z > 1.

Let U be a random variable with uniform law over [0, 1]. Since Q(Mn+t)+(U) has the same
law as (Mn + t)+ and (QMn(s) + t)+ = Q(Mn+t)+(s),

1/z∫
0

(QMn(s) + t)+ds = IE(Q(Mn+t)+(U)1U≤1/z) ≤ z−1/q‖(Mn + t)+‖p

by the Hölder inequality. Noticing that 1−1/q = 1/p, the two above inequalities together
with (4.8) imply that

QM∗n(1/z) ≤ −t+ z1/p(tp + 1)1/p for any t ≥ 0.

Hence, minimizing with respect to t

QM∗n(1/z) ≤ Qp(1/z), where Qp(1/z) = inf{−t+ z1/p
(
1 + tp

)1/p
: t ∈ IR+}. (4.9)

In view of the above inequality, it only remains to prove that

Qp(1/z) =
(
zq−1 − 1

)1/q
, where q = p/(p− 1). (4.10)

Now the function f : t 7→ −t + z1/p
(
1 + tp

)1/p is convex and positive on IR+. If z = 1,
limt↑∞ f(t) = 0, which implies that Qp(1) = 0. Otherwise the function f has a unique
minimum at point t = tz = (z1/(p−1) − 1)−1/p and f(tz) =

(
zq−1 − 1

)1/q, which completes
the proof of (4.10). �

Remark 4.5. Since K2 = 1, Theorem 4.2 and Corollary 4.2 are equivalent for p = 2.

To conclude this section, we compare Theorem 4.2 and Corollary 4.2 for p in ]1, 2[ and
∆p = 1. As z ↗ ∞, the upper bound in Corollary 4.2 is equivalent to K1/p

p z1/p, while
Theorem 4.2 gives an upper bound equivalent to z1/p as z ↗∞. Since Kp > 1, it appears
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that Theorem 4.2 provides better bounds for large values of z. However Corollary 4.2
provides better estimates for small values of z, as shown by the numerical table below.

In the table below, I give the values of the upper bounds corresponding to Corollary
4.2 and Theorem 4.2 in the special case p = 3/2. Then Kp = 1.306... as shown in
Pinelis (2015). It appears that Corollary 4.2 provides better bounds for small values of
z, including z = 10.

Inequality z=2 z=4 z=6 z=8 z=10 z=12 z=14 z=16 z=20
Corol. 4.2. 1.20 2.22 3.08 3.86 4.58 5.26 5.90 6.51 7.67
Theor. 4.2. 1.44 2.47 3.27 3.98 4.63 5.23 5.80 6.34 7.36

5 Cantelli type inequalities
Let p be any real strictly more than 1 and X be a centered random variable in L2p. In this
section we give an extension of the Cantelli inequality to the Hardy-Littlewood maximal
distribution associated with |X|. Next we apply this result to martingales in L2p. Let us
start by our extension of Cantelli’s inequality.

Theorem 5.1. Let p be any real in ]1,∞[ and X be a real-valued random variable in L2p,
such that IE(X) = 0. Set σ2 = IE(X2). Then, for any z > 1,

Q̃|X|(1/z) ≤
(
σ2 + z1/p(1 + (z − 1)1−p)−1/p‖X2 − σ2‖p

)1/2
. (a)

Let a be any positive real and let zp > 1 be the unique solution of the equation

z − 1 + (z − 1)p = zap. (5.1)

Then, for any z ≥ zp, there exists a symmetric random variable X in L2p such that

‖X‖2 = 1, ‖X2 − 1‖p = a and Q̃|X|(1/z) =
(
1 + z1/p(1 + (z − 1)1−p)−1/pa

)1/2
. (b)

If furthermore X has a symmetric law, then

Q̃X(1/z) ≤
(
σ2 + (z/2)1/p(1 + (z/2− 1)1−p)−1/p‖X2 − σ2‖p

)1/2 for any z > 2. (c)

Now, recall that, if (Mk)k∈[0,n] is a martingale in L1, then (|Mk|)k∈[0,n] is a submartin-
gale in L1. Hence, from Theorem 5.1 and (1.4) we immediately get the corollary below.

Corollary 5.1. Let p be any real in ]1,∞[ and (Mk)k∈[0,n] be a martingale in L2p such
that IE(M0) = 0. Let |M |∗n be defined by (1.12). Set Vn = IE(M2

n). Then, for any z > 1,

Q|M |∗n(1/z) ≤
(
Vn + z1/p(1 + (z − 1)1−p)−1/p‖M2

n − Vn‖p
)1/2

. (a)

If furthermore Mn has a symmetric law, then, for any z > 2,

QM∗n(1/z) ≤
(
Vn + (z/2)1/p(1 + (z/2− 1)1−p)−1/p‖M2

n − Vn‖p
)1/2

. (b)

Remark 5.1. From (1.14) applied with p = 2

Q|M |∗n(1/z) ≤ σ
√
z for any z > 1, where σ =

√
Vn. (5.2)

Let then ap = ‖V −1n M2
n − 1‖p and let z′p be the solution of equation (5.1) with a = ap.

One can easily prove that the upper bound in (a) is strictly less that
√
Vnz if and only

if z > z′p. Then, from Theorem 5.1(b) and Remark 3.3, Corollary 5.1 cannot be further
improved.
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Remark 5.2. When p = 2, Corollary 5.1(a) and (5.2) yield (1.17). Under the same
assumptions (1.14) gives the upper bound

Q|M |∗n(1/z) ≤ σ(L4z)1/4. (5.3)

Let us now compare (1.17), (5.2) and (5.3). Clearly (1.17) and (5.2) are equivalent for
z ≤ L4. Next (5.3) and (1.17) are strictly more efficient than (5.2) iff z > L4. Now the
upper bound in (5.3) is less than the upper bound in (1.17) iff

zL4 ≤
(
1 +

√
(L4 − 1)(z − 1)

)2
, i.e. (z − 1) + (L4 − 1) ≤ 2

√
(L4 − 1)(z − 1).

The above inequality holds true if and only if z = L4. Hence (1.17) is strictly more
efficient than (5.3) for z 6= L4. Consequently (1.17) is more efficient than (5.2) and
(5.3) for any value of z.

Proof of Theorem 5.1. By the Jensen inequality,

Q̃|X|(1/z) ≤
√
Q̃X2(1/z).

Theorem 5.1(a) follows from Theorem 4.1(a) applied to the random variable X2 via the
above inequality. Now Theorem 5.1(c) follows from Theorem 5.1(a) and (4.5). It remains
to prove (b). Let u = 1/z. Define the random variable Y by

IP
(
Y = az

1
p (1 + (z − 1)1−p)−

1
p
)

= u = 1− IP
(
Y = −a(z − 1)−1z

1
p (1 + (z − 1)1−p)−

1
p
)
.

If z ≥ zp, then Y + 1 ≥ 0. Let then ε be a symmetric sign, independent of Y . Define X
by X = ε

√
Y + 1. Then IE(X) = 0, IE(X2) = 1 + IE(Y ) = 1 and ‖X2 − 1‖p = ‖Y ‖p = a.

Now
Q̃|X|(1/z) =

(
1 + az

1
p (1 + (z − 1)1−p)−

1
p
) )1/2

,

which completes the proof of Theorem 5.1(b). �

We now apply Corollary 5.1 to sums of independent random variables. Here it will
be convenient to introduce a condition of fourth order on the random variables.

Definition 5.1. A real-valued random variable X in L4 is said to be sub-Gaussian at
order 4 if X satisfies ‖X − IE(X)‖44 ≤ 3‖X − IE(X)‖42.

LetX1, X2, . . . be a sequence of independent centered random variables in L4. Suppose
furthermore that these random variables are sub-Gaussian at order 4. Let

M0 = 0 and Mk = X1 +X2 + · · ·+Xk for k > 0. (5.4)

Then (Mk)k∈[0,n] satisfies the assumtions of Corollary 5.1 with p = 2. Now, by the usual
inequality for moments of order 4 of sums of independent random variables,

L4 := V −2n IE(M4
n) = 3 + V −2n

n∑
k=1

(
IE(X4

k)− 3(IE(X2
k))2

)
, (5.5)

which shows that L4 ≤ 3 if the the random variables Xk are sub-Gaussian at order 4.
Hence Corollary 5.1(a) and (5.2) imply the proposition below.
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Proposition 5.1. Let X1, X2, . . . be a sequence of independent centered random variables
in L4. Suppose furthermore that these random variables are sub-Gaussian at order 4. Let
the martingale (Mk)0≤k≤n be defined by (5.4). Then

Q|M |∗n(1/z) ≤ V 1/2
n

(
1 +

√
(min(z, 3)− 1)(z − 1)

)1/2 for any z > 1. (5.6)

Remark 5.3. Inequality (5.6) is equivalent to the tail inequality

IP(|M |∗n ≥
√
Vn x) ≤ 2

(
2 + (x2 − 1) max(x2 − 1, 2)

)−1
.

The above upper bound is equivalent to (2/x4) as x ↗ ∞. Under the same conditions,
(5.3) yields the less efficient upper bound (3/x4).

Assume now that the random variables X1, X2, . . . are symmetric. By (1.4) and (4.5),

QM∗n(1/z) ≤ Q̃Mn(1/z) ≤ Q̃|Mn|(2/z).

It follows that

QM∗n(1/z) ≤ σ
√
z/2 for any z > 2, where σ =

√
Vn. (5.7)

Then the above inequality and Corollary 5.1(b) imply the proposition below.

Proposition 5.2. Let X1, X2, . . . be a sequence of independent symmetric random vari-
ables in L4. Suppose furthermore that these random variables are sub-Gaussian at order
4. Let the martingale (Mk)0≤k≤n be defined by (5.4). Then

QM∗n(1/z) ≤ V 1/2
n

(
1 +

√
(min( (z − 2)/4, 1) (z − 2)

)1/2 for any z ≥ 2. (5.8)

Example 5.1. Here we compare Proposition 5.1 with the so-called Kearns-Saul inequal-
ity (see Bercu et al. (2015), Section 2.5) in the case of weighted sums of Bernoulli type
random variables. Let η1, η2, . . . be a sequence of Bernoulli random variables with law
b(p) for some p < 1/2. Let a1, a2, . . . , an be a finite sequence of real numbers. Set

Xk = ak(ηk − p) for any k > 0. (5.9)

From the elementary inequality

‖ηk − p‖44 − 3‖ηk − p‖42 = 1− 6p(1− p), (5.10)

the random variables ηk are sub-Gaussian at order 4 if and only if p ≥ (1 − 3−1/2)/2.
Under this condition, Proposition 5.1 gives

V −1/2n Q|M |∗n(1/z) ≤
(
1 +

√
2(z − 1)

)1/2 for any z ≥ 3. (5.11)

Now, let `p denote the log-Laplace transform of η1−p. Hoeffding (1963, Section 4) proved
that

inf
x>0

x−2`∗p(x) =
log(1/p− 1)

1− 2p
and inf

x<0
x−2`∗p(x) =

1

2p(1− p)
.

Using the fact that (`∗p)
∗ = `p, it appears immediately that the above inequality is equiv-

alent to 2

2The first constant has been rediscovered independently by Bobkov (1998) and Kearns and Saul (1998)

16



sup
t>0

t−2`p(t) =
1− 2p

4 log(1/p− 1)
and sup

t<0
t−2`p(t) =

p(1− p)
2

.

Since (1− 2p)/ log(1/p− 1) ≤ 2p(1− p), it follows that, for any real t,

log IE(etMn) ≤ (1− 2p)|a|22t2

4 log(1/p− 1)
, where |a|22 =

n∑
k=1

a2k.

From this upper bound and usual arguments on exponential martingales,

V −1/2n Q|M |∗n(1/z) ≤
√
cp log(2z), where cp =

1− 2p

p(1− p) log(1/p− 1)
. (5.12)

Below I give the numerical values of the upper bounds (5.2), (5.11) and (5.12) when
p(1− p) = 1/6, for some integer values of z.

Ineq. z=5 z=10 z=20 z= 30 z= 40 z=50 z=75 z=100
(5.11) 1.96 2.29 2.68 2.94 3.14 3.30 3.63 3.88
(5.12) 2.46 2.81 3.11 3.28 3.40 3.48 3.63 3.73
(5.2) 2.24 3.16 4.47 5.48 6.32 7.07 8.66 10.00

It appears here that the Cantelli type inequality (5.11) is more efficient for z ≤ 75, which
includes values of statistical interest. For z > 75, (5.12) provides better bounds. The
Kolmogorov inequality (5.2), efficient for z ≤ 3, is of poor quality for z > 3.

Example 5.2. Let X1, X2, . . . be a sequence of independent and symmetric random
variables in L4 with variance 1. Assume furthermore that IE(X4

k) = 3 for any positive k.
Then, by Proposition 5.2,

n−1/2QM∗n(1/z) ≤
(
1 +
√
z − 2

)1/2 for any z ≥ 2. (5.13)

We now compare (5.13) with the Fuk-Nagaev type inequality established in Rio (2017).
Under the above conditions, Theorem 3.1(b) in Rio (2017) applied with q = 4 yields

n−1/2QM∗n(1/z) ≤
√

2 log z + 1.50n−1/4(3z/2)1/4 for any z > 1. (5.14)

For n ≥ 8, (5.14) is asymptotically more efficient than (5.13).
Below I give the numerical values of the upper bounds (5.13) and (5.14) when n =

54 = 625, for some integer values of z.

Ineq. z=20 z=50 z=100 z= 200 z= 500 z=820 z=1000 z=10000
(5.13) 2.29 2.82 3.30 3.88 4.83 5.44 5.71 10.05
(5.14) 3.15 3.68 4.08 4.50 5.10 5.44 5.58 7.68

It appears here that the Cantelli type inequality (5.13) is more efficient for z ≤ 820.
However (5.14) is much more efficient for large values of z.

6 Entropic sub-Gaussian random variables
In this section, we are interested in sub-Gaussian random variables. For any real-valued
random variable X with a finite Laplace transform on IR, define

`X(t) = log IE
(
etX
)

for any real t. (6.1)
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Let b be any positive real. The random variable X is said to be sub-Gaussian with
parameter b iff X has a finite Laplace transform on IR and

`X(t) ≤ t IE(X) + b2(t2/2) for any t > 0. (6.2)

This property implies that the variance of X is bounded by b2. Our aim in this section
is to improve the well-known equivalent inequalities

HX(bx) ≤ e−x
2/2 for any x > 0 or QX(p) ≤ b

√
2| log p| for any p ∈]0, 1[, (6.3)

valid for any centered sub-Gaussian random variable X with parameter b. We refer to
Boucheron et al. (2013, Section 2.3) for an introduction to sub-Gaussian random variables
with a proof of (6.3) and to Bobkov et al. (2006) for estimates of the sub-Gaussian
constant.

In order to improve (6.3), we consider here a slightly stronger condition on the
moment-generating function.

Definition 6.1. Let b be any positive real. A real-valued random variable X is said to
be entropic sub-Gaussian with parameter b if X has a finite moment-generating function
on IR and

t`′X(t)− `X(t) ≤ b2(t2/2) for any t > 0.

We denote the collection of such random variables by GE(b).

Remark 6.1. X belongs to GE(b) if and only if (X/b) belongs to GE(1).

If X belongs to GE(b), then X − IE(X) satisfies (6.2) with the same parameter b
(see Ledoux (1996), pages 69-70). However the class GE(b) does not contain all the sub-
Gaussian random variables with parameter b, and thus, there is some hope to improve
(6.2) for entropic sub-Gaussian random variables with parameter b. Theorem 6.1 below
is a progress in this direction.

Theorem 6.1. Let p be any real in ]0, 1[. Set v = p/(1− p). Then

sup
X∈GE(1)

(
Q̃X(p)− IE(X)

)
=
√

1/v =
√

(1/p)− 1 for any p ≥ 1/2. (a)

Let L∗v be defined by (3.10). Then, for any p < 1/2,

sup
X∈GE(1)

(
Q̃X(p)− IE(X)

)
≤ inf

x∈]0,1[

L∗v(x) + log(1 + x/v)√
2L∗v(x)

≤
(

2| log v|
1− v2

)1/2

. (b)

Furthermore the above upper bound is strictly less than
√

min(1/v, 2| log p|).

Applying (1.4), we immediately derive from Theorem 6.1 the corollary below for sub-
Gaussian martingales.

Corollary 6.1. Let Mn be a submartingale in L1. Suppose that the random variable Mn

is entropic sub-Gaussian with parameter b. Let p be any real in ]0, 1/2[. Set v = p/(1−p).
Then

b−1QM∗n(p) ≤ inf
x∈]0,1[

L∗v(x) + log(1 + x/v)√
2L∗v(x)

≤
(

2| log v|
1− v2

)1/2

<
√
min(1/v, 2| log p|) .
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Proof of Theorem 6.1. We start by proving (b). Let X be any random variable in the
class GE(1) and λ be any positive real. Define the random variable Yλ from X by

Yλ = exp(λX − `X(λ)). (6.4)

By the Jensen inequality applied to the convex function x 7→ eλx,

exp
(
λQ̃X(p)

)
≤ p−1

p∫
0

exp
(
λQX(s)

)
ds,

which is equivalent to
Q̃X(p) ≤ λ−1

(
`X(λ) + log Q̃Yλ(p)

)
. (6.5)

By definition IE(Yλ) = 1. Hence, we may apply Theorem 3.1(a) applied with z = 1/p to
Yλ. Using also (3.15), we then get that

Q̃Yλ(p) ≤ 1 + v−1L∗−1v (Hλ) where Hλ = H(Yλ) and v = p/(1− p). (6.6)

Now
Hλ = IE

(
(λX − `X(λ))eλX−`X(λ)

)
= λ`′X(λ)− `(λ). (6.7)

Since X is entropic sub-Gaussian with parameter 1, it follows that Hλ ≤ λ2/2. Hence,
from (6.6) and the monotonicity of L∗−1v ,

Q̃Yλ(p) ≤ 1 + v−1L∗−1v (λ2/2). (6.8)

Combining the above inequality, (6.5) and the fact that an entropic sub-Gaussian random
variable is sub-Gaussian with the same parameter, we get that, for any positive λ,

Q̃X(p) ≤ λ−1
(
λ2/2 + log

(
1 + v−1L∗−1v (λ2/2)

) )
, (6.9)

Let x be any real in ]0, 1[. Taking λ =
√

2L∗v(x) in the above inequality, we obtain

Q̃X(p) ≤ (2L∗v(x))−1/2
(
L∗v(x) + log(1 + x/v)

)
:= ϕ(x). (6.10)

Since this upper bound is valid for any x in ]0, 1[, it implies the first part of (b). Now, if
p < 1/2, v = p/(1− p) < 1. Therefore, we can choose x = 1− v in (6.10). For this choice
of x,

log(1 + x/v) = | log v| = − log v = − log(1− x).

Therefrom L∗v(1− v) = (1 + v)−1(1− v)| log v| and

ϕ(1− v) =
√

2| log v|/(1− v2) , (6.11)

which gives the second part of (b).
We now prove that

2| log v|/(1− v2) < min(1/v, 2 log(1 + 1/v)), (6.12)

which implies the last statement of Theorem 6.1, since (1/p) = 1 + (1/v). First

| log v| =
∑
k>0

(1− v)k

k
< (1− v) +

(1− v)2

2

∑
j≥0

(1− v)j =
1− v2

2v
.
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This inequality ensures that 2| log v|/(1 − v2) < 1/v. And second, starting from the
inequality (1− v)h(v) + vh(v − 1) > 0, we get that

(1− v2) log(1 + v) + v2 log v > 0, or, equivalently (1− v2) log(1 + 1/v) + log v > 0.

Therefrom | log v|/(1− v2) < log(1 + 1/v), which ends up the proof of (6.12).

We now prove (a). If X is entropic sub-Gaussian with parameter 1, then the variance
of X is less than 1. Consequently, by Theorem 4.1 applied with p = 2, σ = 1 and z = 1/p,

Q̃X(p)− IE(X) ≤
√

(1/p)− 1 =
√

1/v.

It remains to prove that there exist some random variable X, entropic sub-Gaussian with
parameter 1 and fulfilling the equality in (a) of Theorem 6.1. To prove this fact, we will
use the lemma below.

Lemma 6.1. For any p ≥ 1/2, the Bernoulli law b(p) is entropic sub-Gaussian with
parameter

√
p(1− p).

Proof of Lemma 6.1. We start by noticing that, for any random variable X with finite
Laplace transform (t`′X − `X)′(t) = t`′′X(t). Therefrom, if `′′X(t) ≤ b2 for any positive t,
then X is entropic sub-Gaussian with parameter b.

Now let X be a random variable with law b(p). Then `X(t) = log(1− p+ pet) and

`′′X(t) = p(1− p)et(1− p+ pet)−2 = p(1− p)
(
(1− p)e−t/2 + pet/2

)−2
.

Next (1 − p)e−t/2 + pet/2 = cosh(t/2) + (2p − 1) sinh(t/2) ≥ 1 for any p ≥ 1/2 and any
positive t. Hence `′′X(t) ≤ p(1− p) for any positive t, which implies Lemma 6.1. �

We now complete the proof of Theorem 6.1(a). Let U be a random variable with
uniform law over [0, 1]. Let p ≥ 1/2. Set X = ( p(1 − p) )−1/2 1U≤p. From Lemma 6.1,
the random variable X is entropic sub-Gaussian with parameter 1. Now

Q̃X(p) = ( p(1− p) )−1/2 and IE(X) = ( p/(1− p) )1/2,

whence
Q̃X(p)− IE(X) = ( p(1− p) )−1/2(1− p) =

√
(1/p)− 1 . �

Numerical comparisons. Here we compare Proposition 5.2 and Corollary 6.1 with
the usual inequalities in the case of weighted sums of symmetric random variables. Let
η1, η2, . . . be a sequence of independent and symmetric random variables with variance 1.
Assume furthermore that the random variables η1, η2, . . . are entropic sub-Gaussian with
parameter 1, and sub-Gaussian at order 4. For example, it can easily be proven that this
condition holds true if |ηk| ≤

√
3 almost surely for any positive k. Let a1, a2, . . . be a

sequence of positive reals. Set

Mk = a1η1 + a2η2 + · · ·+ akηk for any k > 0. (6.13)

Then Mn is entropic sub Gaussian with parameter bn =
√
Vn =

√
a21 + · · ·+ a2n. Define

the function ψ :]0,∞[ 7→]0,∞[ by

ψ(v) = inf
x∈]0,1[

(
2L∗v(x)

)−1/2(
L∗v(x) + log(1 + x/v)

)
for v ≤ 1. (6.14)
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Let z be any real in ]1,∞[. Under the above conditions, Corollary 6.1 yields

b−1n QM∗n(1/z) ≤ ψ(1/(z − 1) ) for any z ≥ 2. (6.15)

and Proposition 5.2 gives

b−1n QM∗n(1/z) ≤
(
1 +

√
(min( (z − 2)/4, 1) (z − 2)

)1/2 for any z ≥ 2. (6.16)

Now the usual bound (6.3) yields

b−1n QM∗n(1/z) ≤
√

2 log z, for any z ≥ 1. (6.17)

Below I give the numerical values of these upper bounds for some integer values of z.
Ineq. z=2 z= 4 z=6 z= 10 z= 20 z=30 z=40 z=50
(6.15) 1.00 1.55 1.80 2.07 2.39 2.56 2.67 2.75
(6.16) 1.00 1.41 1.73 1.96 2.29 2.51 2.68 2.82
(6.17) 1.18 1.67 1.89 2.15 2.45 2.61 2.72 2.80

It appears here that (6.15) is more efficient as soon as z ≥ 40. However (6.16) provides
better estimates for z < 40.

7 A more efficient bounded differences inequality
Ths section is devoted to the bounded differences inequality, sometimes called McDiarmid
inequality (see McDiarmid (1989), Corollary 6.10). Let En = E1 × E2 · · · × En and
let X = (X1, . . . Xn) be a random vector in En with independent components. Let
f : En 7→ IR be a bounded measurable function. For all 1 ≤ k ≤ n, denote by F (k) the
σ-algebra generated by X1, . . . , Xn except Xk,

F (k) = σ(X1, . . . , Xk−1, Xk+1, . . . , Xn).

Assume that for each 1 ≤ k ≤ n, there exist two F (k)-measurable bounded random
variables Ak and Bk such that

Ak ≤ f(X) ≤ Bk almost surely. (7.1)

Then, for any positive x,

IP(f(X) ≥ IE(f(X)) + x) ≤ exp
(
−2x2

Cn

)
, where Cn =

n∑
k=1

‖Bk − Ak‖2∞. (7.2)

This inequality is often called bounded differences inequality.
We now recall an improvement of this inequality, due to Bercu et al. (2015): instead

of assuming a uniform bound on each oscillation, they only assume a bound on the sum
of squares. If Z = f(X), by Theorem 2.62 in Bercu et al. (2015), for any positive x,

IP(Z ≥ IE(Z) + x) ≤ exp
(
−2x2/Dn

)
, where Dn =

∥∥∥ n∑
k=1

(Bk − Ak)2
∥∥∥
∞
. (7.3)

Of course, this inequality is equivalent to the quantile inequality

QZ(p) ≤ IE(Z) +
√
Dn| log p|/2 for any p ∈]0, 1[. (7.4)

The proof of the above inequality is based on the entropy method, which has been widely
developed by Ledoux (1996). In particular Bercu et al. (2015, page 56) prove that
the random variable Z is entropic sub-Gaussian with parameter

√
Dn/4 . Consequently

Theorem 6.1 yields the new more efficient concentration inequality below.
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Theorem 7.1. Let Z and Dn be defined as in (7.3) and (7.4). Let p be any real in ]0, 1[.
Set v = p/(1− p). Then, under the conditions of Inequality (7.4),

Q̃Z(p)− IE(Z) ≤
√
Dn/4v, for any p ≥ 1/2, (a)

and, for any p < 1/2,

Q̃Z(p)− IE(Z) ≤
√
Dn

2
inf

x∈]0,1[

L∗v(x) + log(1 + x/v)√
2L∗v(x)

≤
(
Dn| log v|
2(1− v2)

)1/2

. (b)

Numerical comparisons. Let n ≥ 2. Suppose that IE(Z) = 0 and Cn = 4. Define the
function ψ :]0,∞[ 7→]0,∞[ by ψ(v) =

√
1/v for v ≥ 1 and

ψ(v) = inf
x∈]0,1[

(
2L∗v(x)

)−1/2(
L∗v(x) + log(1 + x/v)

)
for v < 1. (7.5)

Let z be any real in ]1,∞[. Since Dn ≤ Cn, Theorem 7.1 implies that

QZ(1/z) ≤ Q̃Z(1/z) ≤ ψ(1/(z − 1) ). (7.6)

By the usual bounded differences inequality (7.2),

QZ(1/z) ≤
√

2| log z| . (7.7)

Now, let Y be a standard normal. By Inequality (2.8) in Pinelis (2006),

QZ(1/z) ≤ QY (1/(c5,0z) ) where c5,0 = 5! (e/5)5 = 5.699... (7.8)

From Remark 2.4 in Pinelis (2006), (7.8) is more efficient than (7.7) for z ≥ 5.96...
Let us now recall some known lower bounds. Let ∆k = ‖Bk − Ak‖∞. For any m

in [1, n], From Proposition 5.7 in Owhadi et al. (2013) applied with ∆1 = · · · = ∆m =
2m−1/2 and ∆k = 0 for k > m, there exists a centered random variable Zm satisfying the
conditions of Theorem 7.1, such that

QZm(1/z) ≥ 2
√
m
(
1− z−1/m

)
for any z > 1.

Consequently, for any z > 1, there exists a random variable Z satisfying the conditions
of Theorem 7.1, such that

QZ(1/z) ≥ max
(

2(1− 1/z), 2
√

2(1− z−1/2)
)
. (7.9)

Below I give the numerical values of the above upper and lower bounds for integer
values of z, including the median, the quartile and the decile.

Ineq. z=2 z=4 z=6 z=8 z=10 z=12 z=14 z=16 z=20
(7.6) 1.00 1.55 1.80 1.96 2.07 2.16 2.23 2.29 2.39
(7.7) 1.18 1.67 1.89 2.04 2.15 2.23 2.30 2.35 2.45
(7.8) 1.35 1.71 1.89 2.02 2.11 2.18 2.24 2.29 2.37
(7.9) 1.00 1.50 1.67 1.83 1.93 2.01 2.07 2.12 2.20

One can see that (7.8) is better than (7.6) for z = 20 and almost equivalent for z = 16.
However Dn is often strictly less than Cn.
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8 Annex: a one-sided von Bahr-Esseen inequality
As in Pinelis (2015), we introduce a class of generalized moment functions, including the
power functions. However the functions we consider vanish on ]−∞, 0]. So, let

F = { f ∈ C1(IR) : f|IR− = 0, f ′ increasing and concave on IR+, lim
+∞

f ′ =∞}. (8.1)

Let x+ = max(0, x) for any real x. The one-sided power functions x 7→ xp+ belong to F
for p in ]1, 2].

Proposition 8.1. Let (Mk)0≤k≤n be a real-valued martingale in L1. Set Xk = Mk−Mk−1.
Then, for any f in F ,

IE
(
f(Mn)

)
≤ IE

(
f(M0) + f(|X1|) + · · ·+ f(|Xn|)

)
. (a)

In particular, for any p in ]1, 2], any t ≥ 0 and any martingale (Mk)0≤k≤n in Lp such
that M0 = 0,

IE
(
(Mn + t)p+

)
≤ tp + IE

(
|X1|p + · · ·+ |Xn|p

)
. (b)

Proof. (b) follows from (a) applied to the martingale (Mk + t)0≤k≤n and the function
f(x) = xp+. We now prove (a). For n > 0, let

∆n = f(Mn)− f(Mn−1)− f ′(Mn−1)Xn. (8.2)

From the martingale property,

IE(∆n) = IE
(
f(Mn)

)
− IE

(
f(Mn−1)

)
. (8.3)

Hence (a) will follow by induction on n if we prove that

IE(∆n) ≤ IE
(
f(|Xn|)

)
. (8.4)

By the Taylor formula.

∆n =
Xn∫
0

(f ′(Mn−1 + s)− f ′(Mn−1))ds ≤
|Xn|∫
0

sup
a∈IR
|f ′(a+ s)− f ′(a)| ds.

Now f ′ is nondecreasing. Hence |f ′(a + s) − f ′(a)| = f ′(a + s) − f ′(a) for any s ≥ 0.
Since f ′ is concave on IR+, it follows that, if s ≥ 0,

|f ′(a+ s)− f ′(a)| ≤ f ′(s) for any a ≥ 0.

For a < 0, f ′(a) = 0, whence |f ′(a+s)−f ′(a)| = f ′(a+s) ≤ f ′(s), using the monotonicity
of f ′ again. In any cases |f ′(a+ s)− f ′(a)| ≤ f ′(s) for s ≥ 0. Consequently

∆n ≤
|Xn|∫
0

f ′(s)ds = f(|Xn|). (8.5)

Taking then the expectation in (8.5), we get (8.4), which ends the proof.�

Remark 8.1. This result cannot be derived from the von Bahr-Esseen inequality for
absolute moments of Pinelis (2015), since the constant for absolute moments is strictly
larger than 1.
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