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Abstract: Neural network is a well-known tool able to learn model from data with a good accuracy. However, this tool 

suffers from an important computational time which may be too expansive. One alternative is to fix the 

weights and biases connecting the input to the hidden layer. This approach has been denoted recently 

extreme learning machine (ELM) which is able to learn quickly a model. Multilayers perceptron and ELM 

have identical structure, the main difference is that only the parameters linking hidden to output layers are 

learned. The weights and biases which connect the input to the hidden layers are randomly chosen and they 

don’t evolved during the learning. The impact of the choice of these random parameters on the model 

accuracy is not studied in the literature. This paper draws on extensive literature concerning the feedforward 

neural networks initialization problem. Different feedforward neural network initialisation algorithms are 

recalled, and used for the determination of ELM parameters connecting input to hidden layers. These 

algorithms are tested and compared on several regression benchmark problems. 

1 INTRODUCTION 

Since the backpropagation algorithm proposed by 

Rumelhart and McClelland (1986), neural networks 

have shown their abilities to solve a broad array of 

problem including regression, classification, 

clustering as examples. However, the design of a 

neural model needs a learning step which may be 

very computational time consuming. To overfit this 

drawback, Schmidt et al. (1992) have been the firsts 

to proposed to adapt only the weigths and biases 

connecting the hidden to the output layers. Huang et 

al (2004) have formalised this approach and called 

it: Extreme Learning Machine (ELM). This tool has 

been the subject from many publications, including 

theoretical purpose (Lendasse et al. 2016) or 

application (Rajesh and Parkash 2011).  

ELM structure is similar to structure of classical 

single hidden layer feedforward neural network. 

Multilayer perceptron (MLP) uses backpropagation 

algorithm in order to adapt all the parameters 

(weights and biases connecting the input to the 

hidden layers and those connecting the hidden to the 

output layers). Rather, in ELM, the weights and 

biases connecting the input to the hidden layers are 

fixed and only those connecting the hidden to the 

output layers constitute the parameters set which are 

tuned by using one-pass algorithm. This fact leads to 

a great improvement of the learning computational 

time. Even if some authors claim that ELM 

preserves their habilites of universal aproximator 

(Huang and Lai 2012, Javed et al. 2014), Li and 

Wang (2017) have proved that it was not true. 

However, ELM preserves their interest due to their 

good capabilities to deal with large data analysis, 

fast dynamic modelling and real–time data 

processing (Cui and Wang 2016).   

The choice of the hidden nodes impacts the ELM 

accuracy (Huang and Lai 2012, Feng et al. 2009, Qu 

et al. 2016). To improve it, many researchers focus 

on the hidden nodes number determination by using 

genetic algorithm (Suresh et al. 2010), pruning 

procedure (Miche et al. 2010) or incremental 

learning approaches (Feng et al. 2009).  

The random choice of the weights and biases 

connecting the input to the hidden layers is rarely 

discussed. We can cite Qu et al. (2016) which 

distinguish classification problems where orthogonal 

initialisation allows to improve accuracy, when 

better results are obtained if random initialisation is 



 

used for regression problems. The great majority of 

works related to ELM include a simple random 

initialisation of these weights and biases (Huang et 

al. 2004, Huang et al. 2006). Some works proposed a 

more sophiticated initialisation procedure (Javed et 

al. 2014) including the use of evolutionary 

algorithms (Evolutionary-ELM) which may 

deteriorate the computational time (Zhu et al. 2005, 

Cao et al. 2012, Matias et al. 2014). At the oposite, 

other works do not say a word about this problem 

(Huang and Lai 2012, Yin et al. 2015).  

On the contrary, in the MLP context, the problem 

of initialization of the weigths and biases connecting 

the input to the hidden layers have been studied 

(Nguyen and Widrow 1990, Burel 1991, Drago and 

Ridella 1992, Thomas and Bloch 1997).  

In this paper, the impact of the using of 

sophisticated MLP initialization algorithms for ELM 

model accuracy for regresion purpose is 

investigated. Next section will present the structure 

and the learning algorithm of the considerd ELM. 

The hidden nodes choice is also discussed. Section 

three recalls five MLP initialization algoritms. These 

algorithms are used for ELM models for three 

regresion benchmarks in section four before to 

conclude.  

2 EXTREME LEARNING 

MACHINE (ELM) 

2.1 ELM structure and notations 

The structure of an ELM is similar to the MLP 

structure and is given by: 
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where, kz  are the 2n  outputs and 0

h
x  are the n0 inputs 

of the ELM (
0

0

nx  is a constant input equal to 1), 
ih

v  

are the weights connecting the input layer to the 

hidden layer, g(.) is the activation function of the 

hidden neurons, 
ki

w  are the weights connecting the 

hidden neurons to the output k, 
i

H  is the is the 

output of the hidden neuron i (
1nH  is a constant 

input equal to 1). Equation 1 is written compactly as: 

 

.Z W H=  (2) 

where Z is the estimated output matrix: 
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H is the hidden layer output matrix: 
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and W the ELM parameters matrix:  

 

2

1

T

T

n

W

W

W

 
 =  
 
 

⋮  (5) 

Different activation functions have been 

proposed for the hidden nodes (Javed et al. 2014). In 

this paper, initialization algorithms are tested for 

ELM regression models. So the classical hyperbolic 

tangent is chosen.  

2.2 ELM learning algorithm 

Different learning algorithms have been proposed to 

determine the parameters of the model. The one used 

here is summarized as follow (Huang et al. 2006):  

� The weights 
ih

v  and biases 1

i
b  connecting the 

input to the hidden layers are randomly 

selected.  

� Calculate the hidden layer output matrix H by 

(4). Calculate the ELM parameters by using 

H †  the Moore-Penrose generalized inverse of 

matrix H (Huang et al. 2006):   
 

.W H Y= †  (6) 
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Figure 1: hidden neurons outputs for the “SinC” problem. 

Many modification have been proposed to 

improve accuracy of such learning algorithms as 

robust ELM (Zhang and Luo 2015), regularized 

ELM (Deng et al. 2009), incremental (Huang et al. 

2006), regularized incremental (Xu et al. 2016). 

In this paper, the goal is to test MLP 

initialization algorithms. So the basic ELM 

algorithm (Huang et al. 2006) is sufficient here.  

2.3 Impact of hidden nodes choice 

The classical “SinC” example is used to illustrate 

the impact of hidden nodes choice: 
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Two datasets including 1000 pairs (xn, yn) each, 

are built for the learning and the validation. The xn 

are uniformly randomly distributed between -10 and 

10 and the learning dataset is polluted by a random 

noise uniformly distributed between -0.2 and 0.2. 

The ELM includes 10 hidden neurons (plus one 

hidden node constant and equal to 1). The 

parameters of these hidden nodes are randomly 

uniformly distributed between -1 and 1.  

Figure 1 presents the output Hi of the 10 hidden 

nodes for the validation datasets. Five of them 

require a particular attention: H5, H8 and H10 on the 

one hand, and H6 and H7 on the other hand.  

First, it appears that H5, H8 and H10 are near to be 

constant on the considered input domain and are not 

significantly different to the bias node H11. Second, 

the outputs H6 and H7 seems very similar. So, a cross 

correlation test is performed on these two outputs 

and presented figure 2. This correlation test confirms 

that these two hidden neuron outputs are closely 

correlated. So, only one of them gives information.  
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Figure 2: Cross correlation between H6 and H7. 

So despite the fact that we include ten hidden 

nodes in the model, only six of them are really 

useful. To comfirm this fact, the accuracy of two 

models is compared on the validation dataset. The 

first ELM model includes all the hidden nodes and 

the resulting sum squared errors (SSE) is equal to 

1.51*10-4. The second ELM model includes only six 

hidden nodes (H5, H6, H8 and H10 are discarded). 

The SSE obtained for this model is 2.23*10-4. The 

difference between the results obtained is not 

statistically significant.   

This experience shows that even if the 

parameters are randomly choosen, a lack of diversity 

may lead to the fact that some of the hidden nodes 

are unuseful. To make an analogy with classifiers 



 

ensembles, the accuracy of the ELM depends on the 

diversity of its individual components (hidden 

nodes) (Kuncheva and Whitaker 2003). That’s why 

ELM needs a good initialization algorithm in order 

to improve diversity between the hidden nodes. 

3 MLP INITIALISATION 

ALGORITHMS 

Many algorithms have been proposed in the past in 

order to initialize MLP.  

3.1 Random initialization (Ra) 

Random initialization has been the first approach to 

initialize parameters since the pioneering work of 

Rumelhart and McClelland (1986). This approach is 

mainly used in ELM approach since the work of 

Huang et al. (2004). This approach consist to 

uniformly randomly initiate the parameters between 

–r and r. Initially, nothing is said about the value of 

r. In this paper, r is tuned to 1 in accordance with 

settings encountered in the literature (Norgaard 

1995, Zhu and Huang 2004). This algorithm will be 

denoted “Ra” in the sequel. 

3.2 Burel initialization (Bu) (Burel 
1991) 

The arbitrarily setting of r has been discussed in the 

past and researchers have exploited some 

information to tune it. Within this philosophy, Burel 

(1991) searches to give an equivalent influence for 

each hidden neuron on the model accuracy. To do 

that, the weights and biases connecting the input to 

the hidden layers must be tuned such that: 

 

1

2

1

( 1) ( . ( )) 0 1, ,

( 2) var( . ( )) 1, ,

i

i z

C E V X n i n

C V X n i nσ
= =

 = =

⋯

⋯
 (8) 

Satisfy the requirement C1 allows to use the full 

variation of the activation range. C2 serves to 

control the variation amplitude range. C1 is 

validated if the two bounds r and –r are 

symmetrical. To respect C2, r must be tuned to: 
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zσ  is tuned to 0.5 because the hyperbolic 

tangent is nearly linear between -0.5 and 0.5. This 

tuning of r implies that this initialisation algorithm 

requires a complete dataset. This initialization 

algorithm will be denoted “Bu”. 

3.3 Drago and Ridella initialization 
(DR) (Drago and Ridella 1992) 

Within the same philosophy as Burel (1991), Drago 

and Ridella (1992) search to find a good tuning of r.  

They tried to control the proportion of samples in 

the dataset leading to the saturation of the activation 

function. They defined the “Paralyzed Neuron 

Percentage” (PNP) which represent the proportion 

of samples leading to obtain paralyzed neuron(s). 

They found a relation between this parameter and r: 
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where 1 / β  represents the probability that at least 

one output of the network is incorrect: 
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The goal of this algorithm is to maintain the PNP 

to a small value. So PNP is tuned to 5% in (10). This 

initialisation algorithm needs a complete dataset. It 

will be denoted “DR” in the sequel. 

3.4 Nguyen and Widrow initialization 
(NW) (Nguyen and Widrow 1990) 

Nguyen and Widrow (1990) algorithm can be view 

as a slice linearization. Its goal is to determine 

parameters such that all hidden nodes represents a 

linear function on a small interval of the input space.  

To do that, the size of the intervals and their 

localisation in the input space must be determined. 

The size is controlled by the amplitude of the 

weights vectors 
01 1'i i inV v v − =  ⋯ , i=1, n1-1 (not 

including biases 
0in

v ) when the localisation is 

controlled by the biases 
0in

v  of the hidden neurons. 

In order to break the symmetry in the network, 

all the weights and biases are randomly uniformly 

distributed between -1 and 1. In a second step, the 

amplitude of the weights vectors 'iV  are adjusted in 

function of the number of inputs and hidden units: 

 
01/

1' 0.7*
n

iV n=  (12) 



 

Multiplying by 0.7 gives a slight overlapping of 

the intervals. The localisation of the intervals in the 

input space is determined by the tuning of the biases 

of the hidden neurons 
0in

v . They are uniformly 

randomly chosen in the range ' , 'i iV V−   . 

Initially, this algorithm has been designed in 

order to work with normalised inputs between -1 and 

1. In order to work with no normalized inputs, 

Demuth and Beale (1994) have implemented an 

improvement of this algorithm in matlab®. To do 

that, each weight ihv , i=1, …, n1-1, and h = 1, …, n0-

1, are divided by the amplitude of the input h: 
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The centres of the intervals are repositioned in 

the input space by adding to the biases of the hidden 

neurons 
0in

v : 
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This algorithm requires to know the amplitude of 

each input. It will be denoted “NW” in the sequel. 

3.5 Chen and Nutter initialization (CN) 
(Chen and Nutter 1991) 

Chen and Nutter (1991) proposed a totally different 

approach. They tried to estimate the initial 

parameters of each layers sequentially. The main 

problem is that the outputs of the hidden neurons are 

unknown. So Chen and Nutter proposed to initialize 

the parameters in different stages. First all the 

parameters are randomly uniformly distributed 

between -1 and 1. Second, parameters which connect 

the hidden to the output layers are estimated: 

 
1( . ) . .T TW H H H T−=  (15) 

Third, the desired output T is retro propagated to 

the hidden neurons: 
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The estimated outputs of the hidden neurons are 

finally obtained by mixing information given by 

output and by inputs: 

 

.H H Hλ= +
�⌢

 (17) 

with λ, a parameter chosen randomly between 0 and 

1. This estimation of the hidden neurons outputs 

may lead to values outside the bounds -1, 1. These 

value must be truncated between -1 and 1.  

Fourth, the parameters connecting the input to 

the hidden layers are estimated: 
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This algorithm needs a complete dataset. It will 

be denoted “CN”.  

4 EXPERMENTAL RESULTS 

The five MLP initialisation algorithms are tested in 

order to initialize ELM model on three regression 

benchmarks. For each initialization algorithm and 

for each benchmark, twenty initial parameters sets 

are built. For each benchmark, the number of hidden 

neurons is fixed according to the studies of Huang et 

al. (2006).  

4.1 Comparison criterion 

The selection criterion used to compare the results 

obtained is the classical Root Mean Square Error 

(RMSE): 
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However, two values of RMSE may be 

sufficiently close such that the difference is 

statistically insignificant. So to compare two ELM 

models, their residuals populations P0 and P of mean 

0 and of variance 
2

0
σ  and 2σ  respectively must be 

compared by using a two tailed hypothesis test in 

order to determine if 2σ  is statistically different of 



 

2

0
σ . The null hypothesis 0H  (the two variance are 

statistically equal) and its alternative 1H  are: 
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0H  is rejected with a risk level of 5% if: 
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where υ is the number of degree of freedom, and α 

is the confidence level. 

4.2 Abalone dataset 

This abalone dataset is a collection of 4177 samples 

and the goal is to predict the age (output) of these 

shells considering eight physical measurements 

(inputs) (Waugh 1995, UCI 2017). From these 4177 

samples, 2000 are used for the learning and 2177 for 

the validation. The output is normalised between -1 

and 1. No normalisation is performed on the inputs. 

Table 1 presents the results obtained for all the ELM 

models.  

The first row of table 1 presents the mean 

computational time for each algorithm. Four of them 

presents a very short and similar computational time 

(Bu, DR, NW and Ra). These four algorithms are 

very simple, when CN performs least square 

calculus twice.  

The six succeeding rows give respectively the 

min, mean and max values of RMSE on the learning 

and the validation datasets. The best RMSE value on 

the learning and validation datasets is given by Bu. 

For the validation dataset, Ra gives the same 

optimum. So, Bu and, to a lesser extent Ra, give the 

best results concerning the RMSE value.  

However, it is likely that some of the other 

results are statistically equal to the best one. The two 

bounds 
1c

Γ  and 
2c

Γ  of the statistical test (21) are 

equal to 2050 and 2308 respectively for this 

example. The last row of table 1 presents the 

proportion of ELM models which gives a RMSE 

statistically equivalent to the best one on the 

validation data set (here best Bu model). 

Only three initialisation algorithms (Bu, NW and 

Ra) are able to give results statistically equivalent to 

the best one. Among them, NW is the one which 

maximizes this proportion (30%). 

Table 1: Results for the Abalone dataset. 

Bu CN DR NW Ra

0.0016 0.0055 0.0016 0.0016 0.0016

min 0.0757 0.0868 0.0791 0.0765 0.0765

mean 0.0796 0.0906 0.0863 0.0791 0.0801

max 0.0862 0.0915 0.0926 0.0844 0.0908

min 0.0723 0.0833 0.0775 0.0731 0.0723

mean 0.0769 0.0865 0.084 0.0782 0.0773

max 0.0829 0.0875 0.0951 0.0936 0.0857

15% 0% 0% 30% 15%

computational time (s)

identification RMSE

validation RMSE

% Γ  

Table 2: Results for the Auto Price dataset. 

Bu CN DR NW Ra

0.0047 0.0039 0.001 0.0023 0.001

min 0.07 0.1315 0.0687 0.0773 0.1123

mean 0.0898 0.1799 0.0827 0.0976 0.1549

max 0.1228 0.1821 0.1072 0.1211 0.1821

min 0.0663 0.1178 0.071 0.0614 0.1

mean 0.083 0.1494 0.0803 0.0891 0.1499

max 0.1073 0.1508 0.0964 0.1058 0.1508

10% 0% 15% 20% 0%

computational time (s)

identification RMSE

validation RMSE

% Γ  



 

Table 3: Results for the CPU dataset. 

Bu CN DR NW Ra

0.0008 0.0031 0.008 0.0008 0.0008

min 0.0223 0.1058 0.0494 0.0207 0.0944

mean 0.0272 0.1076 0.0701 0.0263 0.1047

max 0.0442 0.1077 0.0884 0.0413 0.1071

min 0.0494 0.1617 0.081 0.0549 0.1537

mean 0.1293 0.1643 0.1185 0.0837 0.1622

max 0.4022 0.1645 0.142 0.1468 0.1774

15% 0% 0% 20% 0%

computational time (s)

identification RMSE

validation RMSE

% Γ  

4.3 Auto price dataset 

This dataset regroups the price of cars (output) and 

fifteen of their characteristics (inputs) (Kibler et al. 

1989, UCI 2017). The missing values are discarding 

leading to a dataset comprising 159 samples 

randomly divided into 80 samples for the learning 

and 79 for the validation. The output is normalized 

and all ELM models include five hidden neurons. 

The results of all the ELM models are presented 

table 2. 

The mean computational time for all algorithms 

are quite similar.  

The best RMSE on the learning dataset is given 

by DR algorithm. But, for the validation dataset, it is 

NW which gives the best one.  

For the statistical test (21) the two bounds 
1c

Γ  

and 
2c

Γ  are equal to 56.3 and 105.5 respectively. 

The last row presents the proportion of model which 

give results statistically equivalent to the best one 

(here best NW model).  

This time, the three initialisation algorithm 

which gives results statistically equivalent to the best 

one are (Bu, DR and NW). NW is again the one 

which maximizes chances to find good model 

(20%).  

4.4 CPU dataset 

The Computer Hardware dataset problem is to 

predict the estimated relative performance from the 

original article (Kibler and Aha 1988, UCI 2017). It 

comprises 209 samples randomly divided into 

learning dataset (100 samples) and validation one 

(109 samples). There are six inputs, and the output is 

normalized. Each ELM model includes ten hidden 

neurons.  

Table 3 presents the results obtained with the 

five initialisation algorithms. The computational 

time for BU, DR NW and Ra are quite similar when 

the one for CN is greater.  

The best RMSE value is given by NW on the 

learning dataset and by Bu on validation one. 

Considering the statistical test (21) (
1

82
c

Γ =  and 

2
140)

c
Γ = , these two algorithms are the only ones 

which are able to gives results statistically 

equivalent to the best one.  

5 CONCLUSIONS 

This paper presents a study about the impact of 

hidden nodes choice on the ELM model accuracy. 

This initialisation problem has been investigated in 

the MLP context in the past and five initialisation 

algorithms are recalled before to be tested and 

compared for the ELM initialisation on three 

regression benchmarks.  

The results obtained shown that two algorithms 

(Bu and NW) outperform the others in terms of 

chances to obtain satisfactory results. However, even 

these algorithms give acceptable results in less than 

30% of the cases. This fact implies that performing 

the learning of ELM model needs to be done on 

several different initialisation parameters sets.  

Our future works will focus on how to improve 

this initialization step by combining different 

initialization algorithms, particularly Bu and NW. 

Another question concerns the impact of inputs 

selection on the ELM accuracy. In all the 

benchmarks used in this study, all the inputs are 

linked with the output. When it is not the case, the 

impact of these spurious inputs on the ELM model 

accuracy must be studied. 
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