
HAL Id: hal-01630235
https://hal.science/hal-01630235

Submitted on 7 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Impact of hidden weights choice on accuracy of MLP
with randomly fixed hidden neurons for regression

problems
Marie-Christine Suhner, Philippe Thomas

To cite this version:
Marie-Christine Suhner, Philippe Thomas. Impact of hidden weights choice on accuracy of MLP
with randomly fixed hidden neurons for regression problems. 9th International Joint Conference on
Computational Intelligence, IJCCI’17, Nov 2017, Funchal, Portugal. �hal-01630235�

https://hal.science/hal-01630235
https://hal.archives-ouvertes.fr

IJCCI’17 9th International Joint Conference on Computational Intelligence, Funcha, Portugal, 1-3 november
2017

Impact of hidden weights choice on accuracy of MLP with randomly

fixed hidden neurons for regression problems

Marie-Christine Suhner1,2, Philippe Thomas1,2
1Université de Lorraine, CRAN, UMR 7039, Campus Sciences, BP 70239, 54506 Vandœuvre-lès-Nancy cedex, France

2CNRS, CRAN, UMR7039, France

{marie-christine.suhner, philippe.thomas}@univ-lorraine.fr

Keywords: Neural Network, Extreme Learning Machine, Multilayer Perceptron, Parameters Initialization, Randomly

Fixed Hidden Neurons.

Abstract: Neural network is a well-known tool able to learn model from data with a good accuracy. However, this tool

suffers from an important computational time which may be too expansive. One alternative is to fix the

weights and biases connecting the input to the hidden layer. This approach has been denoted recently

extreme learning machine (ELM) which is able to learn quickly a model. Multilayers perceptron and ELM

have identical structure, the main difference is that only the parameters linking hidden to output layers are

learned. The weights and biases which connect the input to the hidden layers are randomly chosen and they

don’t evolved during the learning. The impact of the choice of these random parameters on the model

accuracy is not studied in the literature. This paper draws on extensive literature concerning the feedforward

neural networks initialization problem. Different feedforward neural network initialisation algorithms are

recalled, and used for the determination of ELM parameters connecting input to hidden layers. These

algorithms are tested and compared on several regression benchmark problems.

1 INTRODUCTION

Since the backpropagation algorithm proposed by

Rumelhart and McClelland (1986), neural networks

have shown their abilities to solve a broad array of

problem including regression, classification,

clustering as examples. However, the design of a

neural model needs a learning step which may be

very computational time consuming. To overfit this

drawback, Schmidt et al. (1992) have been the firsts

to proposed to adapt only the weigths and biases

connecting the hidden to the output layers. Huang et

al (2004) have formalised this approach and called

it: Extreme Learning Machine (ELM). This tool has

been the subject from many publications, including

theoretical purpose (Lendasse et al. 2016) or

application (Rajesh and Parkash 2011).

ELM structure is similar to structure of classical

single hidden layer feedforward neural network.

Multilayer perceptron (MLP) uses backpropagation

algorithm in order to adapt all the parameters

(weights and biases connecting the input to the

hidden layers and those connecting the hidden to the

output layers). Rather, in ELM, the weights and

biases connecting the input to the hidden layers are

fixed and only those connecting the hidden to the

output layers constitute the parameters set which are

tuned by using one-pass algorithm. This fact leads to

a great improvement of the learning computational

time. Even if some authors claim that ELM

preserves their habilites of universal aproximator

(Huang and Lai 2012, Javed et al. 2014), Li and

Wang (2017) have proved that it was not true.

However, ELM preserves their interest due to their

good capabilities to deal with large data analysis,

fast dynamic modelling and real–time data

processing (Cui and Wang 2016).

The choice of the hidden nodes impacts the ELM

accuracy (Huang and Lai 2012, Feng et al. 2009, Qu

et al. 2016). To improve it, many researchers focus

on the hidden nodes number determination by using

genetic algorithm (Suresh et al. 2010), pruning

procedure (Miche et al. 2010) or incremental

learning approaches (Feng et al. 2009).

The random choice of the weights and biases

connecting the input to the hidden layers is rarely

discussed. We can cite Qu et al. (2016) which

distinguish classification problems where orthogonal

initialisation allows to improve accuracy, when

better results are obtained if random initialisation is

used for regression problems. The great majority of

works related to ELM include a simple random

initialisation of these weights and biases (Huang et

al. 2004, Huang et al. 2006). Some works proposed a

more sophiticated initialisation procedure (Javed et

al. 2014) including the use of evolutionary

algorithms (Evolutionary-ELM) which may

deteriorate the computational time (Zhu et al. 2005,

Cao et al. 2012, Matias et al. 2014). At the oposite,

other works do not say a word about this problem

(Huang and Lai 2012, Yin et al. 2015).

On the contrary, in the MLP context, the problem

of initialization of the weigths and biases connecting

the input to the hidden layers have been studied

(Nguyen and Widrow 1990, Burel 1991, Drago and

Ridella 1992, Thomas and Bloch 1997).

In this paper, the impact of the using of

sophisticated MLP initialization algorithms for ELM

model accuracy for regresion purpose is

investigated. Next section will present the structure

and the learning algorithm of the considerd ELM.

The hidden nodes choice is also discussed. Section

three recalls five MLP initialization algoritms. These

algorithms are used for ELM models for three

regresion benchmarks in section four before to

conclude.

2 EXTREME LEARNING

MACHINE (ELM)

2.1 ELM structure and notations

The structure of an ELM is similar to the MLP

structure and is given by:

()
01 1

1

0

1 1 1

2

1

. . . .

. 1...

nn n

k ki ih h ki i

i h i

n

ki i

i

z w g v x w V X

w H with k n

= = =

=

 
= = 

 

= =

∑ ∑ ∑

∑
 (1)

where, kz are the 2n outputs and 0

h
x are the n0 inputs

of the ELM (
0

0

nx is a constant input equal to 1),
ih

v

are the weights connecting the input layer to the

hidden layer, g(.) is the activation function of the

hidden neurons,
ki

w are the weights connecting the

hidden neurons to the output k,
i

H is the is the

output of the hidden neuron i (
1nH is a constant

input equal to 1). Equation 1 is written compactly as:

.Z W H= (2)

where Z is the estimated output matrix:

1

1

(1) (1)

() ()

o

o

n

n

z z

Z

z N z N

 
 =  
 
 

⋯

⋮ ⋮

⋯

 (3)

H is the hidden layer output matrix:

()
() ()

() ()

1

1

1

,..., , (1),..., ()

. (1) . (1)

. () . ()

n

h

h

N

n

n

H V V X X N

g V X g V X

g V X N g V X N

=

 
 
 
 
  

⋯

⋮ ⋮

⋯

 (4)

and W the ELM parameters matrix:

2

1

T

T

n

W

W

W

 
 =  
 
 

⋮ (5)

Different activation functions have been

proposed for the hidden nodes (Javed et al. 2014). In

this paper, initialization algorithms are tested for

ELM regression models. So the classical hyperbolic

tangent is chosen.

2.2 ELM learning algorithm

Different learning algorithms have been proposed to

determine the parameters of the model. The one used

here is summarized as follow (Huang et al. 2006):

� The weights
ih

v and biases 1

i
b connecting the

input to the hidden layers are randomly

selected.

� Calculate the hidden layer output matrix H by

(4). Calculate the ELM parameters by using

H † the Moore-Penrose generalized inverse of

matrix H (Huang et al. 2006):

.W H Y= † (6)

IJCCI’17 9th International Joint Conference on Computational Intelligence, Funcha, Portugal, 1-3 november
2017

H5

H8

H10

H7

-10 -8 -6 -4 -2 0 2 4 6 8 x
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

H1

H9

H4

H2

H3

H6

Figure 1: hidden neurons outputs for the “SinC” problem.

Many modification have been proposed to

improve accuracy of such learning algorithms as

robust ELM (Zhang and Luo 2015), regularized

ELM (Deng et al. 2009), incremental (Huang et al.

2006), regularized incremental (Xu et al. 2016).

In this paper, the goal is to test MLP

initialization algorithms. So the basic ELM

algorithm (Huang et al. 2006) is sufficient here.

2.3 Impact of hidden nodes choice

The classical “SinC” example is used to illustrate

the impact of hidden nodes choice:

sin() / 0
()

1 0

x x x
y x

x

≠
=  =

 (7)

Two datasets including 1000 pairs (xn, yn) each,

are built for the learning and the validation. The xn

are uniformly randomly distributed between -10 and

10 and the learning dataset is polluted by a random

noise uniformly distributed between -0.2 and 0.2.

The ELM includes 10 hidden neurons (plus one

hidden node constant and equal to 1). The

parameters of these hidden nodes are randomly

uniformly distributed between -1 and 1.

Figure 1 presents the output Hi of the 10 hidden

nodes for the validation datasets. Five of them

require a particular attention: H5, H8 and H10 on the

one hand, and H6 and H7 on the other hand.

First, it appears that H5, H8 and H10 are near to be

constant on the considered input domain and are not

significantly different to the bias node H11. Second,

the outputs H6 and H7 seems very similar. So, a cross

correlation test is performed on these two outputs

and presented figure 2. This correlation test confirms

that these two hidden neuron outputs are closely

correlated. So, only one of them gives information.

-25 -20 -15 -10 -5 0 5 10 15 20 lag

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 2: Cross correlation between H6 and H7.

So despite the fact that we include ten hidden

nodes in the model, only six of them are really

useful. To comfirm this fact, the accuracy of two

models is compared on the validation dataset. The

first ELM model includes all the hidden nodes and

the resulting sum squared errors (SSE) is equal to

1.51*10-4. The second ELM model includes only six

hidden nodes (H5, H6, H8 and H10 are discarded).

The SSE obtained for this model is 2.23*10-4. The

difference between the results obtained is not

statistically significant.

This experience shows that even if the

parameters are randomly choosen, a lack of diversity

may lead to the fact that some of the hidden nodes

are unuseful. To make an analogy with classifiers

ensembles, the accuracy of the ELM depends on the

diversity of its individual components (hidden

nodes) (Kuncheva and Whitaker 2003). That’s why

ELM needs a good initialization algorithm in order

to improve diversity between the hidden nodes.

3 MLP INITIALISATION

ALGORITHMS

Many algorithms have been proposed in the past in

order to initialize MLP.

3.1 Random initialization (Ra)

Random initialization has been the first approach to

initialize parameters since the pioneering work of

Rumelhart and McClelland (1986). This approach is

mainly used in ELM approach since the work of

Huang et al. (2004). This approach consist to

uniformly randomly initiate the parameters between

–r and r. Initially, nothing is said about the value of

r. In this paper, r is tuned to 1 in accordance with

settings encountered in the literature (Norgaard

1995, Zhu and Huang 2004). This algorithm will be

denoted “Ra” in the sequel.

3.2 Burel initialization (Bu) (Burel
1991)

The arbitrarily setting of r has been discussed in the

past and researchers have exploited some

information to tune it. Within this philosophy, Burel

(1991) searches to give an equivalent influence for

each hidden neuron on the model accuracy. To do

that, the weights and biases connecting the input to

the hidden layers must be tuned such that:

1

2

1

(1) (. ()) 0 1, ,

(2) var(. ()) 1, ,

i

i z

C E V X n i n

C V X n i nσ
= =

 = =

⋯

⋯
 (8)

Satisfy the requirement C1 allows to use the full

variation of the activation range. C2 serves to

control the variation amplitude range. C1 is

validated if the two bounds r and –r are

symmetrical. To respect C2, r must be tuned to:

()() ()()
0

0

2

2 2

1 1

3 0.87z

n n

h h
h h

r

E x E x

σ

= =

= =

∑ ∑

(9)

zσ is tuned to 0.5 because the hyperbolic

tangent is nearly linear between -0.5 and 0.5. This

tuning of r implies that this initialisation algorithm

requires a complete dataset. This initialization

algorithm will be denoted “Bu”.

3.3 Drago and Ridella initialization
(DR) (Drago and Ridella 1992)

Within the same philosophy as Burel (1991), Drago

and Ridella (1992) search to find a good tuning of r.

They tried to control the proportion of samples in

the dataset leading to the saturation of the activation

function. They defined the “Paralyzed Neuron

Percentage” (PNP) which represent the proportion

of samples leading to obtain paralyzed neuron(s).

They found a relation between this parameter and r:

1

3

1
.

2 2

r

erf PNP
β−

=
 − 
 

(10)

where 1 / β represents the probability that at least

one output of the network is incorrect:

1 1
1

2 oNβ
 = − 
 

 (11)

The goal of this algorithm is to maintain the PNP

to a small value. So PNP is tuned to 5% in (10). This

initialisation algorithm needs a complete dataset. It

will be denoted “DR” in the sequel.

3.4 Nguyen and Widrow initialization
(NW) (Nguyen and Widrow 1990)

Nguyen and Widrow (1990) algorithm can be view

as a slice linearization. Its goal is to determine

parameters such that all hidden nodes represents a

linear function on a small interval of the input space.

To do that, the size of the intervals and their

localisation in the input space must be determined.

The size is controlled by the amplitude of the

weights vectors
01 1'i i inV v v − =  ⋯ , i=1, n1-1 (not

including biases
0in

v) when the localisation is

controlled by the biases
0in

v of the hidden neurons.

In order to break the symmetry in the network,

all the weights and biases are randomly uniformly

distributed between -1 and 1. In a second step, the

amplitude of the weights vectors 'iV are adjusted in

function of the number of inputs and hidden units:

01/

1' 0.7*
n

iV n= (12)

Multiplying by 0.7 gives a slight overlapping of

the intervals. The localisation of the intervals in the

input space is determined by the tuning of the biases

of the hidden neurons
0in

v . They are uniformly

randomly chosen in the range ' , 'i iV V−   .

Initially, this algorithm has been designed in

order to work with normalised inputs between -1 and

1. In order to work with no normalized inputs,

Demuth and Beale (1994) have implemented an

improvement of this algorithm in matlab®. To do

that, each weight ihv , i=1, …, n1-1, and h = 1, …, n0-

1, are divided by the amplitude of the input h:

max() min()

2

h h
h

x xα −= (13)

The centres of the intervals are repositioned in

the input space by adding to the biases of the hidden

neurons
0in

v :

0

0 0

1

min() max()

2

n

i hi

h

x x
vβ

=

+=∑ (14)

This algorithm requires to know the amplitude of

each input. It will be denoted “NW” in the sequel.

3.5 Chen and Nutter initialization (CN)
(Chen and Nutter 1991)

Chen and Nutter (1991) proposed a totally different

approach. They tried to estimate the initial

parameters of each layers sequentially. The main

problem is that the outputs of the hidden neurons are

unknown. So Chen and Nutter proposed to initialize

the parameters in different stages. First all the

parameters are randomly uniformly distributed

between -1 and 1. Second, parameters which connect

the hidden to the output layers are estimated:

1(.) . .T TW H H H T−= (15)

Third, the desired output T is retro propagated to

the hidden neurons:

() ()
()

()
()

()
()

1

1

1

if rank
.

rank

if rank
.(.) .

rank

if rank
. .(.)

rank

T T
T

h

T T

T T

h

T T

T T

W T
T W

W N

W T
H T W W W

W N

W T
T W W W

W

−

−

−

   = 
 =

   =  = 

<


  ≠  



�
 (16)

The estimated outputs of the hidden neurons are

finally obtained by mixing information given by

output and by inputs:

.H H Hλ= +
�⌢

 (17)

with λ, a parameter chosen randomly between 0 and

1. This estimation of the hidden neurons outputs

may lead to values outside the bounds -1, 1. These

value must be truncated between -1 and 1.

Fourth, the parameters connecting the input to

the hidden layers are estimated:

() () ()()
()

() () ()()
()

() () ()()
()

1 1 1

1
1 1

1
1 1

ˆ ˆ. if rank

rank

ˆ ˆ. . . if rank

rank

ˆ ˆ. . . if rank

rank

T

h h

i

T T

h h

i

T T

h h

V

X g H X g H

X N

X X X g H X g H

X N

X X X g H X g H

X

− − −

− − −

− − −

=

  
 

 = =
    
 = <


 
 

 ≠

 (18)

This algorithm needs a complete dataset. It will

be denoted “CN”.

4 EXPERMENTAL RESULTS

The five MLP initialisation algorithms are tested in

order to initialize ELM model on three regression

benchmarks. For each initialization algorithm and

for each benchmark, twenty initial parameters sets

are built. For each benchmark, the number of hidden

neurons is fixed according to the studies of Huang et

al. (2006).

4.1 Comparison criterion

The selection criterion used to compare the results

obtained is the classical Root Mean Square Error

(RMSE):

()2

1

1
() ()

N

n

RMSE t n z n
N =

= −∑ (19)

However, two values of RMSE may be

sufficiently close such that the difference is

statistically insignificant. So to compare two ELM

models, their residuals populations P0 and P of mean

0 and of variance
2

0
σ and 2σ respectively must be

compared by using a two tailed hypothesis test in

order to determine if 2σ is statistically different of

2

0
σ . The null hypothesis 0H (the two variance are

statistically equal) and its alternative 1H are:

2 2
0 0

2 2
1 0

2 2

0

:

:

σ σ
σ σ
σ σ

 =


>
 <

H

H (20)

0H is rejected with a risk level of 5% if:

()

()

2

2

12

0

2

2

22

0

1 .
,

2

1 .
,1

2

c

c

N

N

σ αχ υ
σ

σ αχ υ
σ

 −  Γ = < Γ =  
 


−  Γ = > Γ = −   

 (21)

where υ is the number of degree of freedom, and α

is the confidence level.

4.2 Abalone dataset

This abalone dataset is a collection of 4177 samples

and the goal is to predict the age (output) of these

shells considering eight physical measurements

(inputs) (Waugh 1995, UCI 2017). From these 4177

samples, 2000 are used for the learning and 2177 for

the validation. The output is normalised between -1

and 1. No normalisation is performed on the inputs.

Table 1 presents the results obtained for all the ELM

models.

The first row of table 1 presents the mean

computational time for each algorithm. Four of them

presents a very short and similar computational time

(Bu, DR, NW and Ra). These four algorithms are

very simple, when CN performs least square

calculus twice.

The six succeeding rows give respectively the

min, mean and max values of RMSE on the learning

and the validation datasets. The best RMSE value on

the learning and validation datasets is given by Bu.

For the validation dataset, Ra gives the same

optimum. So, Bu and, to a lesser extent Ra, give the

best results concerning the RMSE value.

However, it is likely that some of the other

results are statistically equal to the best one. The two

bounds
1c

Γ and
2c

Γ of the statistical test (21) are

equal to 2050 and 2308 respectively for this

example. The last row of table 1 presents the

proportion of ELM models which gives a RMSE

statistically equivalent to the best one on the

validation data set (here best Bu model).

Only three initialisation algorithms (Bu, NW and

Ra) are able to give results statistically equivalent to

the best one. Among them, NW is the one which

maximizes this proportion (30%).

Table 1: Results for the Abalone dataset.

Bu CN DR NW Ra

0.0016 0.0055 0.0016 0.0016 0.0016

min 0.0757 0.0868 0.0791 0.0765 0.0765

mean 0.0796 0.0906 0.0863 0.0791 0.0801

max 0.0862 0.0915 0.0926 0.0844 0.0908

min 0.0723 0.0833 0.0775 0.0731 0.0723

mean 0.0769 0.0865 0.084 0.0782 0.0773

max 0.0829 0.0875 0.0951 0.0936 0.0857

15% 0% 0% 30% 15%

computational time (s)

identification RMSE

validation RMSE

% Γ

Table 2: Results for the Auto Price dataset.

Bu CN DR NW Ra

0.0047 0.0039 0.001 0.0023 0.001

min 0.07 0.1315 0.0687 0.0773 0.1123

mean 0.0898 0.1799 0.0827 0.0976 0.1549

max 0.1228 0.1821 0.1072 0.1211 0.1821

min 0.0663 0.1178 0.071 0.0614 0.1

mean 0.083 0.1494 0.0803 0.0891 0.1499

max 0.1073 0.1508 0.0964 0.1058 0.1508

10% 0% 15% 20% 0%

computational time (s)

identification RMSE

validation RMSE

% Γ

Table 3: Results for the CPU dataset.

Bu CN DR NW Ra

0.0008 0.0031 0.008 0.0008 0.0008

min 0.0223 0.1058 0.0494 0.0207 0.0944

mean 0.0272 0.1076 0.0701 0.0263 0.1047

max 0.0442 0.1077 0.0884 0.0413 0.1071

min 0.0494 0.1617 0.081 0.0549 0.1537

mean 0.1293 0.1643 0.1185 0.0837 0.1622

max 0.4022 0.1645 0.142 0.1468 0.1774

15% 0% 0% 20% 0%

computational time (s)

identification RMSE

validation RMSE

% Γ

4.3 Auto price dataset

This dataset regroups the price of cars (output) and

fifteen of their characteristics (inputs) (Kibler et al.

1989, UCI 2017). The missing values are discarding

leading to a dataset comprising 159 samples

randomly divided into 80 samples for the learning

and 79 for the validation. The output is normalized

and all ELM models include five hidden neurons.

The results of all the ELM models are presented

table 2.

The mean computational time for all algorithms

are quite similar.

The best RMSE on the learning dataset is given

by DR algorithm. But, for the validation dataset, it is

NW which gives the best one.

For the statistical test (21) the two bounds
1c

Γ

and
2c

Γ are equal to 56.3 and 105.5 respectively.

The last row presents the proportion of model which

give results statistically equivalent to the best one

(here best NW model).

This time, the three initialisation algorithm

which gives results statistically equivalent to the best

one are (Bu, DR and NW). NW is again the one

which maximizes chances to find good model

(20%).

4.4 CPU dataset

The Computer Hardware dataset problem is to

predict the estimated relative performance from the

original article (Kibler and Aha 1988, UCI 2017). It

comprises 209 samples randomly divided into

learning dataset (100 samples) and validation one

(109 samples). There are six inputs, and the output is

normalized. Each ELM model includes ten hidden

neurons.

Table 3 presents the results obtained with the

five initialisation algorithms. The computational

time for BU, DR NW and Ra are quite similar when

the one for CN is greater.

The best RMSE value is given by NW on the

learning dataset and by Bu on validation one.

Considering the statistical test (21) (
1

82
c

Γ = and

2
140)

c
Γ = , these two algorithms are the only ones

which are able to gives results statistically

equivalent to the best one.

5 CONCLUSIONS

This paper presents a study about the impact of

hidden nodes choice on the ELM model accuracy.

This initialisation problem has been investigated in

the MLP context in the past and five initialisation

algorithms are recalled before to be tested and

compared for the ELM initialisation on three

regression benchmarks.

The results obtained shown that two algorithms

(Bu and NW) outperform the others in terms of

chances to obtain satisfactory results. However, even

these algorithms give acceptable results in less than

30% of the cases. This fact implies that performing

the learning of ELM model needs to be done on

several different initialisation parameters sets.

Our future works will focus on how to improve

this initialization step by combining different

initialization algorithms, particularly Bu and NW.

Another question concerns the impact of inputs

selection on the ELM accuracy. In all the

benchmarks used in this study, all the inputs are

linked with the output. When it is not the case, the

impact of these spurious inputs on the ELM model

accuracy must be studied.

REFERENCES

Burel, G., 1991. Réseaux de neurones en traitement

d’images : des modèles théoriques aux applications

industrielles, Ph.D thesis of the Université de Bretagne

Occidentale.

Chen, C.L., Nutter, R.S., 1991. Improving the training

speed of three-layer feedforward neural nets by

optimal estimation of the initial weights, Proc. of the

IJCNN International Joint Conference on Neural

Networks, Seattle, USA, july 8-12, 2063-2068.

Cui, C., Wang, D., 2016. High dimensional data

regression using lasso model and neural networks with

random weights. Information Sciences, 372, 505-517.

Deng, W., Zheng, Q., Chen, L., 2009. Regularized

extreme learning machine, Proc. of IEEE Symp. on

Computational Intelligence and Data Mining

CIDM’09, 389-395

Demuth, H, Beale, P., 1994. Neural networks toolbox

user's guide. V2.0, The MathWorks, Inc

Drago, G.P., Ridella, S., 1992. Statistically controlled

activation weight initialization, IEEE Transactions on

Neural Networks, 3, 4, 627-631.

Feng, G., Huang, G.B., Lin, Q., 2009. Error minimized

extreme learning machine with growth of hidden

nodes and incremental learning, IEEE Trans. on

Neural Networks, 20, 8, 1352-1357.

Huang, G.B., Zhu, Q.Y., Siew, C.K., 2004. Extreme

learning machine: a new learning scheme of

feedforward neural networks, Proc. of the IEEE

International Joint Conference on Neural Networks, 2,

985-990.

Huang, G.B., Chen, L., Siew, C.K., 2006. Universal

approximation using incremental constructive

feedforward networks with random hidden nodes,

IEEE trans. on Neural Networks, 17, 4, 879-892.

Huang, Y.W., Lai, D.H., 2012. Hidden node optimization

for extreme learning machine, AASRI Procedia, 3,

375-380.

Javed, K., Gouriveau, R., Zerhouni, N., 2014. SW-ELM:

A summation wavelet extreme learning machine

algorithm with a priori parameter initialization,

Neurocomputing, 123, 299-307.

Kibler, D., Aha, D.W., 1988. Instance-Based Prediction of

Real-Valued Attributes, Proc. of the CSCSI (Canadian

AI) Conference

Kibler, D., Aha, D.W., Albert, M., 1989. Instance-based

prediction of real-valued attributes, Computational

Intelligence, 5, 5157

Kuncheva, L.I., Whitaker, C.J., 2003. Measures of

diversity in classifier ensembles and their relationship

with the ensemble accuracy, Machine Learning, 51,

181–207

Lendasse, A., Man, V.C., Miche, Y., Huang, G.B., 2016.

Editorial: Advances in extreme learning machines

(ELM2014), Neurocomputing, 174, 1-3.

Li, M., Wang, D., 2017. Insights into randomized

algorithms for neural networks: practical issues and

common pitfalls. Information Sciences, 382, 170-178.

Matias, T., Souza, F., Araujo, R., Antunes, C.H., 2014.

Learning of a single-hidden layer feedforward neural

network using an optimized extreme learning machine,

Neurocomputing, 129, 428-436.

Miche, Y., Sorjamaa, A., Bas, P., 2010. OP-ELM:

Optimally pruned extreme learning machine, IEEE

Trans. On Neural Networks, 21, 1, 158-162.

Nguyen, D., Widrow, B., 1990. Improving the learning

speed of 2-layer neural networks by choosing initial

values of the adaptive weights, proc. of the IJCNN Int.

Joint Conf. on Neural Networks, 3, 21-26

Norgaard, M., 1995. Neural network based system

identification toolbox, TC. 95-E-773, Institute of

Automation, Technical University of Denmark,

http://www.iau.dtu.dk/research/control/nnsysid.html

Qu, B.Y., Lang, B.F., Liang, J.J., Quin, A.K., Crisalle,

O.D., 2016. Two hidden-layer extreme learning

machine for regression and classification,

Neurocomputing, 175, 826-834.

Rajesh, R., Parkash, J.S., 2011. Extreme learning machine

– A review and state-of-art, International Journal of

Wisdom Based Computing, 1, &, 35-49;

Rumelhart, D.E., McClelland, J.L., 1986. Parallel

Distributed processing, MIT press, Cambridge,

Massachusetts.

Schmidt, W.F., Kraaijveld, M.A., Duin, R.P.W., 1992.

Feedforward neural networks with random weights,

Proc. of 11th IAPR Int. Conference on Pattern

Recognition Methodology and Systems, 2, 1-4.

Suresh, S., Saraswathi, S., Sundararajan, N., 2010.

Performance enhancement of extreme learning

machine for multi-category sparse cancer

classification, Engineering Application of Artificial

Intelligence, 23, 7, 1149-1157.

Thomas, P., Bloch, G., 1997. Initialization of multilayer

feedforward neural networks for non-linear systems

identification, proc. of the 15th IMACS World

Congress WC’97, Berlin, august 25-29, 4, 295-300.

UCI Center for Machine Learning and Intelligent Systems

(accessed 2017), Machine Learning Repository,

https://archive.ics.uci.edu/ml/datasets.html

Waugh, S., 1995. Extending and benchmarking Cascade-

Correlation, PhD thesis, Computer Science

Department, University of Tasmania

Xu, Z., Yao, M., Wu, Z., Dai, W., 2016. Incremental

regularized extreme learning machine and it’s

enhancement, Neurocomputing, 174, 134-142

Zhang, K., Luo, M., 2015. Outlier-robust extreme learning

machine for regression problems, Neurocomputing,

151, 1519-1527

Zhu, Q.Y., Huang, G.B., 2004. Basic ELM algorithms,

http://www.ntu.edu.sg/home/egbhuang/elm_codes.htm

l.

