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a b s t r a c t

The objective of the study is to show how initial distribution of dissimilar particulate components influ-
ences the mixing time and mixture quality. The dissimilar components have a tendency to segregate in
one another, and it is impossible to achieve the perfect mixture of them in industrial settings.
Nevertheless, the situation can be improved if the components are loaded as a sequence of several sand-
wiches, each of these sandwiches containing layers of components that are proportional to their share in
the mixture. In this case, a sort of pre-mixing occurs while still at the loading stage – which allows reduc-
ing the optimum mixing time and increasing the homogeneity of the mixture. The theory of Markov
chains was used to simulate the mixing kinetics. It is shown that the number of loaded sandwiches
has a very strong influence on the process efficiency. A loading device that can effectively realize
multi-layer loading is proposed. The mixing kinetics for ternary mixture of glass beads was investigated
experimentally at a lab scale vibration mixer. A one-time loading and a two-sandwich loading were com-
pared. It was shown that the optimum mixing time and non-homogeneity of the mixture were reduced
by half in the latter case.

1. Introduction

One of the key problems of mixing dissimilar granular materials
is their segregation into one another. The segregation occurs
because of differences in the physical properties of the compo-
nents, such as particle size, density, and shape. Among other
things, segregation makes mixing process very difficult for predic-
tive modeling and calculation. Bridgwater [3,4] emphasized the
difficulty of designing and operating the mixing process, which is
largely based on judgment rather than science. If it were not for
this segregation process, achieving a homogeneous mixture would
only be a matter of finding the adequate mixing time. Very often, it
is virtually impossible to achieve a homogeneous mixture if segre-
gation occurs. First, the homogeneity of a mixture increases,
reaches its maximum, and then decreases again. There have been
a number of studies, mostly experimental, of the influence of the
segregation effect on mixture quality (e.g., Tang and Puri [13];
Jha et al. [9]; Jha and Puri [8]; Iddir et al. [7]). However, the influ-
ence of segregation on the mixing kinetics has received less atten-
tion. In particular, it is important to estimate this effect for the

mixing of multi-component dissimilar materials, when segregation
becomes very complex.

From the authors’ viewpoint, one of the tools that are capable of
solving these problems is the theory of Markov chains, which is
related to the process of mixing as it describes the evolution of
the state of a stochastic system. The basic idea of the Markov chain
approach consists in dividing the operating volume of the mixer
into small but finite zones (cells) and then observing the evolution
of the key component concentration in these zones at discrete
moments in time, with a small but finite time step between them.
This approach was used by Wang and Fan [14] to describe the state
of a mixture after passing through a static mixer. However, their
work neglected the evolution of the process parameters, and did
not describe the physical features of the mixing zone. In later stud-
ies by these researchers (Wang and Fan [15]; Fan et al. [6]), a model
was developed in which transitions were only permitted to the
neighboring cells. Doucet et al. [5] attempted to combine the
DEM method with Markov chain theory. They computed the tran-
sition probability matrix directly by using the results obtained
from a discrete element model. This is a promising technique to
reduce the computational time for modeling the process of mixing.

The general strategy of applying the theory of Markov chains to
modeling different processes in powder technology was described
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by Berthiaux et al. [2]. It was demonstrated by Mizonov et al. [10]
that the theory can be successfully used to model heat and mass
transfer between stochastically moving particulate and gas flows.
The approach was also successfully applied by Ammarcha et al.
to describe the dynamics of the transitory powder flow that occurs
during the emptying of a continuous mixer [1]. The basic operator
of a Markov chain model is the matrix of transition probabilities
that controls the transitions of particles from one cell to others.
This matrix transforms the initial state vector (i.e., initial distribu-
tion of a component over a mixing zone) into the current state vec-
tor in equal increments. However, in order to make a Markov chain
model predictive, its matrix of transition probabilities must take
into account all important physical features of the process to be
described. Very often this matrix appears to be state-dependent,
and the model becomes non-linear. The non-linear models were
used in our paper Mizonov et al. [11] to search for solutions to min-
imize the negative influence of segregation in mixing of particulate
solids. Later on, in Mizonov et al. [12], the Markov chain model of
mixing kinetics for ternary mixture of dissimilar particulate solids
was developed, examined and verified experimentally. However, in
these and others papers, the main objective of the study was the
matrix of transition probabilities and its adequacy to the process
under study. The influence of the initial state vector on the process
efficiency was not studied. This vector describes the distribution of
the components over a mixing zone that takes place after these
components have been loaded into a mixing chamber. A typical
case of loading is a one-time loading when the components are
placed on top of one another in accordance with the growth of
their segregation rate. However, the components can be loaded
as several sandwiches, each of them containing layers of these
components proportional to their ratio in the mixture. In this case,
a sort of pre-mixing occurs while still at the loading stage – which
allows reducing the optimum mixing time and increasing the
homogeneity of the mixture. The detailed theoretical and experi-
mental study of this approach is the objective of the present paper.

2. Theory

It is appropriate that we begin our theoretical study of mixing
by analyzing the binary mixture formation in order to remind of
the basic physical assumption it is based on. Suppose that we have
to mix two dissimilar components of particulate solids in a vibra-
tion vessel. According to the strategy of Markov chain modeling,
the total height of the mixture inside the vessel H is divided into
m perfectly mixed cells of height Dx ¼ H=m that can exchange their
components in an agitated state. The transition of a component

from a cell can occur due to pure stochastic (symmetrical) migra-
tion of particles characterized by the transition probability d, and
due to segregation characterized by the transition probability v.
For the sake of determinacy, let us suppose that the only difference
between the components is the size of their particles, and assign
index numbers of 1 and 2 to the fine and coarse fractions, respec-
tively. The small particles can only segregate downwards, while
the large particles can only segregate upwards. The process is
observed at discrete moments of time tk ¼ ðk# 1ÞDt, where Dt is
the time step, or transition duration, and k is the transition num-
ber, which can be interpreted as the discrete analogue of time.
The transition probabilities can then be calculated as follows:
d ¼ DDt=Dx2, v ¼ VDt=Dx where D is the dispersion coefficient
and V is the dimensional velocity of segregation.

At any moment of time tk, the distribution of the fractions’ vol-
ume content over the chain cells is presented by the state column
vectors Sk

1 and Sk2 of size m % 1 containing elements Sk1j and Sk2j,
where j ¼ 1; . . . ;m is counted from the top of the mixture.

Let us now assume that the total volume of the fractions inside
each cell Smax remains constant with time, regardless of the com-
position of each fraction inside the cell. This is a really working
assumption that is not as strict as the continuity equation for liq-
uids. The total volume of the components can change depending
on the particle size ratio and the components content. It depends
on the density of random packing of particles of different size
and content. However, it is supposed that this assumption is not
yet oversimplified enough to make the model unacceptable for
engineering purposes.

Thus, if a cell loses some of its matter during a time transition,
this loss must be immediately compensated by inflows from neigh-
boring cells. Let us assume that the value of Smax is equal to the
conditional unit. This condition gives the following constraint

Sk1j þ Sk2j ¼ 1; j ¼ 1; . . . ;m ð1Þ

It is clear that for a binary mixture it is enough to describe the
evolution of one state vector of two, for instance, the state vector
Sk1, which varies with time, i.e., from one transition to another. Its
evolution can be described by the recurrent matrix equation:

Skþ1
1 ¼ Pk

1ðS
k
1ÞS

k
1 ð2Þ

where P1 is the matrix of transition probabilities that control the
process. It is emphasized that the matrix itself varies from one time
transition to another and depends on the current state of the mix-
ture. This matrix is a tridiagonal matrix of sizem %m. In the general
case, it has the following form:

Nomenclature

D dispersion coefficient, m2/s
d probability of pure stochastic (diffusion) transition
j cell number counted from the top of the mixture
H total height of a mixture, m
k transition number
m total number of cells in the chain
P, Pij matrix of transition probabilities and its entries
S, Sj state vector and its entries
Smax maximum content of mixture that a cell can contain
t time, s
V velocity of segregation, m/s
v probability (rate) of segregation transition
z number of sandwiches in the load

Greek symbols
a proportional coefficient
r standard deviation
Dt transition duration, s
Dx height of a cell, m

Indices
0 related to segregation of a fraction into a pure coarser

fraction
1, 2 fraction number
k related to the k-th transition
l related to loading
mc related to loading-mixing cycle
m related to mixing



Pk ¼

1# d# vk
1 d 0 0 :::

dþ vk
1 1# 2d# vk

2 d 0 :::

0 dþ vk
2 1# 2d# vk

3 d :::

0 0 dþ vk
3 1# 2d# vk

4 :::

::: ::: ::: ::: :::

2

6666664

3

7777775
;

ð3Þ

where vj is the actual probability of a downward segregation tran-
sition during Dt (i.e., those particles that leave cell j and transit to
cell j + 1 due to the downward segregation).

The difficulty is that the fine fraction almost never segregates
into the pure coarse fraction – it is only found in its very small con-
centrations, or at the very beginning of the mixing process, when
the fractions are completely separated. In all other cases, the fine
fraction segregates downward into a mixture of fine and coarse
fractions, the composition of this mixture varying with time. In
order to take this factor into account, the following assumptions
are made (see Fig. 1).

It is supposed that the fractions’ migration that occurs during a
one-time transition consists of two virtual stages (which, in fact, go
simultaneously). The first stage consists in the downward segrega-
tion of the fine fraction. In view of the fact that a fraction cannot
segregate into itself, the segregation transition can only be directed
into the volume that is occupied by the coarser fraction. It allows
calculating the segregation transition probability as

vk
j ¼ v0 1#

Skjþ1

Smax

!
¼ v0ð1# Skjþ1Þ ð4Þ

where v0 is the segregation rate of the fine fraction into the pure
coarse fraction.

After the first virtual stage is complete, a void appears in the
current cell j. It is assumed that during the second stage the void
is filled by the coarse fraction. Thus, the segregation-induced
exchange between the two fractions occurs during the total time
transition, and Eq. (1) appears to be met.

It can be seen from Eq. (2) that the mixing kinetics depends on
the matrix of transition probabilities that is already specified, and
on the initial state vector S01 that describes the components distri-
bution just after loading. Let us examine how this vector influences
the mixing kinetics. The results of numerical experiments with this
vector are shown in Fig. 2.

The total number of cells was taken equal to 48, the composi-
tion of the mixture being 1:5. This means that the key component
could fully occupy 8 cells. The calculations were done for v0 = 0.2
and d = 0.3. The initial distributions of the key component are
shown at the top of the graph, the mixing kinetics – in the middle,
and the distributions of the key component after mixing during the
optimal mixing time are shown at the bottom. The mixture quality
was estimated by the standard deviation of the key component dis-
tribution r. Case 1 corresponds to a one-time loading of the com-
ponents as one big sandwich. The subsequent cases are related to
2, 4, and 8 smaller sandwiches. However, each sandwich has the
same 1:5 composition of components. In all the cases the mixing
kinetics is similar. First the mixture non-homogeneity decreases,
reaches its minimum, and then increases again. It is obvious that
the mixing process must be stopped at the optimum number of
time transitions, i.e., at the optimum mixing time. It can be also
seen that increasing the number of sandwiches leads to a smaller
optimum mixing time and to a smaller minimum achievable
non-homogeneity of the mixture. For instance, transition from
Case 1 (one-time loading) to Case 4 (loading as 8 sandwiches)
allows decreasing the optimum mixing time by about 10 times
and decreasing the minimum non-homogeneity by about 8 times.

However, such multi-layer loading begets some technical and
technological problems. First, it is necessary to have a device for
effective multi-layer loading, such a device to be discussed below.
Second, it is necessary to take into account the fact that multi-layer
loading takes more time than one-time loading. Indeed, the total
time of mixing cycle ‘‘loading + mixing” kmc consists of the mixing
time proper km and the loading time kl (we do not take into account
the discharge time, which does not depend on the loading mode).
The mixing time proper decreases and the loading time increases
as the number of sandwiches grows. As first approximation, it
can be assumed that the loading time is directly proportional to
the number of sandwiches z. In this case we get:

kmc ¼ km þ kl ¼ km þ az ð5Þ

where a is the proportional coefficient.
In order to compare the different cases of loading shown in

Fig. 1, let us also suppose that the mixing homogeneity
rmin = 0.0824, which can be achieved at one-time loading, meets
the technological standards, and the sole purpose of multilayer
loading is to increase the unit’s mixing capacity. The required

Fig. 1. Illustration of components’ migration occurring between two neighboring cells during a one-time transition due to segregation.



mixing times for different multilayer loadings can be easily found
for each case from the kinetic curves in Fig. 3.

It can be seen from the graphs that at a very fast loading rate
(a = 1) it is better to have 8 sandwiches (the more the better),
while at a very slow loading rate (a = 20) 2 sandwiches are prefer-
able. Thus, the optimum number of sandwiches exists depending
on a.

If we deal with a ternary mixture, the task of constructing the
matrix of transition probabilities becomes more complex. The
point is that the intermediate fraction can experience both down-
ward and upward segregation, and the fine fraction has two
parameters characterizing its segregation: the rate of downward
segregation into the pure intermediate fraction, and the rate of
its segregation into the pure coarse one. Nevertheless, the basic
assumptions made for the process mechanism shown in Fig. 1
remain the same. The detailed study of ternary mixture formation,
the rules of constructing the matrix of transition probabilities and
results of the model experimental validation can be found in [12],
and we believe that there is no reason to reproduce the obtained
cumbersome formulae in the present paper. For this reason, only
computational example based on this model that addresses the
multi-layer loading is presented here. It is shown in Fig. 4.

Fig. 2. Influence of the key component initial distribution (upper graphs) on the mixing kinetics (middle graph) and its distribution at maximum homogeneity of the mixture
(lower graphs) (lines 1–4 are related to the initial distributions 1–4 shown at the top).

Fig. 3. Influence of the number of sandwiches on the total mixing time at different
value of a.



The calculations are done to compare mixing kinetics and
mixture state at optimal mixing time for two cases of loading:
one-time loading and loading as two sandwiches. The mixture
components are numbered 1, 2 and 3 where 1 corresponds to the
finest fraction. The transition probabilities are taken as follows:
v012 = 0.2, v013 = 0.3, v023 = 0.1 and d = 0.2. The mixture composi-
tion is 1:1:1.

The upper row of graphs illustrates mixing kinetics at one-time
loading. The mixture non-homogeneity reaches the minimum
value r = 0.119 at kopt = 31. The distribution of components at this
state is shown in the right graph. The lower row of graphs refers to
multi-layer loading as two sandwiches (see the left graph). Now
the minimum non-homogeneity is achieved at kopt = 13 (almost 3
times as fast) and is equal to 0.067 (almost 2 times as little). It is
obvious that the multi-layer loading allows obtaining considerable
gain in comparison to the one-time loading.

3. Experimental

Experimental part of the work pursued two purposes: to
develop a loading device for effective multi-layer loading of dis-
similar particulate solids into a batch mixer and to validate the
model of mixing kinetics for a ternary mixture during multi-layer
loading.

One of possible technical solutions of multi-layer loading is
shown in Fig. 5a. Several rectangular vertical dividing plates are
fixed on a vertical shaft and placed into the cylindrical mixer body.
While in the initial state, the lower parts of the plates touch the
mixer’s bottom. The angle between the plates can be adjusted pro-
portionally to the mixture’s component ratio. The components are
loaded into the sectors formed by the dividing plates. After that,
the shaft with the plates is brought in rotation; at the same time,

it moves up until all the components appear in the mixer. Their
distribution after loading is shown in Fig. 5b. It can be seen from
the picture that such device provides effective multi-layer loading
with a required number of sandwiches.

An experimental validation of the model was carried out using a
custom vibration stand that generates vertical vibrations of con-
trolled amplitude and frequency. Glass beads with diameters of
2, 4, and 6 mm (with a different color for each size) were used to
simulate the components to be mixed. The mixing vessel was a
box with a transparent front wall of size 100 % 150 mm. The gap
between the front and back walls was 20 mm.

Using the ruler on the front wall of the box, the components
were arranged in layers. After the experiment had started, the mix-
ture was photographed every 30 s. These pictures were analyzed
using special image analysis software that allowed the content dis-
tribution of each fraction to be determined. Each experiment was
repeated at least five times to obtain reproducible results, and then
the average content of the fractions was calculated.

In order to make the model work, it was necessary to determine
the velocity of downward segregation of the fractions into the
other pure fraction, which is coarser. The experimental procedure
to do that is described in [12]. It was done as follows. The thin layer
of the tested fraction was placed on top of the coarser fraction and
the mixing process was launched. The pictures of the particles dis-
tribution were taken after each 10 seconds. After the taken pictures
were treated the time when 50% of the tested fraction showed up
in the bottom cell was found. The velocity of segregation was cal-
culated as the distance between the coarse fraction top and the
bottom cell divided by this time. It is necessary to note that these
experiments are labor and time consuming, and it would be very
convenient to use the DEM simulation instead of them.

The rate of pure stochastic mixing d was used as the adjusting
parameter to minimize the sum of squared deviations of the

Fig. 4. Comparison of mixing kinetics for one-time loading (top) and loading as two sandwiches (bottom).



experimental data from the model-calculated data model ones
over the entire range of the experimental data (the least squares
method).

4. Results and discussion

The average segregation velocities found for the glass bead frac-
tions according to the approach described in the previous section
were broadly similar: V12 = 2.1 cm/min, V13 = 2.95 cm/min, and
V23 = 1.1 cm/min. At the accepted transition duration Dt = 10 s
and a cell height of Dx = 1 cm, the corresponding segregation rates
were 0.35, 0.49, and 0.18, respectively (v ¼ VDt=Dx). The rate of
pure stochastic mixing d = 0.12 was adjusted to minimize the
sum of squared deviations of the experimental data from the
model-calculated data over the entire range of the experiment
(the least-squares method).

Fig. 6 shows the mixing kinetics for two ways of loading: one-
time loading (curve 1) and loading as two sandwiches (curve 2).
In the first case the minimum non-homogeneity is reached at
180 s and is equal to 0.17 while in the second case it is reached
at about 90 s and is equal to 0.1. It is clearly seen that the second

case has an obvious advantage in comparison to the first one: the
optimum mixing time is halved, and the minimum mixture non-
homogeneity becomes 1.7 times as little.

The photographs of components distribution for these two ways
of loading at different moments of time are shown in Fig. 7. The last
column of photos is conditionally called ‘‘asymptotic” because
curves 1 and 2 have not converged yet at 360 s. (It is necessary
to remind that the asymptotic distribution does not depend on
the initial conditions and must be identical under other conditions
being equal). At the same time it is possible to distinguish visually
that the optimum mixture is more homogeneous for the second
way of loading.

5. Conclusions and perspectives

Using the Markov chain model of the kinetics of multi-
component mixture formation, the influence of components initial
distribution on mixing kinetics and mixture quality has been
investigated. It is shown that loading the components to be mixed
into a batch mixer by multi-layer method as several sandwiches
helps to considerably reduce the mixture’s minimum non-
homogeneity that can be achieved for dissimilar particulate solids,
as well as cut down on the time that it takes the mixture to achieve
this state. In this case the process of loading is combined with pre-
mixing, and it is obvious that the sheer mixing time decreases.
However, the loading time also depends on the number of sand-
wiches in the load and grows with it. Therefore, there must be
an optimum number of sandwiches that yields a minimum
loading-and-mixing time which also depends on the loading rate.

A technical solution for multi-layer loading into a batch vibra-
tion mixer is proposed and its ability to realize effective multi-
layer loading is demonstrated experimentally. The mixing kinetics
for two ways of loading (one-time loading and loading as two
sandwiches) is investigated experimentally for a ternary mixture
of glass beads size fractions. It is shown that the structured load
allows reducing the mixture time and minimum mixture non-
homogeneity almost by half. In is also shown that the earlier devel-
oped Markov chains model of mixing kinetics of ternary mixture
formation fits the process in question rather well.

However, despite the fact that pre-mixing always improves the
mixing at large, it is necessary to test the multi-layer loading at an
industrial scale mixer to get a more accurate quantitative estima-
tion of its efficiency. It is also important to investigate how the
cohesion of particles influences on the proposed loading device
workability and on the mixing kinetics. In addition it is necessary

Fig. 5. Multi-layer loading of components into cylindrical mixer. (a) – design of the loading device: 1 – cylindrical mixer body; 2 – vertical shaft; 3 – dividing plates;
(b) – initial state of loaded ternary mixture.

Fig. 6. Comparison of the mixing kinetics for one-time loading (1) and loading as
two sandwiches (2): points – experiment, lines – calculation.



to come up with a loading device that allows multi-layer layer
loading into a mixer having a rotating agitator inside its operating
volume. This all defines the future work in the described direction.

Acknowledgement

This work is supported by the Russian Foundation for Basic
Research (Project 15-08-01684).

References

[1] C. Ammarcha, C. Gatumel, J.L. Dirion, M. Cabassud, V. Mizonov, H. Berthiaux,
Transitory powder flow dynamics during emptying of a continuous mixer,
Chem. Eng. Process. 65 (2013) 68–75.

[2] H. Berthiaux, V. Mizonov, V. Zhukov, Application of the theory of Markov
chains to model different processes in particle technology, Powder Technol.
157 (2005) 128–137.

[3] J. Bridgwater, Mixing of particles and powders: Where next?, Particuology 8
(2010) 563–567

[4] J. Bridgwater, Mixing of powders and granular materials by mechanical
means—a perspective, Particuology 10 (2012) 397–427.

[5] J. Doucet, N. Hudon, F. Bertrand, J. Chaouki, Modeling of the mixing of
monodisperse particles using a stationary DEM-based Markov process,
Comput. Chem. Eng. 32 (2008) 1334–1341.

[6] L.T. Fan, F.S. Lai, Y. Akao, K. Shinoda, E. Yoshizawa, Numerical and experimental
simulation studies on the mixing of particulate solids and the synthesis of a
mixing system, Comput. Chem. Eng. 2 (1978) 19–32.

[7] H. Iddir, H. Arastoopour, C.M. Hrenya, Analysis of binary and ternary granular
mixture behavior using the kinetic theory approach, Powder Technol. 151
(2005) 117–125.

[8] A.K. Jha, V.M. Puri, Percolation segregation of multi-size and multi-component
particulate materials, Powder Technol. 197 (2010) 274–282.

[9] A.K. Jha, J.S. Gill, V.M. Puri, Percolation segregation in binary size mixtures of
spherical and angular-shaped particles of different densities, Part. Sci. Technol.
26 (2008) 482–493.

[10] V. Mizonov, H. Berthiaux, P. Arlabosse, D. Djerroud, Application of the theory of
Markov chains to model heat and mass transfer between stochastically
moving particulate and gas flows, Granular Matter 10 (2008) 335–340.

[11] V. Mizonov, H. Berthiaux, C. Gatumel, Theoretical search for solutions to
minimize negative influence of segregation in mixing of particulate solids,
Particuology 25 (2016) 36–41.

[12] V. Mizonov, I. Balagurov, H. Berthiaux, C. Gatumel, A Markov chain model of
mixing kinetics for ternary mixture of dissimilar particulate solids,
Particuology 31 (2017) 80–86.

[13] P. Tang, V.M. Puri, Segregation quantification of two-component particulate
mixtures: Effect of particle size, density, shape, and surface texture, Part. Sci.
Technol. 25 (2007) 571–588.

[14] R.H. Wang, L.T. Fan, Axial mixing of grains in a motionless Sulzer (Koch) mixer,
Ind. Eng. Chem. Process Des. Develop. 15 (1976) 381–388.

[15] R.H. Wang, L.T. Fan, Stochastic modeling of segregation in a motionless mixer,
Chem. Eng. Sci. 32 (1977) 695–701.

Fig. 7. Photographs of components distribution for two ways of loading at different moments of time.


