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Abstract

Urban air temperature varies along time and space. This contribution proposes a methodology to model these variations from empirical models. Four air temperature networks are implemented in three west France cities. The period [1.4 -1.8] of a normalized night is investigated. Three empirical models are established, in order to predict temporal and spatial air temperature variation. They are gathered under the name of model group. Urban heat island (UHI) intensity is explained according to one temporal model using meteorological variables. Temperature spatial variations are explained from two models using geographical informations averaged in a 500 m radius buffer circle. The first one represents the mean UHI value for a given location, the second the variability of the UHI around its mean value. 32 model groups are calibrated from data sampled by one network. The accuracy of their estimations is tested comparing estimated to observed values from the three other networks. The most accurate model is identified and its performances are analyzed. Night-time UHI intensity variations are explained all along the year by wind speed and nebulosity values calculated after sunset. During spring and summer season UHI variations are mainly driven by Normalized Difference Vegetation Index (NDVI) value whereas building density or surface density are predominant explicative variables during colder seasons. The model is finally applied to the city of Nantes during a summer night to illustrate the interest of this work to urban planning applications. Several warm areas located outside the city center are identified according to this method. Their high UHI value is mainly caused by their low NDVI value.

Introduction

Air temperature is higher in urban areas than in their surrounding [START_REF] Oke | Boundary layer climates. 2nd[END_REF]. This phenomenon, called Urban Heat Island (UHI), may become a serious issue in the next decades due to global warming. According to the Intergovernmental Panel on Climate Change (IPCC) results, one of the consequences of climate change is an increase of heat waves intensity and frequency [START_REF] Revel | Climate change, impacts and vulnerability in europe 2012[END_REF]. The combination of UHI and climate change will impact urban comfort [START_REF] Clarke | Comparison of the comfort conditions in different urban and suburban microenvironments[END_REF], human and fauna heat stress [START_REF] Lowe | An energy and mortality impact assessment of the urban heat island in the us[END_REF][START_REF] Clarke | Some effects of the urban structure on heat mortality[END_REF], building cooling demand [START_REF] Malys | Microclimate and buildings energy consumption: sensitivity analysis of coupling methods[END_REF], vegetation behavior such as flowering phenology [START_REF] Neil | Effects of urbanization on plant flowering phenology: A review[END_REF], etc.

However, urban heat island causes are known and may be classified in three categories :

• urban morphology causes : high facade density leads to short and long wave radiation trapping in the canopy [START_REF] Bernabé | Radiative properties of the urban fabric derived from surface form analysis: A simplified solar balance model[END_REF], and high roughness is also responsible for wind speed reduction, preventing heat evacuation [START_REF] Britter | Flow and dispersion in urban areas[END_REF].

• urban surfaces causes : high fraction of impervious soils reduces water storage, thus being unable to cool by evapotranspiration as vegetated soils do [START_REF] Asaeda | The subsurface transport of heat and moisture and its effect on the environment: a numerical model[END_REF]. Moreover, low building materials albedo (e.g. asphalt) increases the absorption of solar radiation which contributes to ground and air overheating [START_REF] Santamouris | Cooling the cities-a review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments[END_REF].

• human activity causes : antropogenic heat sources (road traffic and buildings) are higher in cities than in rural areas [START_REF] Sailor | A review of methods for estimating anthropogenic heat and moisture emissions in the urban environment[END_REF][START_REF] De Munck | How much can air conditioning increase air temperatures for a city like paris, france?[END_REF].

Urban climate is not the only issue that decision makers have to deal with during both the design process of new neighborhoods and the definition of an urban planning strategy. They also have to take into account many other issues such as public transportation, education and health access, water, waste and energy management, functional and social mixity etc. For urban designing (construction or renovation), the choice of the urban form, of the soil type, and of the function of each building may affect each of the authority of the decision makers. To make a decision, there is a need of simple indicators to evaluate the impact of a new urban project on each of them. The objective of this article is to propose indicators dedicated to the urban climate field. Indeed, as cities become denser, there is a need to know which neighborhoods are the warmest and to evaluate the potential impact of a new urban project on air temperature.

Tools developed to tackle this issue may use either knowledge based model or empirical model. Knowledge based modeling consists in splitting the entire city into several volumes and to apply on each of them an energy balance [START_REF] Grimmond | Urban surface energy balance models: model characteristics and methodology for a comparison study[END_REF]. One of the major shortcomings of these models is the complexity of both the method (numerical simulation) and the physical concept (fluid dynamics, radiation, convection and conduction principles) used. Empirical models are constructed from field observation where measurements are explained from the geographical context. For example, Tokyo urban climate was investigated measuring the mean night-time air temperature of 11 locations during 30 days [START_REF] Yokobori | Effect of land cover on air temperatures involved in the development of an intra-urban heat island[END_REF]. The vegetation density of each site was calculated to explain the temperature spatial differences. Finally, the empirical model they proposed consists in a linear relationship between air temperature and vegetation density. This method has several shortcomings. We identified the four that we consider of major importance :

1. Relevant period of interest : within a day, air temperature is rarely homogeneous at city scale. Heterogeneity, defined as the standard deviation of all measurement at a given time, is maximum at certain periods of the day. However, the literature is conflicting concerning the best period to calculate air temperature differences between each part of the city and a reference station, and the choice of a period rather than another is rarely justified. [START_REF] Yan | Assessing the effects of landscape design parameters on intra-urban air temperature variability: The case of beijing, china[END_REF] compared the air temperature at 11 p.m., [START_REF] Oke | The distinction between canopy and boundary-layer urban heat islands[END_REF] averaged the values between one and three hours after sunset, Petralli et al. ( 2014) calculated the differences when air temperature was maximum, and [START_REF] Krüger | Outdoor measurements and temperature comparisons of seven monitoring stations: Preliminary studies in curitiba, brazil[END_REF] averaged the differences during the whole day. 2. Cross modeling of spatial and temporal variations : within an urban area, air temperature heterogeneity may be explained by the heterogeneity of geographical contexts (morphology, surface types, human activities). Empirical models such as the one used by [START_REF] Yokobori | Effect of land cover on air temperatures involved in the development of an intra-urban heat island[END_REF] have been proposed to model the spatial variations of the mean air temperature from geographical indicators. This air temperature heterogeneity may be exacerbated by the meteorological conditions. It is higher under clear (few clouds) and calm (low wind speed) conditions than under cloudy and windy conditions [START_REF] Svensson | A gis based empirical model to simulate air temperature variations in the goteborg urban area during the night[END_REF]. Empirical models have been proposed to model the temporal variations of the air temperature difference between a given point of the city and a reference station from meteorological indicators [START_REF] Svensson | A gis based empirical model to simulate air temperature variations in the goteborg urban area during the night[END_REF][START_REF] Krüger | Outdoor measurements and temperature comparisons of seven monitoring stations: Preliminary studies in curitiba, brazil[END_REF]. However, these relationships are only valid for the given point and thus cannot be used to estimate the temperature of an other site. There is a need to establish an overall relationship to link spatial and temporal temperature variations to both geographical and meteorological variations. 3. Temporal variations modeling : while some meteorological variables have an immediate impact on air temperature, some others can be delayed due to inertial effects. For example, solar radiation occurs during the daytime but still has an impact on night-time temperature differences. The relationships between observed temperature differences and their potential causes (wind speed, solar radiation, etc) must not be studied synchronically. However, few studies have investigated this point : most of the time, the average meteorological condition (the causes) and the average temperature differences (the consequences) are calculated at the same time. 4. Spatial variations modeling : air temperature differences are due to energy flux differences occuring within the city. The value recorded for each flux is strongly correlated to the geographical context of the site of interest (for example, the amount of vegetation impacts latent heat flux value). However, indicators are rarely linked to an energy flux occurring within an urban volume. Establishing a clear link between a heat flux and a geographical indicator used in an empirical model would allow a more physical analyze of the model equation.

Our main goal is to propose a new methodology based on measurement analysis to estimate the spatial and temporal variations of the air temperature within an urban area, providing improvements to overcome the four main shortcomings identified in the previous models. This methodology distinguishes spatial variations which are calibrated according to geographical indicators from temporal variations which are calibrated according to meteorological conditions. The model relies on four air temperature measurement networks, which are presented in section 2. One of them is used for model calibration whereas the three others are used for model verification. Meteorological and geographical data, respectively responsible for temporal and spatial variations of the UHI, are also presented section 2. Section 3 is dedicated to the methodology description (i.e. model calibration). The three first subsections consist in the general method description. We propose solutions to solve each of the four issues described above. Two spatial and one temporal models are then obtained. They are gathered under the name of model group. In the last subsection, five variations of this general methodology are proposed, leading to the obtention of 32 model groups (32 temporal models and 16 spatial models). A method to choose the most performing model group is also proposed. The section 4 is dedicated to the analysis of this model group and its performances by comparing estimated and observed temperature values.

Materials

Study areas

The study areas are three west France conurbations : Nantes, Angers and La Roche-sur-Yon. According to a census performed in 2012, they have respectively 606'640, 218'657 and 52'808 inhabitants. They are located in a temperate climatic zone with a warm summer but without dry season (Cfb climatic zone according to Köppen climate classification - [START_REF] Peel | Updated world map of the köppen-geiger climate classification[END_REF]). They are all further than 20 km away from any major climatic disturbing elements such as oceans or mountains. Although sea breezes may affect rural air temperature much beyond 20 km from the coast [START_REF] Hu | Influence of synoptic sea-breeze fronts on the urban heat island intensity in dallas-fort worth, texas[END_REF], the temperature field during night-time (where the UHI intensity is the highest) is dominated by the influence of the urban land-use [START_REF] Pigeon | Urban thermodynamic island in a coastal city analysed from an optimized surface network[END_REF]. Because our contribution consists in setting the foundation of a method to solve the issues mentionned in section 1, we make the choice not taking into account the potential sea breeze influence for this preliminary work.

Meteorological data

Meteorological data are splitted in two categories :

• urban air temperature networks : they are used to observe temperature heteogeneity within each urban area;

• reference stations for meteorological data : they are used to quantify regional meteorological conditions and also as references for air temperature differences between the city measurements and the surrounding rural areas.

Urban air temperature networks

Four measurement networks are implemented within our three study areas and are presented figure 1 : two are located in Nantes, one in Angers and one in La Roche-sur-Yon (LRY).

One of the two Nantes networks is used for calibration step, whereas the three other networks are used for verification purpose. The quantity of available data for each network is given in table 1. A day is considered as available only if all network stations have no missing data. The network chosen for calibration is the one having the highest number of measurement stations as well as the highest number of measurement days per season. All measurement stations sample a temperature value every 15 minutes using positive temperature coefficient (PTC) thermistor. Those sensors have an accuracy lower than 0.3 K and they are renowned for their negligible temperature time-drift. For this reason, they are supposed to be calibrated all along the experiment. Experimental conditions are given in table 2. Calibration network (ID 1) conditions differ from the verification network ones (ID 2, 3 and 4). The measurement distance from the ground is acceptable for both verification and calibration networks since temperature gradient is negligible within the urban canopy above 2 m [START_REF] Armstrong | Temperature differences between two ground-level sites and a roof site in southampton[END_REF][START_REF] Nakamura | Wind, temperature and stability conditions in an east-west oriented urban canyon[END_REF][START_REF] Taesler | Studies of the development and thermal structure of the urban boundary layer in Uppsala. Meteorologiska institutionen[END_REF]. However, the radiation shield used for the calibration network is very sensitive to solar radiation whereas the one used for verification is almost not sensitive when used under high solar radiation intensity [START_REF] Lacombe | Wmo field intercomparison of thermometer screens/shields and humidity measuring instruments, ghardaia, algeria[END_REF][START_REF] Lacombe | Results of the wmo intercomparison of thermometer screens/shields and hygrometers in hot desert conditions[END_REF]. Moreover, the location of a measurement station at less than 1 m from dm3 2, 3 and4 3 m

≥ 1 m cuboid -1 dm3
a vertical surface may lead to considerable errors during day-time [START_REF] Oke | Initial guidance to obtain representative meteorological observations at urban sites[END_REF].

For those reasons and also because temperature differences are often lower during day-time than during night-time, only night-time temperature differences will be investigated in this study.

Reference stations for meteorological data

Because the empirical models developed in this study must be applied to any other french city, data used both to characterize meteorological conditions and as temperature reference must be standardized. Meteo-France stations are chosen for three reasons :

• they respect measurement recommendations of the World Meteorological Organization (local vegetation height lower than 10 cm, no heat source or water surfaces in a 100 m radius circle, etc.),

• they are located in each of the major urban areas of France,

• they have long-term records that cover our measurement period (2010 to 2016).

The UHI empirical model is calibrated with Nantes data and should be applied to the other cities. Thus, we need to use a temperature reference for each city. Meteo-France temperature data, which are sampled every 60 minutes, is linearly interpolated every 15 minutes in order to have a sampling frequency identical to the one of all the other stations used for calibration or verification purpose.

Meteo-France stations are also used to characterize the meteorological conditions. Six physical quantities, measured every hour, are utilized for this work : temperature and relative humidity (1.5 m height), wind speed and direction (10 to 11 m height), solar radiation and nebulosity. The sampling method utilized for the measurement differs from one physical quantity to another. Wind speed and direction as well as nebulosity are averaged during the last ten minutes of each hour. Air temperature and relative humidity are sampled every hour. Each solar radiation measurement is the average value of the previous hour. Two Météo-France stations are used for the urban area of Nantes : nebulosity is measured at the station called MF b whereas the five other physical quantities are measured at the station called MF nse (figure 1a). For the Angers and La Roche-sur-Yon stations, nebulosity is rarely measured during night-time, thus night-time values are estimated using linear interpolation from day-time val-ues. More informations concerning each reference station may be found on the Météo-France web site1 2 3 4 .

Geographical data

Because the empirical models developed in this study must be applied to any other french city, data used to characterize the geographical context of each measurement station must be standardized. Those data are presented table 3. The BDTopo®(version 2011), produced by the french IGN (National geographical and forest institute), is a vector-based database. It is used to quantify urban morphology (building footprint and building height are given) as well as urban land cover (at least water surfaces). To characterize urban land cover further in detail, RapideEye images are have been acquired at noon on May, 23rd 2011 in Nantes, on May 21st 2011 in LRY and on May, 23rd in Angers. They have been provided by the Equipex Geosud project 5 . Orthorectification had been performed by the IGN (according to [START_REF] Benosa | Ortho-sat, descriptif de contenu[END_REF]). They have a 5 m horizontal resolution and they are composed of five spectral-bands (blue, green, red, red-edge, near infrared). 

Methods

The methodology is only applied for the calibration network. In order to have both an equal day-time and night-time duration all along a year, they have to be transformed in a dimensionless time variable. Each day and each night are divided by their duration. Each day starts at 0 and ends at 1, each night starts at 1 and ends at 2. The aim of this study is to model the air temperature differences within the urban area from geographical and meteorological conditions.

Identification of an air temperature calculation period

Temperature varies temporally and spatially during night-time. The temperature of the urban area is often quite homogeneous at the sunset and strongly heterogeneous few hours after sunset. We define temperature spatial dispersion as the standard deviation of the temperature between all measurement stations. We are interested in heterogeneous situations, i.e. when the UHI phenomenon is maximum, highlighting high temperature differences between all parts of a city. Then interesting time-periods to investigate are the ones characterized by high and steady temperature spatial dispersion. Those periods are identified using four steps. First, for each time step t of each day d, air temperature dispersion σ T d (t) is calculated as the standard deviation of the temperature between all measurement stations.

σ T d (t) = i (T i,d -T d ) 2 n i -1 (1)
where n i the number of stations,

T d = i T i,d
ni the urban average temperature at the sample t.

Second, for each day, day-time and night-time are scaled by their length according to [START_REF] Runnalls | Dynamics and controls of the near-surface heat island of vancouver, british columbia[END_REF]. Third, the evolution of the night-time dispersion is averaged for each season S (figure 2a) :

σ T S (t) = d∈S T d (t) n d,S (2) 
where n d,S the number of days used during season S. These first three steps are applied to temperature time-derivative ( Ṫ ) in order to investigate the stability of the temperature spatial dispersion (figure 2b). The last step consists in the period identification, characterized by high standard deviation of the temperature (high temperature spatial dispersion) and low standard deviation of the temperature derivative (stable temperature spatial dispersion). This period (p U HI ), corresponding to the time interval [1.4 -1.8], is identified on figure 2. 

Cross modeling of spatial and temporal variations

Temperature difference ∆T i,d between each station i and the reference station ref is calculated. First, temperature is averaged during the period p U HI for each day d :

T i,d = t∈p U HI T i,d (t) n t∈p U HI (3)
where n t∈p U HI is the number of samples in period p U HI . Then temperature difference between each station i and the reference station ref is calculated for each day d :

∆T i,d = T i,d -T ref,d (4) 
For a given measurement station i, ∆T i,d value varies between days. Those variations may be explained by statistical models using meteorological conditions (wind speed, solar radiations, etc.) as explanative variables. The problem is that the average and the standard deviation of the variations may differ a lot depending on the station analysed. In this condition, one model can not be used to explain the temporal variation for any location of the city. To overcome this issue, temporal variations are normalized ( ∆T d ) according to equation 5 :

∆T d = α i ∆T i,d -∆T i σ ∆Ti (5) 
where

∆T i = d ∆T i,d n d
is the average temperature difference for station i, n d is the number of days,

σ ∆Ti = d (∆T i,d -∆Ti) 2 n d -1
is the standard deviation of its temporal variations, α i is a coefficient equal to 1 if ∆T i,d ≥ 0 and equal to -1 if ∆T i,d < 0.

This normalization allows to decompose ∆T i,d into spatial and temporal indicators:

• temporal variations are represented by ∆T d and will be modeled according to meteorological variable V m :

∆T d = F (V m ) (6) 
• spatial variations are represented by both ∆T i and σ ∆Ti and will be modeled according to geographical indicators (I g ), representing the geographical context of each measurement station :

∆T i = G(I g ) (7 
)

σ ∆Ti = H(I g ) (8) 
The two spatial models (equations 7 and 8) as well as the temporal model (equation 6) which are finally obtained are gathered under the name of model group and may be used to calculate ∆T i,d for any urban areas :

∆T i,d = σ ∆Ti ∆T d α i + ∆T i (9) 
For reading clarity concern, indices d and i will be dropped for ∆T i,d , σ ∆Ti , ∆T d and ∆T i in the following sections.

Temporal variations modeling

In order to build the ∆T model, the following meteorological variables are used : solar radiation (K), wind speed (U), air temperature (T), relative humidity (RH) and nebulosity (N). Three main issues are associated to this objective :

• To which meteorological variables is ∆T sensitive ?

• During which part of the day (period p p ) have these variables the greatest influence on ∆T ?

• What kind of function f m relate ∆T to each variable V m (p p ) ?

To answer these questions, several multiple linear regressions using meteorological variables are tested to explain ∆T variations (equation 10).

∆T = a 0 + m a m .f m (V m (p p )) ( 10 
)
where a 0 is the regression intercept, a m is the regression coefficient associated to the explanatory variable f m (V m ). The test procedure is composed of five steps presented in figure 3. (exponential, inverse, linear, logarithmic, quadratic) are tested to linearize the relationship between ∆T and each combination of meteorological variable / period p p . Then simple linear regressions are performed. 4. For each meteorological variable, the function f m f in and the period p f in that maximise the simple linear regressions determination coefficient (R²) are selected for each meteorological variable V m ; 5. Finally, multiple linear regressions are calculated for all combinations of explanatory variables f m f in (V m (p m f in ). A combination is excluded when any of its regression coefficients is unsignificant (p > 0.05). The combination that maximizes the AIC c criteria (equation 11) is finally chosen.

AIC c = -2ln(max(f L )) + 2nb xn + 2nb xn (nb xn + 1) nb ech -nb xn -1 (11)
where AIC c is the corrected Akaike information criterion, max(f L ) is the likelihood function maximum, nb xn is the explanatory variables number, nb ech is the sample size used for regression (here the number of days n d ).

Spatial variation modeling

Two models are built to explain the spatial distribution of the UHI. The first is used to model UHI mean value (∆T -equation 7) and the second the UHI standard deviation value (σ ∆T -equation 8). They are estimated from linear regressions using geographical indicators as explanative variables, calculated according to the procedure described figure 4. In order to use geographical indicators that could explain the UHI phenomenon, we associate each heat flux involved in the energy budget of an urban volume to one or several geographical indicators. Those indicators are calculated thanks to the OrbisGIS platform (Bocher and Petit, 2013) from the formulae presented in table 4 and according to the data processing illustrated figure 4.

The energy budget of an urban volume is :

Q * + Q F = Q H + Q E + ∆Q A + ∆Q S ( 12 
)
where Q * is the net all-wave radiation flux density, Q F the anthropogenic heat flux density due to combustion, Q H the turbulent sensible heat flux density, Q E the turbulent latent heat flux density, ∆Q A the horizontal energy transport in the air per unit horizontal area and ∆Q S the sub-surface heat flux density. According to [START_REF] Maby | Approche conceptuelle et pratique des indicateurs en géographie. Objets et indicateurs géographiques[END_REF] definition, geographical indicators may be divided into thematic and spatial indicators. The thematic indicators are constructed averaging a geographical information within a 500 m radius buffer circle centered on a measurement station -the value of 500 m is arbitrarily chosen as the median value taken from a literature review [START_REF] Krüger | Outdoor measurements and temperature comparisons of seven monitoring stations: Preliminary studies in curitiba, brazil[END_REF][START_REF] Yan | Assessing the effects of landscape design parameters on intra-urban air temperature variability: The case of beijing, china[END_REF][START_REF] Gal | Computing continuous sky view factors using 3d urban raster and vector databases: comparison and application to urban climate[END_REF][START_REF] Yokobori | Effect of land cover on air temperatures involved in the development of an intra-urban heat island[END_REF][START_REF] Steeneveld | Refreshing the role of open water surfaces on mitigating the maximum urban heat island effect[END_REF][START_REF] László | Impacts of some surface parameters on urban heat island development[END_REF][START_REF] Fenner | Spatial and temporal air temperature variability in berlin, germany, during the years 2001-2010[END_REF][START_REF] Erell | Intra-urban differences in canopy layer air temperature at a mid-latitude city[END_REF][START_REF] Petralli | Urban planning indicators: useful tools to measure the effect of urbanization and vegetation on summer air temperatures[END_REF][START_REF] Chen | Sky view factor analysis of street canyons and its implications for daytime intra-urban air temperature differentials in high-rise, high-density urban areas of hong kong: a gis-based simulation approach[END_REF][START_REF] Balázs | Simulation of the mean urban heat island using 2d surface parameters: empirical modelling, verification and extension[END_REF][START_REF] Hjort | Effects of sample size on the accuracy of geomorphological models[END_REF][START_REF] Hart | Quantifying the influence of land-use and surface characteristics on spatial variability in the urban heat island[END_REF][START_REF] Suomi | Effects of scale on modelling the urban heat island in turku, sw finland[END_REF]. The spatial indicators measure a distance separating a measurement station from a specific object. In this study, these geographic features are the open spaces, defined from urban morphology informations according to a fractal approach using the software MorphoLim [START_REF] Tannier | A fractal approach to identifying urban boundaries[END_REF]. We consider that higher the building surfaces density, higher the potential anthropogenic heat flux ( All linear combinations of these 6 indicators are tested to explain the variables ∆T i and σ ∆Ti using multiple regression relationships (equations 13 and 14).

A b +A f A 0 = D b + Ds -1)
∆T = b 0 + g b g .x g (13) σ ∆T = c 0 + g c g .x g ( 14 
)
where b 0 and c 0 are the regression intercepts, b g and c g are the regression coefficients associated to the explanative variable x g , x g = I gi -I g ref is the geographical indicator I g difference between the site i and the site ref .

The step 5 of the procedure used for temporal model choice (section 3.3) is applied again in order to identify the relationship that best explains each of the variables (n ech = n i the number of stations used).

Variants to the general methodology

At the end of the general methodology application, one model group is obtained (figure 5). The performance of this model has to be assessed. However, in order to test the performances of more models, five variants to the general methodology are proposed. They are illustrated in figure 5 by dash arrows :

1. Wind direction sorting : the source area which contributes to the value measured by the temperature sensor strongly depends on the wind direction [START_REF] Oke | Initial guidance to obtain representative meteorological observations at urban sites[END_REF]. In order to consider this "footprint" phenomenon, meteorological data and the buffer circle used for the thematic indicator calculation are divided into six parts. Each of them correspond to the source area of the temperature sensor when the wind blows from a certain range of direction. 

ΔT d = F(V m )
2 5 model groups The combination of these 5 variants leads to the calibration of 32 model groups, composed of 32 temporal models (2 5 ) and only 16 spatial models (2 4 ), the variant 3 having no effect on spatial modeling (figure 5). In order to choose the best model, each of them is used to estimate the temperature difference ∆T between each station of the 3 verification networks (ID 2, 3 and 4) and their reference station. The accuracy of these estimations is evaluated by calculating a normalized root mean square error (NRMSE), defined as the ratio between RM SE i (calculated from ∆T i estimations) and RM SE i=ref (calculated considering that each station is at the reference temperature value i.e. ∆T i = 0 ∀ i) :

ΔT d
N RM SE = RM SE i RM SE i=ref = 1 nb d 1 nbi nb d d nbi i (∆T obsi (j) -∆T esti (j)) 2 1 nb d 1 nbi nb d d nbi i (∆T obs i,d -∆T obs ref,d ) 2
(15) where ∆T obs i,d and ∆T obs ref,d are observed ∆T values for the day d respectively for a station i and for the reference station ref , ∆T est i,d is the ∆T value estimated according to the model for the day d and the station i, nb d the number of days used for verification purpose.

The lower the NRMSE, the better the performance of the model. Then for each season, the 32 model groups are classified by increasing magnitude of NRMSE for each network data set. A same model group that minimizes the NRMSE for all data sets is considered as the best model.

Results

Model group selected

The following spatial and temporal models are finally selected.

∆T

(aut)

=0.0016K(P C ) + 6.3 1

U (P A ) + 3.0 +0.01T (P C ) -0.095exp( N (P B ) -6 6 ) -1.1 (16) ∆T (win) = 0.081exp(-U (p B ) + 3) -0.12N (P A ) +0.64 (17) ∆T (spr) =0.0011K(P C ) + 11.0 1 U (P A ) + 3.0 +0.033T (P D ) -0.12N (P A ) -2.3 (18) ∆T (sum) = -0.0083RH(P D ) -0.36U (P A ) -0.13T (P A ) +3.2 (19) ∆T (aut) =5.3x D f +0.15ln(d op + 1) -5.7x N DV I -5.5x D b -0.39 (20) 
∆T (win) = 2.0x Ds +0.12ln(d op + 1) -2.7x N DV I -4.0x D b -0.2 (21) 
∆T (spr) = 3.3x Dw -5.1x N DV I + 0.031 ( 22)

∆T (sum) = 12.0x Dw -4.5x N DV I + 0.23 (23) σ (aut) ∆T =3.2x D f +0.06ln(d op + 1) -2.7x N DV I -2.9x D b + 0.38 (24) σ (win) 
∆T = -3.0x D f +1.4x Ds +0.065ln(d op + 1) + 0.5 (25) σ (spr) ∆T = 1.7x Ds +0.12ln(d op + 1) -2.9x N DV I -3.4x D b + 0.41 (26) σ (sum) ∆T = -6.4x D f +3.0x Ds + 4.8x Dw +0.15ln(d op + 1) + 0.86 (27) 
In order to compare the weight of each explanatory variables ev used in a same equation, their regression coefficient rc ev is multiplied by an indicator of the explanative variable ev amplitude (amp ev -defined as the difference between the percentile 95 and the percentile 5 of the explanatory variable ev). The result is defined as the normalized regression coefficient RC ev :

RC ev = |rc ev amp ev | (28) 
In the case of temporal models, normalized regression coefficients are gathered in table 5. The period of calculation of the explanatory variable is also indicated as well as the tendency of the UHI evolution when the explanative variable increases.

In the case of spatial models, the calibration network (ID 1) is composed of only 10 stations and may not be representative of all the geographical contexts observed in the urban area. To overcome this issue, each explanatory variable is calculated according to the methodology described in section 3.4 for 200 points randomly chosen in the urban area territory. amp ev is then calculated from this new data set. For each explanatory variable, normalized regression coefficients (equation 28) and the tendency of the UHI evolution when the explanatory variable increases are finally gathered in tables 6 and 7. According to table 5, wind speed and nebulosity are the predominant variables for most of the seasons, which is consistent with previous literature results [START_REF] Svensson | A gis based empirical model to simulate air temperature variations in the goteborg urban area during the night[END_REF][START_REF] Kim | Maximum urban heat island intensity in seoul[END_REF][START_REF] Runnalls | Dynamics and controls of the near-surface heat island of vancouver, british columbia[END_REF][START_REF] Yan | Assessing the effects of landscape design parameters on intra-urban air temperature variability: The case of beijing, china[END_REF]. However, wind speed influence is negligible during winter-time whereas nebulosity is replaced by air temperature summer-time and its effect on UHI development is unexpectedly negative : higher rural air temperature, lower temperature differences within the urban area. Night-time values of nebulosity and wind speed contribute to UHI development whereas for other variables such as solar radiation or temperature, this is mainly day-time values which explain the UHI values.

Both ∆T and σ ∆T have almost the same set of variables explaining their variations (respectively table 6 andtable 7). ∆T being easier to physically understand, we analyze its equations. The contribution of each geographical variable is analyzed through the urban heat fluxes it is related to. Thus, D w and N DV I (related to latent heat flux) are the only variables to drive the UHI development both during spring and summer. During winter, D w and N DV I influence is much lower whereas D b and D s (related to anthropogenic heat flux) become predominant. During autumn, D w and N DV I (related to latent heat flux) and D f (related to radiative heat flux) may be identified from equation 20 but none is predominant (table 6). The indicator d os (related to advection heat flux) is used in winter and autumn equations but has the lowest influence within all variables.

Model performance analysis

The performances of the selected model group are presented table 8. When the NRMSE is lower than 1, we may consider that using the model estimation is more accurate than assuming that the whole urban area is at the same temperature as the reference station. Only the network 3 exceeds this threshold for winter, spring and summer condition. The low performances of the model is only due to some of the stations. Spring is the season for which we have both the highest number of observed days and the lowest model performances for almost all networks. In order to identify model limitations, a detailed analysis of the results obtained for each station of the networks used for verification purpose (networks 2, 3 and 4) is performed at this season.

For 64% of the Nantes (network 2) and Angers (network 3) stations, the temperature estimation is considered as accurate since the scatter is close to the line ∆T est = ∆T obs (an example is given figure 6 for the station N02). For all these stations, the root mean square error value (RM SE) is included in the range 0.36°C and 1.38°C and for each of them, the RM SE value is always lower than both the observed median ∆T and the observed median absolute ∆T deviation. For the other stations, the limited performances of the modeling may have three causes. The first is the lack of geographical variations representativeness of the network 1 (used for calibration purpose) when compared with the entire urban area. Figure 7 shows the distribution of N DV I values for both the stations used for calibration and for verification in the same city (respectively networks 1 and 2). Two stations of the verification network (N14 and N15) are characterized by large N DV I value (≥ 0.5) but none of the calibration network. This may explain why the model is inefficient to estimate the temperature observed for stations having a high N DV I value (figure 8). This problem is also observed for stations located near large water areas. Estimations are considered incorrect when D w ≥ 0.2.

Temporal models also show performance limitations when observed UHI is high. This is illustrated figure 9. When observed UHI is lower than 3°C, observed and estimated values are quite similar whereas when the observed UHI is included in a [3 -5]°C range, estimated UHI is always below 3.1°C.

Another source of uncertainty is the buffer size (500 m radius) chosen for geographical indicator calculation. If a station has a strong geographical heterogeneity within 500 m radius circle, geographical indicator values may differ a lot whether it is calculated in a 200 m radius circle or in a 500 m radius circle. If the source area which contributes to the measured temperature is actually closer to a 200 m than a 500 m radius circle, models may be erroneous. This is the case for the network 4 reference station (M F lry ) regarding the N DV I value that increases when the buffer size decreases (figure 10). If the 200 m radius buffer size is used for the calculation of the geographical indicators at the reference station, the estimation of the UHI for all network 4 stations is 

Model application

The model group showed good performances when applied to the territory where it has been calibrated (Nantes conurbation). It is used here to map the UHI distribution in the city of Nantes under a calm summer night (2013, June 13th). Temporal model is applied according to equation 19 and the associated meteorological conditions observed during this day (mean air temperature for the few first hours of the night (p A ) is 8.7 °C, mean wind speed is 0.93 m/s, and mean relative humidity during the last quarter of the day (p D ) is 83 %). Spatial models (equations 23 and 27) are applied for a set of 855 points regularly distributed every 300 m within the city of Nantes. The reference station used for calculation is the same that the one used for the calibration step (M F nse). Regarding the previous highlighted limitations of the spatial model, points where the water density is higher than 0.2 or the NDVI higher than 0.5 are excluded. UHI values are then linearly interpolated according to a Delaunay triangulation method (figure 12). As expected, zones having a high NDVI value (but lower than 0.5) such as parks have almost the same temperature as the rural reference (less than 1°C higher). The city center, consisting in mineral surfaces and tall buildings is much warmer (more than 2.5°C higher than the reference station). Two areas, although they are located outside the city core, are also warm. On the south west, the neighborhood is an industrial zone without vegetation. On the north east, the corresponding warm area is a combination of industrial and commercial buildings, also composed of a majority of mineral surfaces.

Conclusion and discussion

Four main contributions to UHI empirical modeling have been proposed.

• First, we have identified a night-time period of UHI modeling that maximizes the spatial dispersion of air temperature and minimizes the spatial distribution of the cooling rate. The beginning and the end of this period (p U HI = [1.4, 1.8]) are defined as a ratio of the night-time duration, and thus varies seasonally in the local time system.

• Second, UHI value may be estimated for any night and any location in a city according to a normalization method which consists in separating temporal from spatial variations. UHI temporal variations then have been modeled according to meteorological conditions observed during the day of interest whereas spatial variations have been modeled according to the geographical context of the area of interest.

• Third, the period when a meteorological variable impacts the night-time UHI has been investigated for each meteorological variable. Wind speed and nebulosity are the predominant meteorological variables in the temporal models. Their night-time low value are responsible for the night-time urban heat island development.

• Finally, the geographical indicators proposed to explain the UHI spatial variations are related to one or several heat fluxes, which makes them easy to interpret. The NDVI, which is related to latent heat flux, is predominant during spring and summer season. Indicators such as building density D b or surface density D s , related to the anthropogenic heat flux, are predominant during winter time and affect only the variability of the UHI (σ ∆T ) during the rest of the year.

The model group (composed of temporal and spatial models) was calibrated and then applied to other cities to verify its ability to extrapolation. Good results were found for most of the verification stations located in the conurbations of Nantes and Angers. For the city of Nantes, UHI map has been produced, showing the good potential of such a work : the air temperature may be estimated for any day and any location in those cities according to basic geographical informations and meteorological conditions observed near or inside the urban area. This map may be combined to other spatial informations to help decision making : for example data regarding at-risk population may be cross-used in order to elaborate a strategy to protect vulnerable people during heat-waves. Furthermore, the calculation is fast and easy to implement which makes the method usable to take into account urban heat island phenomenon in dynamic thermal simulation for urban buildings. An interesting aspect of this work is that both meteorological and geographical data used to explain respectively temporal and spatial temperature variations are homogeneous and available for the entire French territory. The method proposed here can then be applied for any French city. However, it would be interesting to identify similar data which are available at world scale.

Improvements may be performed to better estimate urban heat island temporal and spatial variations. Three main limitations have been highlighted : first, they are not appropriate to estimate the temperature in areas characterized by large fraction of vegetation or water. Calibration should be performed with new set of data more representative of the geographical context diversity of a city. Second, the temporal model is not accurate to estimate high UHI values whereas it is fundamental to have an accurate estimation of those specific values since they usually correspond to heat-wave periods, that are important regarding health issues. Weighting regressions could be applied to better estimate high UHI values, which will however imply lower accuracy regarding lower UHI values. Third, buffer size for geographical indicator calculation has been set according to values proposed in the literature but seems inapropriate in certain cases (e.g. LRY reference station). A detailed analysis must be performed to identify a more suitable buffer size. Finally, the model group which will be produced after all these modifications should be tested on several other French cities in order to verify its extrapolation performances. If the results show a dependancy between the accuracy of the estimation and the size of the city, further investigation would be needed to take into account this factor (such as weighting the spatial model equations by any indicator of urban size). Investigation should also be carried out to integrate the sea breeze influence on UHI intensity in case it is a predominant factor explaining the temporal model bias. A final improvement would be to replace the existing geographical data sources by world-wide databases in order to make the model usable for any city in the world. also be investigated in order to generalize the method to any city in the world.
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 1 Figure 1: Location of the measurement stations of the conurbation of Nantes (a), Angers (b) and LRY (c)

Figure 2 :

 2 Figure 2: Mean night-time temperature dispersion (a) and mean nigh-time cooling rate dispersion (b) for each season represented along a normalized time axis

  1. Day-time and night-time meteorological data are temporally normalized; 2. Each meteorological variable is averaged during two day-time periods (p C = [0.7 -1] and p D = [0 -1]) and two night-time periods (p A = [1.4 -1.8] and p B = [1 -1.4]); 3. Several algebraic functions

  Multiple regression choice between 6 ! combinations of explanative variablesf Kfin (K ( p fin )) Idem f Ufin (U ( p fin )) f Tfin (T ( p fin )) f RHfin ( RH ( p fin )) f Nfin ( N ( p fin )) Identification of the period p fin and the function f Kfin which maximizes the intensity R² of the relationship between and ΔT K ( p D ) ( p fin ) , U ( p fin ) , T ( p fin ) , RH ( p fin ) , N ( p fin ) ) K 1 ( K ( p D )) ΔT = f K 2 ( K ( p D ))

Figure 3 :Figure 4 :

 34 Figure 3: Test procedure to identify the relationship between UHI intensity and meteorological conditions
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 5 Figure 5: General methodology and variants (dash arrows) used to model spatial and temporal UHI variations
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 6 Figure 6: Estimated ∆T values versus observed ∆T values for station N02 -network 2
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 78 Figure 7: NDVI distribution of the network 1 stations (calibration purpose) and the network 2 stations (verification purpose)
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 910 Figure 9: Estimated ∆T values versus observed ∆T values for station N 05 -network 2

Figure 11 :Figure 12 :

 1112 Figure 11: Estimated ∆T values versus observed ∆T values for each station of network 4 for geographical indicator calculated in a buffer circle of 200 m radius and 500 m radius for the reference station

Table 1 : Description of the data sets utilized for model calibration and model verification purpose (Source : Bernard (2017))

 1 

	ID City	Model purpose stations number Measurement period	Availability of measurement per season (days)* winter spring summer autumn
	1	Nantes	Calibration	9	2010-2015 (4 years)	141	208	127	116
	2	Nantes	Verification	8	2015 (1 year)	0	81	39	0
	3	Angers	Verification	6	2015 (1 year)	5	92	90	78
	4	LRY	Verification	5	2015 (1 year)	3	92	92	72
	* A day is considered as available only if all network stations have no missing data.			

Table 2 :

 2 Experimental conditions for each network

	Network ID	Measurement	Measurement dis-	Natural	ventilation
		height	from	tance from a facade	shield used (shape and
		the ground		volume)
	1	2 -5 m		≥ 0.3 m	cylinder -0.1

Table 3 :

 3 Geographical data description

					Acquisition	
	Name	Provider	Type	City characteriza-tion	date version	or	Attributes
					name		
			Vector	Urban morphology			Building footprint
	BD Topo	IGN	(topo-graphical	and urban land type (exclusively	Version 2011		building height water surface foot-
			database)	water surfaces)			print
					2011-05-23	Reflectance	for
	Rapideye image	Equipex Geosud	Raster (5 m resolu-tion)	Urban land type	or 2011-05-21 at noon depending	5 spectral band (blue, green, red, red-edge, near
					on the city	infrared)

Table 4 :

 4 Description of the geographical indicators used to characterize the UHI spatial variations

					Basic	indicators	
	Heat flux	Indicator symbol Ig	Indicator name	Geographical data used	or used for indicator informations calculation	Formula	Relationship heat flux and geographi-between cal indicator
								Net short wave (Bernabé
					A0 : Area of the 500		et al., 2015) and long
	Q *	D f	Facade den-sity	BDTopo®	m radius circle A f : total facade	A f A 0 +A f	wave radiations are cor-related to the sky view
					area contained in A0		factor which is directly
								linked to facade density
					A0 : Area of the 500	
	Q F	D b	Building density	BDTopo®	m radius circle A b : total roof area	A b A 0
					contained in A0	

modelisation Air temperature data for stations i, day d and time t Temperature differences are calculated during the period PUHI Normalization of the temporal variations

  Each circle part is considered as a proper station and has its proper temperature data, multiplying artificially the number of stations by 6. 2. Seasonal sorting : depending on the season, geographical indicators (related to heat fluxes) may have a different weighting contribution to ∆T i and σ ∆Ti values (equations 13 and 14). Meteorological measurement are then splitted by season according to World Meteorological Organization (WMO) definition for the North hemisphere. One model group is then proposed for each season. 3. Most sensible station use : for certain stations which have a geographicalcontext close to the one of the reference station, ∆T is low and does not fluctuate much when meteorological conditions change. In this case, their temporal variations are not well explained by meteorological conditions because measurement uncertainty becomes predominant. To overpass this potential lack of accuracy, only the three stations having the highest temporal variability (standard deviation σ ∆T ) are used for the temporal model calibration.4. Robust normalization : in order to separate temporal from spatial components, ∆T i,d has been normalized using mean and standard deviation values (equation5). Yet, these indicators are very sensitive to outlier values. Then they are respectively replaced by median and median absolute deviation (MAD) which are robust indicators to outlier values. 5. Robust regression : multiple linear regressions used to establish temporal and spatial models are calibrated according to least square method, which is again very sensitive to outlier data points. The Huber M-estimator, robust to outliers is then used for regression.

	T i ,d (t )	
	ΔT i , d	
	ΔT i ,d =α i	ΔT i , d -ΔT i σ ΔT i
			ΔT i ,
	Spatial Data gathering (all stations i)	σ ΔT i
		ΔT

i =G( I g ) , σ ΔTi = H ( I

g ) 2 5 temporal models 2 4 spatial models

  

		1. Wind direction filtering
		(yes / no)
		2. Seasonal sorting
		(yes / no)
	3. Robust Normalization	
	(yes / no)	
		4. Only three stations
		are gathered
		(yes / no)
	Temporal modelisation	5. Robust regression
		(yes / no)

Table 5 :

 5 Normalized regression coefficients (equation 28 with notation A = RC), period of calculation and U HI direction of change for each meteorological condition variable of ∆T models

	Season	A K value period	direction of	A RH value period direction of	A U value period	direction of	A T value period	direction of	A N value period	direction of
			pp	change		pp	change		pp	change		pp	change		pp	change
	Autumn 0.54	P C	ր	-	-	-	0.73	P A	ց	0.22	P C	ր	0.93	P B	ց
	Winter	-	-	-	-	-	-	0.01	P B	ց	-	-	-	0.93	P A	ց
	Spring	0.34	P C	ր	-	-	-	1.43	P A	ց	0.42	P D	ր	0.95	P A	ց
	Summer -	-	-	0.33	P D	ց	1.29	P A	ց	1.23	P A	ց	-	-	-

Table 6 :

 6 Normalized regression coefficients (equation 28 with notation B = RC), period of calculation and U HI direction of change for each geographical variable of ∆T models

	Season	B D f value direction of	B Ds value direction of	B Dw value direction of	B dop value direction of	B N DV I value direction of	B D b value direction of
			change		change		change		change		change		change
	Autumn 1.51	ր	-	-	-	-	0.86	ր	2.23	ց	2.43	ց
	Winter	-	-	0.79	ր	-	-	0.72	ր	1.06	ց	1.75	ց
	Spring	-	-	-	-	1.20	ր	-	-	2.00	ց	-	-
	Summer -	-	-	-	4.17	ր	-	-	1.77	ց	-	-

Table 7 :

 7 Normalized regression coefficients (equation 28 with notation C = RC), period of calculation and U HI direction of change for each geographical variable of σ ∆T models

	Season	C D f value direction of	C Ds value direction of	C Dw value direction of	C dop value direction of	C N DV I value direction of	C D b value direction of
			change		change		change		change		change		change
	Autumn 0.91	ր	-	-	-	-	0.35	ր	1.07	ց	1.30	ց
	Winter	0.86	ց	0.55	ր	-	-	0.38	ր	-	-		
	Spring	-	-	0.66	ր	-	-	0.70	ր	1.13	ց	1.50	ց
	Summer 1.83	ց	1.21	ր	1.72	ր	0.90	ր	-	-		

Table 8 :

 8 NRMSE values of the final model for each season and each network

	Season	Network 1	Network 2	Network 3	Network 4
	Autumn	0.58	-	1.4	0.71
	Winter	0.81	-	1.4	0.87
	Spring	0.42	0.53	1.4	0.87
	Summer	0.46	0.54	1.2	0.76

MF b (Nantes): https://donneespubliques.meteofrance.fr/metadonnees_publiques/ fiches/fiche_44020001.pdf accessed in July

2 MF nse (Nantes): https://donneespubliques.meteofrance.fr/metadonnees_ publiques/fiches/fiche_44110002.pdf accessed in July 2017 3 MF a (Angers) : https://donneespubliques.meteofrance.fr/metadonnees_publiques/ fiches/fiche_49020001.pdf accessed in July 2017 4 MF lry (La Roche-sur-Yon) : https://donneespubliques.meteofrance.fr/metadonnees_ publiques/fiches/fiche_85191003.pdf accessed in July 2017 5 https://www.theia-land.fr/en/projects/geosud
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