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Abstract

Urban air temperature varies along time and space. This contribution proposes
a methodology to model these variations from empirical models. Four air tem-
perature networks are implemented in three west France cities. The period
[1.4 - 1.8] of a normalized night is investigated. Three empirical models are
established, in order to predict temporal and spatial air temperature variation.
They are gathered under the name of model group. Urban heat island (UHI)
intensity is explained according to one temporal model using meteorological
variables. Temperature spatial variations are explained from two models using
geographical informations averaged in a 500 m radius buffer circle. The first one
represents the mean UHI value for a given location, the second the variability
of the UHI around its mean value. 32 model groups are calibrated from data
sampled by one network. The accuracy of their estimations is tested comparing
estimated to observed values from the three other networks. The most accurate
model is identified and its performances are analyzed. Night-time UHI intensity
variations are explained all along the year by wind speed and nebulosity values
calculated after sunset. During spring and summer season UHI variations are
mainly driven by Normalized Difference Vegetation Index (NDVI) value whereas
building density or surface density are predominant explicative variables during
colder seasons. The model is finally applied to the city of Nantes during a sum-
mer night to illustrate the interest of this work to urban planning applications.
Several warm areas located outside the city center are identified according to
this method. Their high UHI value is mainly caused by their low NDVI value.
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1. Introduction

Air temperature is higher in urban areas than in their surrounding (Oke,
1987). This phenomenon, called Urban Heat Island (UHI), may become a seri-
ous issue in the next decades due to global warming. According to the Intergov-
ernmental Panel on Climate Change (IPCC) results, one of the consequences of
climate change is an increase of heat waves intensity and frequency (Revel et al.,
2012). The combination of UHI and climate change will impact urban comfort
(Clarke and Bach, 1971), human and fauna heat stress (Lowe, 2016; Clarke,
1972), building cooling demand (Malys et al., 2012), vegetation behavior such
as flowering phenology (Neil and Wu, 2006), etc.

However, urban heat island causes are known and may be classified in three
categories :

• urban morphology causes : high facade density leads to short and long
wave radiation trapping in the canopy (Bernabé et al., 2015), and high
roughness is also responsible for wind speed reduction, preventing heat
evacuation (Britter and Hanna, 2003).

• urban surfaces causes : high fraction of impervious soils reduces water
storage, thus being unable to cool by evapotranspiration as vegetated soils
do (Asaeda and Ca, 1993). Moreover, low building materials albedo (e.g.
asphalt) increases the absorption of solar radiation which contributes to
ground and air overheating (Santamouris, 2014).

• human activity causes : antropogenic heat sources (road traffic and build-
ings) are higher in cities than in rural areas (Sailor, 2011; de Munck et al.,
2013).

Urban climate is not the only issue that decision makers have to deal with
during both the design process of new neighborhoods and the definition of an
urban planning strategy. They also have to take into account many other is-
sues such as public transportation, education and health access, water, waste
and energy management, functional and social mixity etc. For urban designing
(construction or renovation), the choice of the urban form, of the soil type, and
of the function of each building may affect each of the authority of the decision
makers. To make a decision, there is a need of simple indicators to evaluate the
impact of a new urban project on each of them. The objective of this article
is to propose indicators dedicated to the urban climate field. Indeed, as cities
become denser, there is a need to know which neighborhoods are the warmest
and to evaluate the potential impact of a new urban project on air temperature.

Tools developed to tackle this issue may use either knowledge based model
or empirical model. Knowledge based modeling consists in splitting the en-
tire city into several volumes and to apply on each of them an energy balance
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(Grimmond et al., 2009). One of the major shortcomings of these models is the
complexity of both the method (numerical simulation) and the physical concept
(fluid dynamics, radiation, convection and conduction principles) used. Em-
pirical models are constructed from field observation where measurements are
explained from the geographical context. For example, Tokyo urban climate was
investigated measuring the mean night-time air temperature of 11 locations dur-
ing 30 days (Yokobori and Ohta, 2009). The vegetation density of each site was
calculated to explain the temperature spatial differences. Finally, the empirical
model they proposed consists in a linear relationship between air temperature
and vegetation density. This method has several shortcomings. We identified
the four that we consider of major importance :

1. Relevant period of interest : within a day, air temperature is rarely ho-
mogeneous at city scale. Heterogeneity, defined as the standard deviation
of all measurement at a given time, is maximum at certain periods of the
day. However, the literature is conflicting concerning the best period to
calculate air temperature differences between each part of the city and a
reference station, and the choice of a period rather than another is rarely
justified. Yan et al. (2014) compared the air temperature at 11 p.m., Oke
(1976) averaged the values between one and three hours after sunset, Pe-
tralli et al. (2014) calculated the differences when air temperature was
maximum, and Krüger and Givoni (2007) averaged the differences during
the whole day.

2. Cross modeling of spatial and temporal variations : within an urban area,
air temperature heterogeneity may be explained by the heterogeneity of
geographical contexts (morphology, surface types, human activities). Em-
pirical models such as the one used by Yokobori and Ohta (2009) have
been proposed to model the spatial variations of the mean air tempera-
ture from geographical indicators. This air temperature heterogeneity may
be exacerbated by the meteorological conditions. It is higher under clear
(few clouds) and calm (low wind speed) conditions than under cloudy and
windy conditions (Svensson et al., 2002). Empirical models have been pro-
posed to model the temporal variations of the air temperature difference
between a given point of the city and a reference station from meteorolog-
ical indicators (Svensson et al., 2002; Krüger and Givoni, 2007). However,
these relationships are only valid for the given point and thus cannot be
used to estimate the temperature of an other site. There is a need to
establish an overall relationship to link spatial and temporal temperature
variations to both geographical and meteorological variations.

3. Temporal variations modeling : while some meteorological variables have
an immediate impact on air temperature, some others can be delayed due
to inertial effects. For example, solar radiation occurs during the daytime
but still has an impact on night-time temperature differences. The re-
lationships between observed temperature differences and their potential
causes (wind speed, solar radiation, etc) must not be studied synchroni-
cally. However, few studies have investigated this point : most of the time,
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the average meteorological condition (the causes) and the average temper-
ature differences (the consequences) are calculated at the same time.

4. Spatial variations modeling : air temperature differences are due to energy
flux differences occuring within the city. The value recorded for each flux
is strongly correlated to the geographical context of the site of interest
(for example, the amount of vegetation impacts latent heat flux value).
However, indicators are rarely linked to an energy flux occurring within
an urban volume. Establishing a clear link between a heat flux and a
geographical indicator used in an empirical model would allow a more
physical analyze of the model equation.

Our main goal is to propose a new methodology based on measurement
analysis to estimate the spatial and temporal variations of the air tempera-
ture within an urban area, providing improvements to overcome the four main
shortcomings identified in the previous models. This methodology distinguishes
spatial variations which are calibrated according to geographical indicators from
temporal variations which are calibrated according to meteorological conditions.
The model relies on four air temperature measurement networks, which are pre-
sented in section 2. One of them is used for model calibration whereas the three
others are used for model verification. Meteorological and geographical data,
respectively responsible for temporal and spatial variations of the UHI, are also
presented section 2. Section 3 is dedicated to the methodology description (i.e.
model calibration). The three first subsections consist in the general method
description. We propose solutions to solve each of the four issues described
above. Two spatial and one temporal models are then obtained. They are gath-
ered under the name of model group. In the last subsection, five variations of
this general methodology are proposed, leading to the obtention of 32 model
groups (32 temporal models and 16 spatial models). A method to choose the
most performing model group is also proposed. The section 4 is dedicated to
the analysis of this model group and its performances by comparing estimated
and observed temperature values.

2. Materials

2.1. Study areas

The study areas are three west France conurbations : Nantes, Angers and
La Roche-sur-Yon. According to a census performed in 2012, they have respec-
tively 606’640, 218’657 and 52’808 inhabitants. They are located in a temperate
climatic zone with a warm summer but without dry season (Cfb climatic zone
according to Köppen climate classification - (Peel et al., 2007)). They are all
further than 20 km away from any major climatic disturbing elements such as
oceans or mountains. Although sea breezes may affect rural air temperature
much beyond 20 km from the coast (Hu and Xue, 2016), the temperature field
during night-time (where the UHI intensity is the highest) is dominated by the
influence of the urban land-use (Pigeon et al., 2006). Because our contribution
consists in setting the foundation of a method to solve the issues mentionned in
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section 1, we make the choice not taking into account the potential sea breeze
influence for this preliminary work.

2.2. Meteorological data

Meteorological data are splitted in two categories :

• urban air temperature networks : they are used to observe temperature
heteogeneity within each urban area;

• reference stations for meteorological data : they are used to quantify re-
gional meteorological conditions and also as references for air temperature
differences between the city measurements and the surrounding rural ar-
eas.

2.2.1. Urban air temperature networks

Four measurement networks are implemented within our three study areas
and are presented figure 1 : two are located in Nantes, one in Angers and one
in La Roche-sur-Yon (LRY).

One of the two Nantes networks is used for calibration step, whereas the three
other networks are used for verification purpose. The quantity of available data
for each network is given in table 1. A day is considered as available only if all
network stations have no missing data. The network chosen for calibration is the
one having the highest number of measurement stations as well as the highest
number of measurement days per season. All measurement stations sample
a temperature value every 15 minutes using positive temperature coefficient
(PTC) thermistor. Those sensors have an accuracy lower than 0.3 K and they
are renowned for their negligible temperature time-drift. For this reason, they
are supposed to be calibrated all along the experiment.

Table 1: Description of the data sets utilized for model calibration and model verification
purpose (Source : Bernard (2017))

ID City Model purpose stations number Measurement period
Availability of measurement per season (days)*
winter spring summer autumn

1 Nantes Calibration 9 2010-2015 (4 years) 141 208 127 116
2 Nantes Verification 8 2015 (1 year) 0 81 39 0
3 Angers Verification 6 2015 (1 year) 5 92 90 78
4 LRY Verification 5 2015 (1 year) 3 92 92 72

* A day is considered as available only if all network stations have no missing data.

Experimental conditions are given in table 2. Calibration network (ID 1)
conditions differ from the verification network ones (ID 2, 3 and 4). The
measurement distance from the ground is acceptable for both verification and
calibration networks since temperature gradient is negligible within the urban
canopy above 2 m (Armstrong, 1974; Nakamura and Oke, 1988; Taesler, 1980).
However, the radiation shield used for the calibration network is very sensitive
to solar radiation whereas the one used for verification is almost not sensitive
when used under high solar radiation intensity (Lacombe et al., 2011; Lacombe,
2010). Moreover, the location of a measurement station at less than 1 m from
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Figure 1: Location of the measurement stations of the conurbation of Nantes (a), Angers (b)
and LRY (c)
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Table 2: Experimental conditions for each network

Network ID Measurement
height from
the ground

Measurement dis-
tance from a facade

Natural ventilation
shield used (shape and
volume)

1 2 - 5 m ≥ 0.3 m cylinder - 0.1 dm3
2, 3 and 4 3 m ≥ 1 m cuboid - 1 dm3

a vertical surface may lead to considerable errors during day-time (Oke, 2004).
For those reasons and also because temperature differences are often lower dur-
ing day-time than during night-time, only night-time temperature differences
will be investigated in this study.

2.2.2. Reference stations for meteorological data

Because the empirical models developed in this study must be applied to
any other french city, data used both to characterize meteorological conditions
and as temperature reference must be standardized. Meteo-France stations are
chosen for three reasons :

• they respect measurement recommendations of the World Meteorological
Organization (local vegetation height lower than 10 cm, no heat source or
water surfaces in a 100 m radius circle, etc.),

• they are located in each of the major urban areas of France,

• they have long-term records that cover our measurement period (2010 to
2016).

The UHI empirical model is calibrated with Nantes data and should be
applied to the other cities. Thus, we need to use a temperature reference for
each city. Meteo-France temperature data, which are sampled every 60 minutes,
is linearly interpolated every 15 minutes in order to have a sampling frequency
identical to the one of all the other stations used for calibration or verification
purpose.

Meteo-France stations are also used to characterize the meteorological con-
ditions. Six physical quantities, measured every hour, are utilized for this work :
temperature and relative humidity (1.5 m height), wind speed and direction (10
to 11 m height), solar radiation and nebulosity. The sampling method utilized
for the measurement differs from one physical quantity to another. Wind speed
and direction as well as nebulosity are averaged during the last ten minutes
of each hour. Air temperature and relative humidity are sampled every hour.
Each solar radiation measurement is the average value of the previous hour.
Two Météo-France stations are used for the urban area of Nantes : nebulosity is
measured at the station called MF b whereas the five other physical quantities
are measured at the station called MF nse (figure 1a). For the Angers and La
Roche-sur-Yon stations, nebulosity is rarely measured during night-time, thus
night-time values are estimated using linear interpolation from day-time val-
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ues. More informations concerning each reference station may be found on the
Météo-France web site 1 2 3 4.

2.3. Geographical data

Because the empirical models developed in this study must be applied to
any other french city, data used to characterize the geographical context of
each measurement station must be standardized. Those data are presented
table 3. The BDTopo®(version 2011), produced by the french IGN (National
geographical and forest institute), is a vector-based database. It is used to
quantify urban morphology (building footprint and building height are given)
as well as urban land cover (at least water surfaces). To characterize urban land
cover further in detail, RapideEye images are have been acquired at noon on
May, 23rd 2011 in Nantes, on May 21st 2011 in LRY and on May, 23rd in Angers.
They have been provided by the Equipex Geosud project5. Orthorectification
had been performed by the IGN (according to Benosa (2014)). They have a 5 m
horizontal resolution and they are composed of five spectral-bands (blue, green,
red, red-edge, near infrared).

Table 3: Geographical data description

Name Provider Type
City characteriza-
tion

Acquisition
date or
version
name

Attributes

BD
Topo

IGN

Vector
(topo-
graphical
database)

Urban morphology
and urban land
type (exclusively
water surfaces)

Version
2011

Building footprint
building height
water surface foot-
print

Rapideye
image

Equipex
Geosud

Raster (5
m resolu-
tion)

Urban land type

2011-05-23
or 2011-05-
21 at noon
depending
on the city

Reflectance for
5 spectral band
(blue, green, red,
red-edge, near
infrared)

3. Methods

The methodology is only applied for the calibration network. In order to have
both an equal day-time and night-time duration all along a year, they have to
be transformed in a dimensionless time variable. Each day and each night are
divided by their duration. Each day starts at 0 and ends at 1, each night starts at

1MF b (Nantes): https://donneespubliques.meteofrance.fr/metadonnees_publiques/

fiches/fiche_44020001.pdf accessed in July 2017
2MF nse (Nantes): https://donneespubliques.meteofrance.fr/metadonnees_

publiques/fiches/fiche_44110002.pdf accessed in July 2017
3MF a (Angers) : https://donneespubliques.meteofrance.fr/metadonnees_publiques/

fiches/fiche_49020001.pdf accessed in July 2017
4MF lry (La Roche-sur-Yon) : https://donneespubliques.meteofrance.fr/metadonnees_

publiques/fiches/fiche_85191003.pdf accessed in July 2017
5https://www.theia-land.fr/en/projects/geosud
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1 and ends at 2. The aim of this study is to model the air temperature differences
within the urban area from geographical and meteorological conditions.

3.1. Identification of an air temperature calculation period

Temperature varies temporally and spatially during night-time. The tem-
perature of the urban area is often quite homogeneous at the sunset and strongly
heterogeneous few hours after sunset. We define temperature spatial dispersion
as the standard deviation of the temperature between all measurement stations.
We are interested in heterogeneous situations, i.e. when the UHI phenomenon is
maximum, highlighting high temperature differences between all parts of a city.
Then interesting time-periods to investigate are the ones characterized by high
and steady temperature spatial dispersion. Those periods are identified using
four steps. First, for each time step t of each day d, air temperature dispersion
σTd

(t) is calculated as the standard deviation of the temperature between all
measurement stations.

σTd
(t) =

√√√√∑
i

(Ti,d − Td)2

ni − 1
(1)

where ni the number of stations, Td =

∑
i
Ti,d

ni
the urban average temperature at

the sample t.
Second, for each day, day-time and night-time are scaled by their length

according to Runnalls and Oke (2000). Third, the evolution of the night-time
dispersion is averaged for each season S (figure 2a) :

σTS
(t) =

∑
d∈S

Td(t)

nd,S
(2)

where nd,S the number of days used during season S.

These first three steps are applied to temperature time-derivative (Ṫ ) in
order to investigate the stability of the temperature spatial dispersion (figure
2b). The last step consists in the period identification, characterized by high
standard deviation of the temperature (high temperature spatial dispersion)
and low standard deviation of the temperature derivative (stable temperature
spatial dispersion). This period (pUHI), corresponding to the time interval [1.4
- 1.8], is identified on figure 2.
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Figure 2: Mean night-time temperature dispersion (a) and mean nigh-time cooling rate dis-
persion (b) for each season represented along a normalized time axis

3.2. Cross modeling of spatial and temporal variations

Temperature difference ∆Ti,d between each station i and the reference sta-
tion ref is calculated. First, temperature is averaged during the period pUHI

for each day d :

Ti,d =

∑
t∈pUHI

Ti,d(t)

nt∈pUHI

(3)

where nt∈pUHI
is the number of samples in period pUHI .

Then temperature difference between each station i and the reference station
ref is calculated for each day d :

∆Ti,d = Ti,d − Tref,d (4)

For a given measurement station i, ∆Ti,d value varies between days. Those
variations may be explained by statistical models using meteorological condi-
tions (wind speed, solar radiations, etc.) as explanative variables. The problem
is that the average and the standard deviation of the variations may differ a
lot depending on the station analysed. In this condition, one model can not be
used to explain the temporal variation for any location of the city. To overcome
this issue, temporal variations are normalized (∆̃Td) according to equation 5 :

∆̃Td = αi
∆Ti,d −∆Ti

σ∆Ti

(5)
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where ∆Ti =

∑
d

∆Ti,d

nd
is the average temperature difference for station i, nd is

the number of days, σ∆Ti
=

√∑
d

(∆Ti,d−∆Ti)2

nd−1 is the standard deviation of its

temporal variations, αi is a coefficient equal to 1 if ∆Ti,d ≥ 0 and equal to -1 if
∆Ti,d < 0.

This normalization allows to decompose ∆Ti,d into spatial and temporal
indicators:

• temporal variations are represented by ∆̃Td and will be modeled according
to meteorological variable Vm :

∆̃Td = F (Vm) (6)

• spatial variations are represented by both ∆Ti and σ∆Ti
and will be mod-

eled according to geographical indicators (Ig), representing the geograph-
ical context of each measurement station :

∆Ti = G(Ig) (7)

σ∆Ti
= H(Ig) (8)

The two spatial models (equations 7 and 8) as well as the temporal model
(equation 6) which are finally obtained are gathered under the name of model
group and may be used to calculate ∆Ti,d for any urban areas :

∆Ti,d =
σ∆Ti

∆̃Td
αi

+ ∆Ti (9)

For reading clarity concern, indices d and i will be dropped for ∆Ti,d, σ∆Ti
,

∆̃Td and ∆Ti in the following sections.

3.3. Temporal variations modeling

In order to build the ∆̃T model, the following meteorological variables are
used : solar radiation (K), wind speed (U), air temperature (T), relative humid-
ity (RH) and nebulosity (N). Three main issues are associated to this objective
:

• To which meteorological variables is ∆̃T sensitive ?

• During which part of the day (period pp) have these variables the greatest

influence on ∆̃T ?

• What kind of function fm relate ∆̃T to each variable Vm(pp) ?

To answer these questions, several multiple linear regressions using meteo-
rological variables are tested to explain ∆̃T variations (equation 10).

∆̃T = a0 +
∑
m

am.fm(Vm(pp)) (10)
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where a0 is the regression intercept, am is the regression coefficient associated
to the explanatory variable fm(Vm).

The test procedure is composed of five steps presented in figure 3.

1. Day-time and night-time meteorological data are temporally normalized;

2. Each meteorological variable is averaged during two day-time periods
(pC = [0.7 − 1] and pD = [0 − 1]) and two night-time periods (pA =
[1.4− 1.8] and pB = [1− 1.4]);

3. Several algebraic functions (exponential, inverse, linear, logarithmic, quadratic)

are tested to linearize the relationship between ∆̃T and each combination
of meteorological variable / period pp. Then simple linear regressions are
performed.

4. For each meteorological variable, the function fmfin
and the period pfin

that maximise the simple linear regressions determination coefficient (R²)
are selected for each meteorological variable Vm;

5. Finally, multiple linear regressions are calculated for all combinations of
explanatory variables fmfin

(Vm(pmfin
). A combination is excluded when

any of its regression coefficients is unsignificant (p > 0.05). The combina-
tion that maximizes the AICc criteria (equation 11) is finally chosen.

AICc = −2ln(max(fL)) + 2nbxn
+

2nbxn(nbxn + 1)

nbech − nbxn
− 1

(11)

where AICc is the corrected Akaike information criterion, max(fL) is the like-
lihood function maximum, nbxn is the explanatory variables number, nbech is
the sample size used for regression (here the number of days nd).

3.4. Spatial variation modeling

Two models are built to explain the spatial distribution of the UHI. The first
is used to model UHI mean value (∆T - equation 7) and the second the UHI
standard deviation value (σ∆T - equation 8). They are estimated from linear
regressions using geographical indicators as explanative variables, calculated
according to the procedure described figure 4. In order to use geographical
indicators that could explain the UHI phenomenon, we associate each heat flux
involved in the energy budget of an urban volume to one or several geographical
indicators. Those indicators are calculated thanks to the OrbisGIS platform
(Bocher and Petit, 2013) from the formulae presented in table 4 and according
to the data processing illustrated figure 4.

The energy budget of an urban volume is :

Q∗ +QF = QH +QE + ∆QA + ∆QS (12)

where Q∗ is the net all-wave radiation flux density, QF the anthropogenic heat
flux density due to combustion, QH the turbulent sensible heat flux density, QE

the turbulent latent heat flux density, ∆QA the horizontal energy transport in
the air per unit horizontal area and ∆QS the sub-surface heat flux density.
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Figure 4: Geographical database process for geographical indicator calculation

According to Maby (2003) definition, geographical indicators may be divided
into thematic and spatial indicators. The thematic indicators are constructed
averaging a geographical information within a 500 m radius buffer circle centered
on a measurement station - the value of 500 m is arbitrarily chosen as the
median value taken from a literature review (Krüger and Givoni, 2007; Yan et al.,
2014; Gal et al., 2009; Yokobori and Ohta, 2009; Steeneveld et al., 2014; László
and Szegedi, 2012; Fenner et al., 2014; Erell and Williamson, 2007; Petralli
et al., 2014; Chen et al., 2012; Balázs et al., 2009; Hjort and Marmion, 2008;
Hart and Sailor, 2009; Suomi et al., 2012). The spatial indicators measure a
distance separating a measurement station from a specific object. In this study,
these geographic features are the open spaces, defined from urban morphology
informations according to a fractal approach using the software MorphoLim
(Tannier et al., 2011).
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All linear combinations of these 6 indicators are tested to explain the vari-
ables ∆Ti and σ∆Ti using multiple regression relationships (equations 13 and
14).

∆T = b0 +
∑
g

bg.xg (13)

σ∆T = c0 +
∑
g

cg.xg (14)

where b0 and c0 are the regression intercepts, bg and cg are the regression co-
efficients associated to the explanative variable xg, xg = Igi − Igref is the geo-
graphical indicator Ig difference between the site i and the site ref .

The step 5 of the procedure used for temporal model choice (section 3.3) is
applied again in order to identify the relationship that best explains each of the
variables (nech = ni the number of stations used).

3.5. Variants to the general methodology

At the end of the general methodology application, one model group is ob-
tained (figure 5). The performance of this model has to be assessed. However,
in order to test the performances of more models, five variants to the general
methodology are proposed. They are illustrated in figure 5 by dash arrows :

1. Wind direction sorting : the source area which contributes to the value
measured by the temperature sensor strongly depends on the wind di-
rection (Oke, 2004). In order to consider this “footprint” phenomenon,
meteorological data and the buffer circle used for the thematic indicator
calculation are divided into six parts. Each of them correspond to the
source area of the temperature sensor when the wind blows from a certain
range of direction. Each circle part is considered as a proper station and
has its proper temperature data, multiplying artificially the number of
stations by 6.

2. Seasonal sorting : depending on the season, geographical indicators (re-
lated to heat fluxes) may have a different weighting contribution to ∆Ti
and σ∆Ti values (equations 13 and 14). Meteorological measurement are
then splitted by season according to World Meteorological Organization
(WMO) definition for the North hemisphere. One model group is then
proposed for each season.

3. Most sensible station use : for certain stations which have a geographical
context close to the one of the reference station, ∆T is low and does not
fluctuate much when meteorological conditions change. In this case, their
temporal variations are not well explained by meteorological conditions be-
cause measurement uncertainty becomes predominant. To overpass this
potential lack of accuracy, only the three stations having the highest tem-
poral variability (standard deviation σ∆T ) are used for the temporal model
calibration.
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4. Robust normalization : in order to separate temporal from spatial com-
ponents, ∆Ti,d has been normalized using mean and standard deviation
values (equation 5). Yet, these indicators are very sensitive to outlier val-
ues. Then they are respectively replaced by median and median absolute
deviation (MAD) which are robust indicators to outlier values.

5. Robust regression : multiple linear regressions used to establish temporal
and spatial models are calibrated according to least square method, which
is again very sensitive to outlier data points. The Huber M-estimator,
robust to outliers is then used for regression.

Spatial modelisation

Air temperature data for stations 
i, day d and time t

Temperature differences are 
calculated during the period PUHI

Normalization of the temporal 
variations

Data gathering (all stations i)

T i ,d (t)

ΔT i , d

ΔT i ,
σ ΔT i

~ΔT i ,d=α i

ΔT i , d−ΔT i

σ ΔT i

ΔT i=G( I g) ,
σ ΔT i

=H ( I g)

25 temporal models 24 spatial models

4. Only three stations 
are gathered

(yes / no)

5. Robust regression
(yes / no)

2. Seasonal sorting
(yes / no)

1. Wind direction filtering
(yes / no)

3. Robust Normalization
(yes / no)

Temporal modelisation
~ΔT d=F(V m)

25 model groups

~ΔT d

Figure 5: General methodology and variants (dash arrows) used to model spatial and temporal
UHI variations

The combination of these 5 variants leads to the calibration of 32 model
groups, composed of 32 temporal models (25) and only 16 spatial models (24),
the variant 3 having no effect on spatial modeling (figure 5). In order to choose
the best model, each of them is used to estimate the temperature difference ∆T
between each station of the 3 verification networks (ID 2, 3 and 4) and their
reference station. The accuracy of these estimations is evaluated by calculating
a normalized root mean square error (NRMSE), defined as the ratio between
RMSEi (calculated from ∆Ti estimations) and RMSEi=ref (calculated con-
sidering that each station is at the reference temperature value i.e. ∆Ti = 0 ∀ i)
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:

NRMSE =
RMSEi

RMSEi=ref
=

√√√√ 1
nbd

1
nbi

∑nbd
d

∑nbi
i (∆Tobsi(j)−∆Testi(j))

2

1
nbd

1
nbi

∑nbd
d

∑nbi
i (∆Tobsi,d −∆Tobsref,d)2

(15)
where ∆Tobsi,d and ∆Tobsref,d are observed ∆T values for the day d respectively
for a station i and for the reference station ref , ∆Testi,d is the ∆T value esti-
mated according to the model for the day d and the station i, nbd the number
of days used for verification purpose.

The lower the NRMSE, the better the performance of the model. Then
for each season, the 32 model groups are classified by increasing magnitude of
NRMSE for each network data set. A same model group that minimizes the
NRMSE for all data sets is considered as the best model.

4. Results

4.1. Model group selected

The following spatial and temporal models are finally selected.
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In order to compare the weight of each explanatory variables ev used in a
same equation, their regression coefficient rcev is multiplied by an indicator of
the explanative variable ev amplitude (ampev - defined as the difference between
the percentile 95 and the percentile 5 of the explanatory variable ev). The result
is defined as the normalized regression coefficient RCev :

RCev = |rcevampev| (28)

In the case of temporal models, normalized regression coefficients are gath-
ered in table 5. The period of calculation of the explanatory variable is also
indicated as well as the tendency of the UHI evolution when the explanative
variable increases.

In the case of spatial models, the calibration network (ID 1) is composed of
only 10 stations and may not be representative of all the geographical contexts
observed in the urban area. To overcome this issue, each explanatory variable is
calculated according to the methodology described in section 3.4 for 200 points
randomly chosen in the urban area territory. ampev is then calculated from this
new data set. For each explanatory variable, normalized regression coefficients
(equation 28) and the tendency of the UHI evolution when the explanatory
variable increases are finally gathered in tables 6 and 7.
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According to table 5, wind speed and nebulosity are the predominant vari-
ables for most of the seasons, which is consistent with previous literature results
(Svensson et al., 2002; Kim and Baik, 2002; Runnalls and Oke, 2000; Yan et al.,
2014). However, wind speed influence is negligible during winter-time whereas
nebulosity is replaced by air temperature summer-time and its effect on UHI
development is unexpectedly negative : higher rural air temperature, lower tem-
perature differences within the urban area. Night-time values of nebulosity and
wind speed contribute to UHI development whereas for other variables such as
solar radiation or temperature, this is mainly day-time values which explain the
UHI values.

Both ∆T and σ∆T have almost the same set of variables explaining their
variations (respectively table 6 and table 7). ∆T being easier to physically
understand, we analyze its equations. The contribution of each geographical
variable is analyzed through the urban heat fluxes it is related to. Thus, Dw

and NDV I (related to latent heat flux) are the only variables to drive the UHI
development both during spring and summer. During winter, Dw and NDV I
influence is much lower whereas Db and Ds (related to anthropogenic heat flux)
become predominant. During autumn, Dw and NDV I (related to latent heat
flux) and Df (related to radiative heat flux) may be identified from equation
20 but none is predominant (table 6). The indicator dos (related to advection
heat flux) is used in winter and autumn equations but has the lowest influence
within all variables.

4.2. Model performance analysis

The performances of the selected model group are presented table 8.

Table 8: NRMSE values of the final model for each season and each network

Season Network 1 Network 2 Network 3 Network 4
Autumn 0.58 - 1.4 0.71
Winter 0.81 - 1.4 0.87
Spring 0.42 0.53 1.4 0.87
Summer 0.46 0.54 1.2 0.76

When the NRMSE is lower than 1, we may consider that using the model
estimation is more accurate than assuming that the whole urban area is at
the same temperature as the reference station. Only the network 3 exceeds
this threshold for winter, spring and summer condition. The low performances
of the model is only due to some of the stations. Spring is the season for
which we have both the highest number of observed days and the lowest model
performances for almost all networks. In order to identify model limitations, a
detailed analysis of the results obtained for each station of the networks used
for verification purpose (networks 2, 3 and 4) is performed at this season.

For 64% of the Nantes (network 2) and Angers (network 3) stations, the
temperature estimation is considered as accurate since the scatter is close to
the line ∆Test = ∆Tobs (an example is given figure 6 for the station N02). For
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all these stations, the root mean square error value (RMSE) is included in
the range 0.36°C and 1.38°C and for each of them, the RMSE value is always
lower than both the observed median ∆T and the observed median absolute
∆T deviation.
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°C
)

ITLobs (°C)

Δ
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es
t (

°C
)

ΔTobs (°C)

RMSE = 0.88 °C Median = 1.97 °C
MAD = 1.83 °C

Figure 6: Estimated ∆T values versus observed ∆T values for station N02 - network 2

For the other stations, the limited performances of the modeling may have
three causes. The first is the lack of geographical variations representativeness
of the network 1 (used for calibration purpose) when compared with the en-
tire urban area. Figure 7 shows the distribution of NDV I values for both the
stations used for calibration and for verification in the same city (respectively
networks 1 and 2). Two stations of the verification network (N14 and N15)
are characterized by large NDV I value (≥ 0.5) but none of the calibration net-
work. This may explain why the model is inefficient to estimate the temperature
observed for stations having a high NDV I value (figure 8).

This problem is also observed for stations located near large water areas.
Estimations are considered incorrect when Dw ≥ 0.2.

Temporal models also show performance limitations when observed UHI
is high. This is illustrated figure 9. When observed UHI is lower than 3°C,
observed and estimated values are quite similar whereas when the observed
UHI is included in a [3− 5]°C range, estimated UHI is always below 3.1°C.

Another source of uncertainty is the buffer size (500 m radius) chosen for
geographical indicator calculation. If a station has a strong geographical het-
erogeneity within 500 m radius circle, geographical indicator values may differ
a lot whether it is calculated in a 200 m radius circle or in a 500 m radius circle.
If the source area which contributes to the measured temperature is actually
closer to a 200 m than a 500 m radius circle, models may be erroneous. This
is the case for the network 4 reference station (MFlry) regarding the NDV I
value that increases when the buffer size decreases (figure 10). If the 200 m
radius buffer size is used for the calculation of the geographical indicators at
the reference station, the estimation of the UHI for all network 4 stations is
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Figure 7: NDVI distribution of the network 1 stations (calibration purpose) and the network
2 stations (verification purpose)
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Figure 8: Estimated ∆T values versus observed ∆T values for station N14 (a) and station
N15 (b) - network 2

more accurate since estimations are close to the line ∆Test = ∆Tobs (figure 11).

5. Model application

The model group showed good performances when applied to the territory
where it has been calibrated (Nantes conurbation). It is used here to map the
UHI distribution in the city of Nantes under a calm summer night (2013, June
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Figure 9: Estimated ∆T values versus observed ∆T values for station N05 - network 2
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Figure 10: Geographical context (a) and NDVI value calculated for different buffer circle sizes
(b) for the station MF lry (network 4)

13th). Temporal model is applied according to equation 19 and the associated
meteorological conditions observed during this day (mean air temperature for
the few first hours of the night (pA) is 8.7 °C, mean wind speed is 0.93 m/s, and
mean relative humidity during the last quarter of the day (pD) is 83 %). Spatial
models (equations 23 and 27) are applied for a set of 855 points regularly dis-
tributed every 300 m within the city of Nantes. The reference station used for
calculation is the same that the one used for the calibration step (MF nse). Re-
garding the previous highlighted limitations of the spatial model, points where
the water density is higher than 0.2 or the NDVI higher than 0.5 are excluded.
UHI values are then linearly interpolated according to a Delaunay triangulation
method (figure 12).

As expected, zones having a high NDVI value (but lower than 0.5) such as
parks have almost the same temperature as the rural reference (less than 1°C
higher). The city center, consisting in mineral surfaces and tall buildings is
much warmer (more than 2.5°C higher than the reference station). Two areas,
although they are located outside the city core, are also warm. On the south
west, the neighborhood is an industrial zone without vegetation. On the north
east, the corresponding warm area is a combination of industrial and commercial
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Figure 11: Estimated ∆T values versus observed ∆T values for each station of network 4 for
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reference station
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Figure 12: UHI distribution within the city of Nantes territory under the 2013 June 13th
night

buildings, also composed of a majority of mineral surfaces.

6. Conclusion and discussion

Four main contributions to UHI empirical modeling have been proposed.
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• First, we have identified a night-time period of UHI modeling that maxi-
mizes the spatial dispersion of air temperature and minimizes the spatial
distribution of the cooling rate. The beginning and the end of this period
(pUHI = [1.4, 1.8]) are defined as a ratio of the night-time duration, and
thus varies seasonally in the local time system.

• Second, UHI value may be estimated for any night and any location in
a city according to a normalization method which consists in separating
temporal from spatial variations. UHI temporal variations then have been
modeled according to meteorological conditions observed during the day
of interest whereas spatial variations have been modeled according to the
geographical context of the area of interest.

• Third, the period when a meteorological variable impacts the night-time
UHI has been investigated for each meteorological variable. Wind speed
and nebulosity are the predominant meteorological variables in the tempo-
ral models. Their night-time low value are responsible for the night-time
urban heat island development.

• Finally, the geographical indicators proposed to explain the UHI spatial
variations are related to one or several heat fluxes, which makes them
easy to interpret. The NDVI, which is related to latent heat flux, is pre-
dominant during spring and summer season. Indicators such as building
density Db or surface density Ds, related to the anthropogenic heat flux,
are predominant during winter time and affect only the variability of the
UHI (σ∆T ) during the rest of the year.

The model group (composed of temporal and spatial models) was calibrated
and then applied to other cities to verify its ability to extrapolation. Good
results were found for most of the verification stations located in the conur-
bations of Nantes and Angers. For the city of Nantes, UHI map has been
produced, showing the good potential of such a work : the air temperature may
be estimated for any day and any location in those cities according to basic ge-
ographical informations and meteorological conditions observed near or inside
the urban area. This map may be combined to other spatial informations to
help decision making : for example data regarding at-risk population may be
cross-used in order to elaborate a strategy to protect vulnerable people during
heat-waves. Furthermore, the calculation is fast and easy to implement which
makes the method usable to take into account urban heat island phenomenon
in dynamic thermal simulation for urban buildings. An interesting aspect of
this work is that both meteorological and geographical data used to explain
respectively temporal and spatial temperature variations are homogeneous and
available for the entire French territory. The method proposed here can then be
applied for any French city. However, it would be interesting to identify similar
data which are available at world scale.

Improvements may be performed to better estimate urban heat island tem-
poral and spatial variations. Three main limitations have been highlighted :
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first, they are not appropriate to estimate the temperature in areas character-
ized by large fraction of vegetation or water. Calibration should be performed
with new set of data more representative of the geographical context diversity
of a city. Second, the temporal model is not accurate to estimate high UHI val-
ues whereas it is fundamental to have an accurate estimation of those specific
values since they usually correspond to heat-wave periods, that are important
regarding health issues. Weighting regressions could be applied to better esti-
mate high UHI values, which will however imply lower accuracy regarding lower
UHI values. Third, buffer size for geographical indicator calculation has been
set according to values proposed in the literature but seems inapropriate in cer-
tain cases (e.g. LRY reference station). A detailed analysis must be performed
to identify a more suitable buffer size. Finally, the model group which will be
produced after all these modifications should be tested on several other French
cities in order to verify its extrapolation performances. If the results show a
dependancy between the accuracy of the estimation and the size of the city,
further investigation would be needed to take into account this factor (such as
weighting the spatial model equations by any indicator of urban size). Investi-
gation should also be carried out to integrate the sea breeze influence on UHI
intensity in case it is a predominant factor explaining the temporal model bias.
A final improvement would be to replace the existing geographical data sources
by world-wide databases in order to make the model usable for any city in the
world. also be investigated in order to generalize the method to any city in the
world.
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