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Abstract—This paper focuses on the design of a linear Kalman
filter and an extended Kalman filter for the estimation of an
octorotor unmanned aerial vehicle’s (UAV) state in the context of
Synthetic Aperture Radar image reconstruction. A comparison to
a linear interpolation method is also proposed. The Kalman filters
are developed based on a complete nonlinear model of the UAV
and its linearized form. A particularity of the considered platform
is that the control signals are not measured and have to be
estimated as well as the UAV’s state. The proposed techniques are
then tested on a UAV simulator and a radar imaging simulator.
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Kalman Filter, Synthetic Aperture Radar

I. INTRODUCTION

Since they are lighter, cheaper and easier to deploy than
the traditional radar platforms such as planes and satellites
[1], unmanned aerial vehicles (UAV) [2] are a new center of
interest for radar applications. To this aim, several studies
have been done to show their usefulness, e.g. [3], [4]. In
this context, this paper is part of ongoing research and of
an educational project, its objective being to design an UAV
with an embedded radar system for a wide scope of civilian
applications like crop field monitoring, rescue operations after
avalanches, damage evaluation after natural disasters, etc. In
order to reconstruct radar images from the acquired data, the
knowledge of the UAV’s position and attitude has to be known
as accurately as possible.

For modeling and testing purposes, a commercially avail-
able octorotor (the ARF-MikroKopter Okto-XL, Mikrokopter,
HySystems GMBH) which is compatible with the required
payload and provides redundancy with its eight rotors is con-
sidered in this paper. Several control schemes for attitude con-
trol or trajectory tracking have been presented on Mikrokopter
platforms [5] and on the Okto-XL [6], [7]. A large spectrum
of works concerning the usage of Kalman filters to estimate
attitude and trajectory of a UAV has been published, such
as the state estimation of winged UAVs [8], [9], [10] or the
attitude estimation of multirotor UAVs [6], [11]. All these
papers focus on the use of extended or unscented Kalman
filters with measurements provided by inertial measurement
units and GPS knowing the control signals.

In the context of radar applications employing the octorotor
ARF-MikroKopter Okto-XL, using the model proposed in [7],
this paper focuses in a first stage on the design of a linear
Kalman filter and an extended Kalman filter. In a second
stage, their comparison with a linear interpolation technique
for the state estimation of an octorotor UAV is considered in
view of radar applications, more precisely for radar image
reconstruction. The control signal on this platform is not
available for measurements. It is then considered to be a
perturbation and the UAV’s state vector has to be augmented
to include it. The measurements are provided by an inertial
measurement unit and an embedded GPS with an important
noise level. Due to these particularities, a linear interpolation
method is not always efficient enough and Kalman filtering
techniques are tested to improve the quality of radar image
reconstruction. A flight with the UAV is simulated as well as
a radar acquisition. The flight data are processed through the
Kalman filters. The filtered data is then processed through a
radar image reconstruction algorithm to compare the efficiency
of the different estimation methods.

Section II presents the principles of Synthetic Aperture
Radar, the sensors presented on the platform, the model used to
design the Kalman filters, the particularities of the considered
UAV and the model’s sampling. Section III is dedicated to the
classical and extended Kalman algorithms and their assump-
tions. Simulation conditions and results of the state estimation
and radar image reconstruction are detailed in Section IV.
Finally, concluding remarks are drawn in Section V.

II. SYSTEM DESCRIPTION AND ESTIMATION
SPECIFICATIONS

A. Synthetic Aperture Radar

Synthetic Aperture Radar (SAR) image formation is based
on the coherent sum of the scattered waves due to the periodic
(Period Repetition Frequency – PRF) illumination of a scene
by the radar [12], ideally at constant speed, hence the illumi-
nation is uniformly distributed in space. For stripmap mode,
sideway illumination (relative to the UAV’s movement) of
the scene with constant inclination, altitude, speed and linear



TABLE I: Requirements for radar applications

Radar Platform speed 2.5 m/s
specifications Ground resolution 0.8× 0.8 m

Height of flight 10 m
Ground range 2 m to 40 m

Trajectory Translation speed 2.5± 0.2 m/s
specifications Maximum trajectory deviation < 0.5 m

Operational altitude 10 m
Stabilized attitude

trajectory, is desired. For small UAVs, such as the one used in
this paper, this is rarely the case. The radar specifications for
the X band FM Continuous Wave (FMCW) Synthetic Aperture
Radar to be used are summarized in Table I. Deviations
from the ideal known linear trajectory induce changes in the
expected phase history of the scatters (objects in the scene),
producing errors in the synthesis of the SAR image. Errors of
the same kind are produced when estimating the position of the
radar. These errors can be compensated with signal processing
autofocus techniques, in combination with the information
of the sensors of the UAV, up to a certain degree, see [12,
Chapter 5.2] for more details. In order to comply with the
radar specifications, by limiting the phase history errors due
to trajectory deviations, the desired control performances of
the UAV’s movement are specified in Table I.

B. Dynamical model of the UAV

1) Presentation of the platform: The considered octorotor
(Fig. 1 [7]) is the ARF-MikroKopter OktoXL. The drone main
parameters are provided in Table II. This drone is equipped
with a set of sensors comprising an inertial measurement
unit (IMU), an altimeter, a magnetometer and a GPS. The
UAV’s microcontroller provides fused and filtered data on
the position of the drone (denoted by X , Y and Z), its
attitude (ϕ, θ and ψ) and its horizontal speed (Vh) at a
low sampling rate. This filtering process eliminates the biases
and provides noisy measurements. In order to compare the
reconstruction algorithms used to obtain exploitable data for
radar applications at a high sample rate (with sampling time
Te) two extreme cases will be distinguished:
• Case 1 considers a quite high noise level on the position

provided by the GPS, corresponding to the precision of
the sensors as if they were directly acquired by the user;

• Case 2 considers a lower noise level on the position,
corresponding to the quantization noise of the signals
provided by the microcontroller.

The noise standard deviation values are presented in Table III.
The measurement signals are then retrieved by a computer via
the microcontroller’s serial port during the UAV’s flight.

2) Dynamical model: The nonlinear equa-
tions of motion in the state-space form are
written using the following state vector: x =(
X Y Z ϕ θ ψ Vx Vy Vz ωx ωy ωz

)T
where X , Y and Z are the position of the drone in the
Earth’s frame, Vx, Vy and Vz their time derivatives, ϕ, θ and
ψ the Euler angles defining the orientation of the drone in

TABLE II: Drone parameters: notations and values

Arm lengths (long, short) L = 0.455 m, l = 0.349 m
Total mass with one battery m = 2.56 kg
Inertia components Ixx = 0.0869, Iyy = 0.0873,

Izz = 0.1683 kg · m2

Air drag coefficient dw = 0.03 kg · m−1

TABLE III: Measurement noise standard deviation

Case 1 σX,Y,Z = 50 cm
Case 2 σX,Y,Z = 10 cm
Both cases σϕ,θ,ψ = 0.07 rad, σVh

= 7 cm/s
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Fig. 1: Considered octorotor and reference frames.

the Earth’s frame, and ωx, ωy and ωz the angular speeds of
the drone expressed in its own frame.

The complete nonlinear model describing the dynamics of
the drone is further used:

Ẋ = Vx, Ẏ = Vy, Ż = Vz (1)

ϕ̇ = ωx + sϕ
sθ

cθ
ωy + cϕ

sθ

cθ
ωz (2)

θ̇ = cϕ ωy − sϕ ωz (3)

ψ̇ =
sϕ

cθ
ωy +

cϕ

cθ
ωz (4)

mV̇x = (cψcθ)FR
x + (cψsθsϕ− sψcϕ)FR

y

+ (cψsθcϕ+ sψsϕ)FR
z + F air

x (5)

mV̇y = (sψcθ)FR
x + (sψsθsϕ+ cψcϕ)FR

y

+ (sψsθcϕ− cψsϕ)FR
z + F air

y (6)

mV̇z = (−sθ)FR
x + (cθsϕ)FR

y + (cθcϕ)FR
z

+ F air
z −mg (7)

Ixxω̇x = (Iyy − Izz)ωyωz + τRx (8)

Iyyω̇y = (Izz − Ixx)ωxωz + τRy (9)

Izzω̇z = (Ixx − Iyy)ωxωy + τRz (10)

The numerical values of the parameters are provided in
Table II. Here, Ixx, Iyy and Izz are the components of
the UAV’s inertia, FR

x , FR
y and FR

z are the components
of the resulting propeller’s force and τRx , τRy and τRz are
the components of the resulting propeller’s torque (the last
six being expressed in the drone’s frame, being denoted
by the superscript R). The functions sin (•) and cos (•) are
respectively represented by s• and c•. The air drag effects are
assumed to be: Fair = −dw ‖Vrel‖Vrel where Vrel = V−Vw



is the relative speed between the UAV (its speed being V) and
the wind (its speed being Vw) and dw the air drag coefficient.

3) Particularities of the platform: The resulting propeller
force and torque FR and τR are functions of the squared
propellers’ speeds Ωi, i = 1, ..., 8. These rotational speeds
are the model’s inputs. However, in the case of our platform,
these input signals are not available and the control law is not
precisely known and not considered in the estimation model.
As no input are acquired, it will be considered as a pertur-
bation in the following. Thus, the perturbation vector used
is P =

(
FR
x FR

y FR
z τRx τRy τRz V w

x V w
y V w

z

)T
where V w

x , V w
y and V w

z are the component of the wind’s
speed along the three axes of the Earth’s frame. For estimation
purposes, the perturbation is supposed to be constant over the
time, i.e. Ṗ = 09×1.

Moreover, the sensors have noise levels presented in Ta-
ble III. Hence the acquired signals are noisy and inaccurate. In
addition, because of the way the measurements are acquired
(as presented in Paragraph II-B1) the acquiring rate of the
measurement is not steady and varies between 0.4 and 0.6 s.
The acquired signals are the linear position X , Y and Z, the
angular position ϕ, θ and ψ and the UAV’s horizontal speed

Vh =
√
V 2
x + V 2

y . (11)

In order to reconstruct radar images, the ideal situation would
be to have distance variation between two successive points
(after estimation) under the radar’s wavelength (0.03 m).

C. Sampling of the dynamical model

In order to estimate the perturbation vector P as well as
the state vector x, an extended state vector is defined as xe =(
xT PT

)T
. The continuous time state-space model of the

UAV is:
ẋe(t) = fc(xe(t)) + vc(t) (12)

where fc is a 21 × 1 vector function grouping the equations
(1) to (10), the last nine lines being zeros (according to the
constant model of P) and vc is a white noise quantifying the
modeling errors.

This model is sampled with the Te sampling time:{
xe[k + 1] = xe[k] + Tefc(xe[k]) + v[k]

z[k] = h(xe[k]) + w[k]
(13)

where the function • + Tefc(•) will be called f to sim-
plify the notations. The measurement function is h =(
X Y Z ϕ θ ψ Vh

)T
and z is the system’s output

vector. Here, v (process noise) and w (measurement noise) are
uncorrelated white noises. Since the measurement is already
a discrete process on the UAV, w’s variance is not affected
by the sampling process. The process noise v being a tuning
parameter for the estimation, quantifying the uncertainties
in the modeling and sampling processes, its variance is not
affected by the sampling process.

Then, because the state-space model is nonlinear, it is
linearized in order to further use a linear Kalman filter. At
the hovering state, the velocities, both linear and angular, are

equal to zero. In order to simplify the linearization problem1,
the air drag force is considered to have three components F air

x ,
F air
y and F air

z that will replace the last three components of
P. When the model is linearized, it is sampled as:{

xe[k + 1] = Fxe[k]
z[k] = Hxe[k]

with F = eTeJ (14)

where J and H are respectively the Jacobians of fc and h
evaluated at the considered equilibrium point.

A problem will appear when computing the Jacobian of h
because the derivative of its last component Vh (see (11)) ends
up being divided by zero. Hence, this last component of h will
not be considered in the linearized model.

III. KALMAN FILTERING

The Kalman filtering method is well known and has been
abundantly used in aircraft’s state estimation [13], [14]. In
order to reconstruct radar images, the UAV’s position has
to be estimated from the measurements. The objective is to
compare the efficiency of Kalman filtering over a simple linear
interpolation of the measurements. Hence, a linear Kalman
filter is first developed, then an extended Kalman filter is
proposed.

A. Linear Kalman filtering

A linear discrete-time state-space model of the considered
system is needed to use a linear Kalman filter:{

xe[k + 1] = Fxe[k] + v[k]
z[k] = Hxe[k] + w[k]

(15)

where v[k] and w[k] are zero-mean white noises (the pro-
cess and measurement noise), with E(w[k]w[j]T ) = Rδkj ,
E(v[k]v[j]T ) = Qδkj and E(w[k]v[j]) = 0, where δkj is
the Kronecker delta function and E(•) is the mathematical
expectation of •.

In the first stage of the estimation process, the filter predicts
the value at sample k + 1 of the extended state vector
xe[k + 1|k] and its associated prediction error covariance
matrix P [k + 1|k] using the estimate x̂e[k|k] at sample k of
the state vector and the estimated prediction error covariance
matrix P [k|k]:{

x̂e[k + 1|k] = F x̂e[k|k]
P [k + 1|k] = FP [k|k]F T + Q

(16)

If no measurement is acquired at the sample k+1, only the
prediction stage is performed. However, if a measurement is
acquired, the prediction obtained in the first stage is corrected
using the measurement model:

x̂e[k + 1|k + 1] = x̂e[k + 1|k] + Kk+1e[k + 1]
P [k + 1|k + 1] = (I −Kk+1H)P [k + 1|k]

Kk+1 = P [k + 1|k]HTV −1k+1

Vk+1 = HP [k + 1|k]HT + R
e[k + 1] = z[k + 1]−Hx̂e[k + 1|k]

(17)

where Kk+1 is the Kalman gain at step k + 1 and e is the
innovation sequence.

1Linearization details on the UAV dynamic model can be found in [7].



B. Extended Kalman filtering

A nonlinear discrete-time state-space model of the consid-
ered system is needed to use an extended Kalman filter:{

xe[k + 1] = f(xe[k]) + v[k]
z[k] = h(xe[k]) + w[k]

(18)

where v and w have the same properties as with the classical
Kalman filter.

The two stages of the estimation process are globally the
same as with the classical Kalman filter with Fk and Hk being
the Jacobians of f and h evaluated at each iteration:

Fk = I21 + Te
∂fc

∂xe

∣∣∣
x̂e[k|k]

and Hk =
∂h

∂xe

∣∣∣
x̂e[k|k−1]

Moreover, the first equation of (16) becomes:

x̂e[k + 1|k] = f(x̂e[k|k]) (19)

and the innovation defined in the last equation of (17) is:

e[k + 1] = z[k + 1]− h(x̂e[k + 1|k]) (20)

IV. SIMULATION AND RESULTS

A. SAR simulator and image formation algorithm

The UAV’s state was simulated with a Matlab/Simulink
simulator implementing the nonlinear model described in
Section II. A LQI (Linear Quadratic Integral) controller was
used based on a LQ (Linear Quadratic) controller proposed
for this UAV in [7].

The reference trajectory corresponds first to a take-off until
an altitude of 10 m, followed by a translation on the X-axis
at a constant speed of 2.5 m/s. In order to test the robustness
of the estimation to the presence of wind disturbances, wind
gusts (of 20 s each) of 10 km/h in the −X direction (at t = 25
s and t = 120 s) and 20 km/h in the −Y direction (at t = 55 s
and at t = 145 s) are applied. Once this trajectory is simulated,
a Gaussian zero-mean white noise is added to the measured
states with the standard deviations defined in Table III.

The measurements are then processed through the Kalman
filters. The measurement noise variance matrix R is filled
with the variances obtained from the standard deviations in
Table III. The process noise variance matrix Q is a tuning
parameter. Its value was set using a particle swarm optimiza-
tion (PSO) algorithm [15], [16], [17]. The particles are vectors
of size 22, the 21 first coordinates being the components
of a diagonal matrix Q and the last one being a scaling
parameter factor q such that Q = qQ. The q parameter is
introduced to avoid numerical errors both in the PSO algorithm
and in the filter algorithm. The PSO algorithm minimizes
the quadratic error between the estimated and the simulated
trajectory defined above. The estimated trajectory is obtained
with an extended Kalman filter in the case 1 designed with
the considered UAV model (13).

Finally, the simulated linear position and the estimated
linear position are processed through a SAR simulator. Two
targets, or scatter, are placed along the trajectory to be ob-
served by the UAV. Radar phase history simulations are carried

out using the parameters in Table IV considering a FMCW
radar. For the image formation, back projection algorithm is
used for its simplicity [18]. Additionally, it is naturally adapted
when the illumination of the scene is not uniform in space (for
example variations on the UAV speed during radar acquisition
with constant PRF).

B. Simulation results

The acquired measurements are processed through a linear
and an extended Kalman filter based on the models presented
in Section II-C. The filter is initialised with x̂e[0|0] = 0 and
P [0|0] = I , except for the linear velocities Vx, Vy and Vz
being initialized to 0.1 m/s in the case of the extended Kalman
filter to avoid singularity.

The noise level is reduced with both filters (Fig. 2 and Fig. 3,
red dash-dotted lines) but the extended Kalman filter is more
efficient since it carries more information at each step and
the model used is more accurate. On Fig. 4a, the error on
the trajectory is lower after the Kalman filtering compared to
the error after the linear interpolation. However, the extended
Kalman filter takes more iterations to converge (between 6 and
10 s) than the linear Kalman filter (less than 1 s). This way,
if an extended filter is used, the sensor acquisition has to start
before the radar acquisition to allow the filter convergence.

The efficiency of the Kalman filtering in case 1 is shown
on Fig. 5 since the images obtained with the filtered data
(Fig. 5d and Fig. 5c) are better focused than the one obtained
with the interpolated data (Fig. 5b). For example, the extended
Kalman filter is more efficient since the position of Scatter 2 is
correctly formed (Fig. 5c). It can be seen that, with the linear
interpolation (Fig. 5b), two scatters’ appear at the same range
instead of only one for both Scatter 1 and Scatter 2.

Since the noise level is quite high in case 1 (low quality
sensors were considered) and the control signal is unknown,
the noise level on the filtered data is still quite high (the error
is around 20 cm) after filtering. This remaining error on the
trajectory can be derived from Fig. 4a. Moreover, the UAV’s
position is highly dependent on its attitude as seen on (1)
to (10). Thus, because of the high noise level on the angle
measurements and their sparsity (implying sparse updates of
the control signal which is estimated as well) the estimated
position undergoes variations regardless of the filter when it
is supposed to remain constant.

Finally, the Kalman filtering approach offers good results
when the noise level is of the magnitude considered in case 1.
If the measurement signal is already filtered and the noise level

TABLE IV: Main SAR parameters for simulation

Wavelength 0.03 m
Tx bandwidth 200 MHz
Azimuth beamwidth (aperture antenna) 24
PRF 2 kHz
Scatter 1 position Azimuth = 91.04 m

Ground range = 30 m
Scatter 2 position Azimuth = 96.04 m

Ground range = 20 m
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Fig. 2: Estimation of the X (left), Y (center) and Z (right) states with a linear Kalman filter.
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Fig. 3: Estimation of the X (left), Y (center) and Z (right) states with an extended Kalman filter.
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Fig. 4: Trajectory in the XY plane in case 1 (a) and in case 2 (b).

is of the magnitude considered in case 2, the Kalman filtering
approach (or at least with a classical or an extended Kalman
filter) is less efficient than the interpolation approach. In case
2, the SAR image obtained with the filtered measurement
(Fig. 5f) is more blurred than the image obtained with the
interpolated data (Fig. 5e). Indeed, the standard deviation on
the linear position was ≈10 cm and, as shown in Fig. 4b, the
error on the trajectory is bigger after the Kalman filtering than
after the linear interpolation. Thus, for a low noise level as in
case 2, a simple linear interpolation of the measurement can
be enough.

V. CONCLUSION

A linear and an extended Kalman filter have been designed
to estimate the state of an octorotor drone. The drone’s control

signals were unknown and the sensors were of low quality,
producing unsteady measurements with a high noise level.
The estimation error is smaller with the extended Kalman
filter (EKF) than with the linear Kalman filter since the
model used is more complete with the EKF. The efficiency
of this extended Kalman filter over a linear interpolation or a
linear Kalman filtering method is demonstrated by producing
Synthetic Aperture Radar (SAR) images with a simulator.
The image obtained with the extended filter is clearer than
the other two SAR images. When the noise level is not as
high as considered when simulating the measurements, the
linear interpolation method can be more efficient than the
Kalman filters. Finally, if the noise level is too high, neither
the linear interpolation nor the Kalman filters are efficient for
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Fig. 5: SAR images obtained with the simulated state (a), the interpolated state in case 1 (b) and case 2 (e), the filtered
(linear) state in case 1 (d) and the filtered (extended) state in case 1 (c) and case 2 (f).

SAR image reconstruction.
In future work, more advanced estimation methods will

be investigated. For example, a two-stage Kalman filter will
be used to perform a separate estimation of the perturbation
vector and divide the problem’s size. Moreover, an unscented
Kalman filter would increase the accuracy of the estimation
since no first order approximation is performed. In both cases,
a more complex model of the perturbation vector will be
tested. Finally, this work will be used to design an observer
to use a Linear Quadratic Integral controller designed for
octorotor drones.
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