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ABSTRACT
We study the effect of large-scale spectral forcing on the scale-dependent anisotropy of the
velocity field in direct numerical simulations of homogeneous incompressible turbulence. Two
forcing methods are considered: the steady ABC single wavenumber scheme and the unsteady
non-helical or helical Euler scheme. The results are also compared with high resolution data
obtained with the negative viscosity scheme. A fine-grained characterization of anisotropy,
consisting in measuring some quantities related to the two-point velocity correlations, is used:
we perform a modal decomposition of the spectral velocity tensor into energy, helicity and
polarization spectra. Moreover, we include the explicit dependence of these three spectra on
the wavevector direction. The conditions that allow anisotropy to develop in the small scales
due to forcing alone are clearly identified. It is shown that, in turbulent flows expected to be
isotropic, the ABC forcing yields significant energy and helicity directional anisotropy down to
the smallest resolved scales, like the helical Euler scheme when an unfavourable forcing scale is
used. The direction- and scale-dependent anisotropy is then studied in rotating turbulence. It is
first shown that, in the ABC-forced simulations the slope of the energy spectrum is altered and
the level of anisotropy is similar to that obtained at lower Rossby number in Euler-forced runs, a
result due both to the nature of the forcing itself and to the fact that it allows an inverse cascade
to develop. Second, we show that, even at low rotation rate, the natural anisotropy induced by
the Coriolis force is visible at all scales. Finally, we identify two different wavenumber ranges
in which anisotropy behaves differently, and show that the characteristic lenghscale separating
them is not the Zeman scale. If the Rossby number is not too low, this scale is the one at which
rotation and dissipation effects balance.

1. Introduction

According to the classical Kolmogorov K41 theory [21] for turbulent flows at asymptotically
large Reynolds number, the large-scale dynamics should affect small scales statistical properties
only through the energy production rate, i.e. small scales should be statistically independent
of large scales, and have a universal behaviour. This assumption is referred to as the local
isotropy hypothesis and has been studied by many authors but it is still debated. On the one
hand, some authors agree about energy cascading from large to small scales mainly through
local triadic interactions in Fourier space. On the other hand, other works showed that the
energy-containing scales directly affect the small scales dynamics through distant triadic inter-
actions. Such nonlinear interactions correspond to wavenumber triangles with very large scale
separation. In particular, [4,5] analysed the nonlinear interactions among Fourier modes in a
single triad with a wavenumber in the energy-containing scales: since this triad contribution
does not vanish at infinite scale separation, the small scales may not be independent of large
scales at asymptotically large Reynolds number. Yeung & Brasseur (1991) [50] confirmed this
by observing small scale anisotropy in numerical simulations with strongly anisotropic large
scale forcing. Since small scale anisotropy was found to increase with the wavenumber and to
be consistent with the distant triad equations, local anisotropy should therefore persist at high
Reynolds number. The local isotropy hypothesis was also shown to be violated in homogeneous
sheared turbulence by the measurement of statistical quantities in the physical space in direct
numerical simulations (DNS) [38,39] and in experiments [43]. The detailed structure of small
scales in highly anisotropically forced turbulence was also investigated by [51] in both Fourier



and physical space. Anisotropic redistribution of energy and phase in high wavenumber shells
was predicted and observed in DNS. In particular, a reduction of energy was detected in the
directions of the forcing wavenumbers. In any case, the study of anisotropic turbulence and of
its scale-dependent features through classical Fourier analysis requires to disentangle the effect
of physical sources of anisotropy from those of other artificial mechanisms, like energy and he-
licity production in forced simulations. Identifying and quantifying the anisotropy induced by
some widely used forcing schemes in turbulence intended to be isotropic is the first concern
of this work. Our second concern is to investigate homogeneous non-helical and helical forced
turbulence subject to a background rotation, by characterizing its scale- and angle-dependent
anisotropy. The motivation comes for instance from previous studies of freely decaying rotat-
ing turbulence [12], in which a refined anisotropic characterization was absolutely required to
understand the subtle effect of the Coriolis force on each scale of the flow. However, the drop
in Reynolds number was severe due to dissipation, so that forced rotating turbulence should
rather be considered.

In order to study statistically stationary turbulence, many velocity forcing schemes have
been used so far in numerical simulations. In homogeneous spectral simulations, large-scale
spectral forcing methods consist in providing energy to the low wavenumber modes, which is
consistent with the concept of Richardson cascade, see e.g. [13], [44], [1]. However, since only a
finite number of wavenumbers is excited in these simulations, anisotropy may develop at large
scales and eventually branch out to smaller scales. Detecting this kind of anisotropy requires
direction-dependent statistics.

In this paper we analyse three forcing schemes representative of large-scale forcing: the Euler,
the ABC and the negative viscosity forcing methods [19,30,37,42]. Note that, while in [50,51]
an explicitly and highly anisotropic forcing was used, we investigate here the unwanted intrinsic
anisotropy of large scale spectral forcing schemes. The study by [42] was also concerned with the
influence of forcing, with two methods: one random isotropic forcing, and another specialized
for controlling the anisotropic contents of the forcing which can thus be concentrated on the
spectral region of the slow manifold or two-dimensional modes.

In our work, the impact of the chosen forcing schemes on the produced turbulence scale-
dependent anisotropy is characterized by a modal decomposition of the spectral velocity tensor
into energy, helicity and polarization spectral densities. These densities depend on the orienta-
tion of the wavevector as well as on its modulus.

After assessing this in turbulence intended to be isotropic, we extend our study to rotating
homogeneous turbulence. This context is relevant for instance to geophysical and industrial
flows, or academic configurations such as the von Kármán-forced turbulence [34]. We consider
background rotation because it introduces significant anisotropy in the turbulent dynamics
through both linear and nonlinear mechanisms (see e.g. [16]).

The flow regime can be characterized by two independent non-dimensional parameters.
Considering large-scale dynamics, a possible choice is the Reynolds number ReL = UL/ν and
the macro-Rossby number RoL = U/(2ΩL) (U is for instance the root-mean-square (r.m.s.)
velocity, and L the integral length scale; ν is the kinematic viscosity, and Ω is the rotation
rate). The effect of rotation on smaller scales can be quantified by the micro-Rossby number
Roω = ω′/(2Ω), where ω′ is the r.m.s. vorticity. The macro- and the micro-Rossby numbers
quantify the relative importance of advection with respect to the rotation rate.

In addition to L, three relevant lengthscales can be defined: (i) the Kolmogorov scale η =
(ν3/ε)1/4, where ε is the mean energy dissipation rate; (ii) the Zeman scale at which the inertial

timescale (r2/ε)1/3 equals the rotation timescale 1/Ω, rΩ =
√
ε/(2Ω)3 [49,52]; (iii) the scale

at which the dissipative timescale r2/ν equals the rotation timescale, rΩd =
√
ν/(2Ω). From

the above definitions of η and rΩ, rΩd = r
1/3
Ω η2/3. An alternative choice for the independent

parameters may be two characteristic lengthscale ratios. For instance, L/η ∼ ReL
3/4

and rΩ/L ∼
RoL

3/2
, if one assumes that ε ∼ U3/L. Similarly, if ω′ ∼ ν/η2, Roω ∼ (rΩ/η)2/3 and ε ∼ U3/L

also leads to Roω ∼ (ReL)1/2RoL.
The assumption that dissipation ε scales as U3/L at high Reynolds numbers has been ex-
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tensively investigated in isotropic turbulence. A precise scaling law for Cε = ε/(U3L) has been
obtained for non-equilibrium (e.g. decaying) turbulence (see [46] for a review). For forced turbu-
lence Cε has been found to be constant and independent of the forcing scheme and the forcing
wavenumber, even if turbulence is quasi-periodic and time averages are considered [3,18].

Note that Roω (or the equivalent parameters rΩ/η and ReLRoL
2
) does not depend on large-

scale quantities such as the integral lengthscale or the r.m.s. velocity. It is the only nondimen-
sional parameter that arises from dimensional analysis based on ε, ν and Ω. If ν tends to zero
(and the Reynolds number tends to infinity), both η and rΩd tend to zero. The only relevant
small-scale characteristic lengthscale is then rΩ. Therefore, in the asymptotically inviscid limit,
classical dimensional arguments [12,31,52] support the following phenomenology: scales much
larger than rΩ are mainly affected by rotation while scales much smaller than rΩ are dominated
by the nonlinear dynamics and are expected to return to isotropy.

In the following sections we will refer to characteristic wavenumbers instead of length scales:
kη = 1/η, kΩ = 1/rΩ and kΩd = 1/rΩd. We characterize the anisotropy that naturally arises
because of rotation through the same scale- and angle-dependent statistics we use to detect
artificial anisotropy of forcing schemes in “isotropic” turbulence. Different flow regimes in terms
of Rossby and Reynolds numbers, as well as the possibility of helicity injection are considered.

The paper is organized as follows. In section 2 we introduce the refined two-point statistics
used in the following as diagnostics for anisotropy characterization and present the numerical
simulation method, the Euler and ABC forcing schemes. In section 3 we compare the two
forcing methods and identify the conditions that allow anisotropy to develop at small scales
in the non-rotating case. In order to show the effect of an increase in Reynolds number we
also study data from 20483 resolution DNS forced through the negative viscosity method [20].
Section 4 is devoted to the characterization of anisotropy induced by background rotation in
homogeneous non-helical and helical turbulence. In section 5 two different anisotropic ranges
are identified, and a physical interpretation of the separating scale is provided. Conclusions are
drawn in section 6.

2. Methodology

We consider an incompressible fluid whose motion follows the Navier-Stokes equations

∂u

∂t
+ (ω + 2Ω)× u = −∇P + ν∇2u + F

∇ · u = 0
(1)

where u is the velocity field, ω = ∇ × u is the vorticity, P is the total pressure (sum of
the hydrodynamic pressure and of the centrifugal contribution) divided by density, ν is the
kinematic viscosity, F is an external force. For rotating flow cases, Ω is the rotation rate of the
frame, and −2Ω× u the Coriolis force.

In the present section we first describe in detail the statistical indicators that will be used
to evaluate the scale- and direction-dependent anisotropy of the velocity field. We follow with
a description of the numerical set-up and the forcing schemes.

2.1. Fine-grained anisotropy in two-point statistics

The characterization of anisotropy in homogeneous turbulence addresses a two-fold question.
First, what physical quantities are suitable to qualitatively detect isotropy breaking in turbu-
lence subject to external distorsions such as solid body rotation, density gradient, mean shear,
etc.? Second, how does one quantify and compare the level of anisotropy? One therefore needs
a relevant characterization of this anisotropy, and several choices are possible.

Considering the Reynolds stress tensor R of components Rij(r, t) = 〈ui(x, t)uj(x + r, t)〉,
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where x = (x1, x2, x3) is the Cartesian coordinate in physical space, r is the separation vector, t
is time and 〈 〉 represents ensemble averaging, one can obtain the components of the anisotropic
part of R, bij = Rij/Rkk − δij/3 (the Einstein summation convention is used here). If the off-
diagonal components of b are not zero the flow is anisotropic, but these quantities only represent
anisotropy from a global point of view—mostly related to the large scales. A widely adopted
characterization of anisotropy based on b is the method proposed by Lumley & Newman (1977)
[26] which consists in identifying the dominant structure of the flow from the position of the
second and third invariants (I2,I3) of b within the so-called Lumley triangle. This tells if the
flow structure is mostly 2-component axisymmetric, 1-component, or isotropic, depending on
the closeness of the (I2,I3) point to one of the vertices of the triangle. However, useful as this
simple method may be, it does not tell which scales are most anisotropic. A refined picture is for
instance required for rotating turbulence in which one has to identify isotropic and anisotropic
subranges at different length scales (see section 4) [12,25,31,52].

We therefore introduce hereafter a scale-by-scale evaluation of anisotropy. In addition to the
lengthscale or wavenumber, we also retain the dependence of the spectra on the polar angle about
the axis of symmetry. This description is suitable for a wide range of statistically axisymmetric
flows, such as turbulence subject to solid body rotation, stratified turbulence, flows subject
to axisymmetric contractions or expansions or more generally axisymmetric strain, magneto-
hydrodynamic turbulence for a conducting fluid subject to an external magnetic field of fixed
orientation. Non axisymmetric cases are more complex and only a few studies have been devoted
to their statistical description (for instance in [24]).

2.1.1. Modal decomposition of the Reynolds-stress tensor spectrum

Since we deal with homogeneous turbulent flows, the two-point correlation tensor R is inde-
pendent of x, and—if it tends to zero sufficiently rapidly as |r| increases—we can consider its
Fourier transform

R̂ij(k) =
1

(2π)3

∫∫∫
Rij(r)e−ik·rd3r (2)

(for simplicity, we drop here the dependence upon time t). The incompressibility condition

∇ · u = 0 implies ∂Rij(r)/∂rj = 0, which by Eq. (2) leads to R̂ij(k)kj = 0. Furthermore,

since Rij(r) is real and Rij(r) = Rji(−r) from its definition, R̂ij(k) is a Hermitian matrix, i.e.

R̂∗ij(k) = R̂ji(k), where ∗ stands for complex conjugate. It is useful to project the tensor R̂ onto

a polar-spherical orthonormal basis (e(1),e(2),e(3)) defined from the vector n bearing the axis
of symmetry, with

e(1) =
k × n

|k × n|
, e(2) = e(3) × e(1), e(3) =

k

k
, (3)

which is the so-called Craya-Herring frame [11], see Fig. 1. e(1) and e(2) are respectively referred
to as toroidal and poloidal directions. By enforcing incompressibility and Hermitian symmetry,

R̂(k) = Φ1(k)e(1)e(1) + Φ12(k)e(1)e(2) + Φ12∗(k)e(2)e(1) + Φ2(k)e(2)e(2), (4)

where Φ1/2 and Φ2/2 are the toroidal and the poloidal energy spectral densities, respectively.
Equation (4) can be rewritten as [8,41]

R̂ij(k) = e(k)Pij(k) + < (z(k)Ni(k)Nj(k)) + ih(k)εijl
kl

2k2
, (5)

where Pij = δij − kikj/k2 is the projector onto the (e(1),e(2)) plane, N(k) = e(2)(k)− ie(1)(k)
are helical modes [48], εijk is the alternating Levi-Civita tensor and < denotes the real part.

4



n 6

Figure 1. Craya-Herring frame of reference.

The decomposition (5) displays three important spectral functions which characterize fully the
second-order velocity correlations of the flow and carry useful physical meaning about the flow
structure at different scales [8,12,41]:

(1) e(k) = R̂ii(k)/2 =
(
Φ1(k) + Φ2(k)

)
/2 is the spectral energy density, and upon inte-

gration over spherical shells of radius k = |k| provides the kinetic energy spectrum
E(k) =

∫
e(k)δ(|k| − k) dk, that scales as k−5/3 in the inertial range of high Reynolds

number isotropic turbulence according to the Kolmogorov theory. If energy is concen-
trated in modes corresponding to wavevectors close to the plane k · n = 0, the flow is
almost bidimensional, while energy concentrated in wavevectors close to n indicates a
trend towards a vertically-sheared horizontal flow.

(2) The complex-valued function

z(k) =
(
Φ2(k)− Φ1(k)

)
/2 + i<Φ12(k) (6)

is the polarization spectral density and contains information on the structure of the flow
at different scales. Consider for instance a shell of radius k in spectral space in which the
wavevectors closer to the horizontal plane kz = 0 hold much more energy than the others
(which is the case of strongly rotating turbulence if Ω is parallel to the x3 axis). In this
special case, if the real part of polarization is mostly dominated by the poloidal spectral
energy Φ2, the corresponding flow structure at the scale 1/k is characterized by axial
velocity, or “jetal” structures, whereas if Φ1 prevails, axial vorticity is more important
and the flow displays “vortical” structures. Detailed comments about the role of z in
rotating turbulence or MHD turbulence can be found in [8,12,14].

In section 3 we show normalised integrated spectra of the real part of z(k),
<Z(k)/E(k) =

(
Epol(k)− Etor(k)

)
/E(k), where Epol(k) =

∫
Φ2(k)δ(|k| − k) dk and

Etor(k) =
∫

Φ1(k)δ(|k| − k) dk.
(3) Finally, h(k) = 2k=Φ12(k), where = stands for the imaginary part, is the helicity spectral

density. In physical space, helicity density is the scalar product between velocity and
vorticity, u ·ω, and—exactly like energy—its integral is an inviscid invariant [32,33] (even
in the presence of background rotation). h(k) is the Fourier transform of the velocity-
vorticity correlation 〈u(x) · ω(x + r)〉, and thus

∫
h(k) dk equals the mean helicity. The

helicity spectrum is

H(k) =

∫
h(k)δ(|k| − k) dk. (7)

Since helicity is a pseudoscalar quantity, any turbulent flow with non-vanishing mean
helicity lacks mirror-symmetry. However, in sections 3 and 4 we will focus on directional
and polarization anisotropy, and the word “anisotropic” will refer to any isotropy breaking
but mirror-symmetry breaking.
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2.1.2. Directional dependence of the spectra

In the above decomposition we have retained the general k dependence. Furthermore, one can
use axisymmetry to consider only the dependence of the spectra upon the axial and horizontal
components of the wavevector k (see for instance [15]), or upon the wavenumber k and the polar
orientation θ of k with respect to the axis of symmetry [7,17]. Therefore, in our following analysis
of spectral anisotropy, we shall present θ-dependent spectra, discretizing k between minimal and
maximal values set by the computational box size and the resolution, and considering angular
averages of spectra in five angular sectors in the interval θ ∈ [0, π/2], i.e. [(i − 1)π/10, iπ/10]
with i = 1, · · · , 5. We call Ei(k), Hi(k) and <Zi(k) the spectra of energy, helicity and real part
of polarization. They are obtained by partial integration of the corresponding spectral densities
over these sectors. Note that the spectra for all angular sectors are normalised such that for
directionally isotropic turbulence they collapse onto the corresponding spherically-integrated
spectrum, e.g. the Ei(k) spectra collapse on E(k). The limited number of sectors is imposed
by the need of a minimal number of discrete wavevectors in every sector for achieving decent
sample size from DNS data. Even so, in the small wavenumbers, very few wavevectors lie within
the averaging regions, but this is a known fact for all direct numerical simulations based on
pseudo-spectral schemes.

Finally, note that the directional spectra Ei, Hi, <Zi carry the most accurate scale-by-
scale information about the statistically axisymmetric flow second-order statistics, but other
choices could be made. We only recall here the fact that the anisotropy tensor b, which carries

a rough information on anisotropy, can be split as bij = b
(e)
ij + b

(z)
ij + b

(h)
ij into more informative

contributions brought up by integrating the spectra:

b
(e)
ij =

1

〈ukuk〉

∫∫∫ [
e(k)− E(k)/(4πk2)

]
Pijd

3k

b
(z)
ij =

1

〈ukuk〉

∫∫∫
< [z(k)Ni(k)Nj(k)] d3k

b
(h)
ij =

1

〈ukuk〉

∫∫∫
ih(k)εijl

kl
2k2

d3k

=
1

〈ukuk〉

∫∫∫
i
H(k)

4πk2
εijl

kl
2k2

d3k +
1

〈ukuk〉

∫∫∫
i

[
h(k)− H(k)

4πk2

]
εijl

kl
2k2

d3k.

For instance, in exactly isotropic mirror-symmetric three-dimensional turbulence, bij = b
(e)
ij =

b
(z)
ij = b

(h)
ij = 0, whereas two-dimensional turbulence (for which helicity is identically zero) with

only two components of velocity in the plane (1,2) is characterized as the departure from 3D

isotropy by b33 = −1/3, b
(e)
33 = 1/6 and b

(z)
33 = −1/2 [8]. Thus the e, z, h-related contributions

to the deviatoric tensor b provide useful quantitative indicators about anisotropic trends in
the flow, but retaining the spectral information allows to qualify the flow structure in a scale-
dependent way.

2.2. Numerical set-up and forcing schemes

The Navier-Stokes equations (1) are solved in a three-dimensional 2π–periodic cube C with a
classical Fourier pseudo-spectral algorithm (see for instance [36,47]). The code uses the 2/3-rule
for dealiasing and third-order Adams-Bashforth scheme for time marching.

The periodic velocity field u(x) can be expanded as an infinite Fourier series

u(x) =
∑
k

û(k)eik·x (8)

where k represents now discrete wavevectors and û(k) = (2π)−3
∫
C u(x)e−ik·xdx are the Fourier
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coefficients of u(x). û(k) can be projected onto the Craya-Herring frame,

û(k) = u(1)(k)e(1)(k) + u(2)(k)e(2)(k) (9)

with no component of û along e(3) because of the incompressibility condition k · û(k) = 0.
Rij(r) is periodic too, and the tensor Eij(k) = 〈ûi(k)û∗j (k)〉 represents its Fourier coefficients.

The decomposition developed in section 2.1.1 for R̂ij may be repeated for Eij with no formal
difference. In addition, the spectral densities appearing in Eq. (5) are now linked to û(k), i.e.
e(k) = 〈û(k) · û∗(k)〉/2, h(k) = 〈û(k) · ω̂∗(k)〉, z(k) = 〈u(2)(k)u(2)∗(k) − u(1)(k)u(1)∗(k)〉/2 +

i〈u(1)
R (k)u

(2)
R (k) + u

(1)
I (k)u

(2)
I (k)〉, where the subscripts R and I stand for real and imaginary

parts. We compute the spherically integrated spectra as sums of the corresponding spectral
densities in unitary-thickness shells. From the definition of vorticity and the Schwarz inequality
one can show that realizability requires |h(k)| ≤ 2 |k| e(k). Therefore, we define relative helicity
as Hrel = 〈H〉Lh/K where K =

∑
e(k) is the turbulent kinetic energy and Lh is a modified

lengthscale (different from the integral lengthscale), defined from the spherically integrated
kinetic energy spectrum as

Lh =
1

2

∑
E(ki)∑
kiE(ki)

(10)

so that, from the above inequality, Hrel ≤ 1.
When performing direct numerical simulations, one would like to force turbulence for two

reasons. First, it allows to reach higher Reynolds numbers than in freely decaying turbulence.
Second, under some assumptions, statistics can be obtained with time-averaging rather than
ensemble averaging (see e.g. [27]) which would be very costly considering the fact that our
refined statistics require a large number of samples. Therefore, the velocity field obtained by
DNS is processed to obtain the statistics presented in section 2.1, and these statistics are time-
averaged over a few eddy-turnover-times of turbulence after the initial transient is passed, when
turbulence has reached a statistically steady state.

The goal of forcing turbulence is to represent, as a model force, the essential features of
forcing mechanisms in more complex turbulent flows, and to reproduce, without simulating
complete complex systems, situations of actual flows, such as e.g. injection of energy by large-
scale instabilities in atmospheric flows, or stirring devices in industrial flows. For instance, the
well-known von Kármán experiment consists of two counter rotating rotors [23,34], that not only
inject energy at large scales in the flow, but also helicity. For this reason, we wish to investigate
the possibility of representing these mechanisms through simple models and to study their
impact on the anisotropy of the flow, including the possibility of injection of helicity. We choose
in this work to consider the ABC forcing (see for instance [31] in hydrodynamic turbulence or
[6] in magnetohydrodynamic turbulence), and the Euler forcing [37].

Isotropic turbulence data obtained by a negative viscosity forcing scheme in Kaneda’s group
[20] will also be considered hereafter. According to this method, the term F of Eq. (1) has the
same form as the dissipative term, but its “viscosity coefficient” is negative for all the modes
with wavenumbers |k| ≤ kF , and zero for the modes such that |k| > kF (kF is the wavenumber
separating forced and unforced spectral ranges). We now describe the two other forcing schemes
used in the present investigation.

2.2.1. ABC forcing

The ABC forcing consists in adding in the Navier-Stokes equations (1) an external force FABC

corresponding to an Arnold-Beltrami-Childress flow (see e.g. [9]):

FABC = [B cos(kF y) + C sin(kF z)] ı̂ + [C cos(kF z) +A sin(kF x)] ̂

+ [A cos(kF x) +B sin(kF y)] k̂, (11)
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for a given large scale wavenumber kF . Since FABC is an eigenfunction of the curl operator
with eigenvalue kF , the ABC forcing injects helicity, in addition to energy, in the flow. For the
ABC-forced runs reported in sections 3 and 4, A = B = C. For the sake of simplicity let the
constants A, B and C be equal to 2. Then in Fourier space the expression (11) becomes

F̂ABC = [0 ±i 1] if k = [∓kF 0 0]

F̂ABC = [1 0 ±i] if k = [0 ∓kF 0]

F̂ABC = [±i 1 0] if k = [0 0 ∓kF ]

F̂ABC = [0 0 0] otherwise.

(12)

In terms of flow structure, the large-scale flow induced by the ABC forcing is very much like
Taylor-Green vortices, but extended to three dimensions. More precisely, FABC induces perma-
nent large-scale curved helical vortices associated with a single wavelength.

Thus, F̂ABC is a steady force that excites only six modes and injects a given amount of
helicity, as also previously discussed in [42]. In rapidly rotating turbulence, an inverse energy
cascade can therefore arise, so that it can be difficult to reach an exactly statistically stationary
state [40]. However, in the ABC-forced rotating runs analysed in section 4 that are concerned
by a small drift from statistical stationnarity, spectra are still computed by time-averaging.

2.2.2. Non-helical and helical Euler forcing

In order to overcome some of the limitations of ABC forcing, we use the Euler forcing, which
can be thought of as introducing three-dimensional large-scale vortices that evolve in time by
interacting with each other—but not with the other scales of the flow—in a manner closer to
actual inviscid turbulent nonlinear dynamics. Unlike the ABC forcing, the external force induced
by the Euler scheme is unsteady and chaotic, the number of excited modes depends on kF , and
the amount of injected helicity can be controlled.

We now describe in detail how the Euler forcing is implemented. The Euler-forced simula-
tions [37] are inspired by the truncated Euler dynamics [10]: the lowest-wavenumbers modes
k such that 0 ≤ |k| ≤ kF (kF is the largest forcing wavenumber), obey the three-dimensional
incompressible Euler equations (possibly with background rotation) and are independent of the
other modes. Of course the modes k such that |k| > kF are solutions of the incompressible
Navier-Stokes equations and also depend on the modes in the Euler forcing sphere. For the
spherically truncated inviscid system, the quadratic nonlinear term is computed through a con-
volution in Fourier space so that no aliasing error arises. Since energy and helicity are conserved
within every nonlinear triadic interaction [22], in this truncated system total energy and helic-
ity are conserved as well. Background rotation does not affect this conservation property, since
the Coriolis force has vanishing contributions in both energy and helicity evolution equations
(for the truncated system as well as for every non-linear triadic interaction). Note that, be-
cause of the conservative dynamics of the lowest modes |k| ≤ kF , the Euler forcing prevents the
development of any inverse cascade.

If energy is concentrated at large scales in the initial spectrum, the transient dynamics of
spectrally truncated 3D incompressible Euler equations behaves like dissipative Navier-Stokes
equation and displays a K41 scaling [10]. However, we are interested here in the statistically
stationary solution—or absolute equilibrium—exact solutions for energy and helicity spectra,
which are [22]

E(k) =
4π

α

k2

1−
(β
α

)2
k2
, H(k) =

8πβ

α2

k4

1−
(β
α

)2
k2
, (13)

where α and β depend on the total energy and helicity and are constrained by the realizability
condition |h(k)| ≤ 2 |k| e(k) such that α > 0 and |βkF | ≤ α. At a given truncation wavenumber
the solution depends only on the constant total energy and helicity. Therefore there is only one
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(a) (b)

Figure 2. Exact energy and helicity spectra of the spherically truncated Euler system for different relative helicities
(continuous line) and DNS time-averaged spectra (markers). The truncation wavenumber is kF = 5.5.

independent non-dimensional parameter, e.g. the relative helicity.
Figure 2 shows the exact and numerical spectra for different relative helicities with kF = 5.5.

If Hrel = 0 every wavevector holds the same amount of energy, and the energy spectrum is
therefore proportional to k2. As the relative helicity increases, large wavenumber energy and
helicity densities become larger and larger with respect to their low wavenumber counterparts.

In Euler-forced runs, Fourier coefficients for the forcing wavenumbers are initialized as a
random solenoidal velocity field with a given energy spectrum. With respect to previous works
using the Euler forcing [35,37], our implementation allows to control helicity injection and to
vary kF arbitrarily, so that it is not restricted to non-helical turbulence and kF = 1.5. The mean
helicity can be computed as

∑
k h(k), where the helicity density h(k) = û(k) · ω̂∗(k) can be

recast as h(k) = 2k · (<û×=û).
In helical Euler-forced simulations, the initial values of the forced modes are computed in

order to obtain the maximal achievable helicity densities without changing the energy densities,
i.e.

û(k) = e(k)1/2 ei γ
(
e(1)(k) + ie(2)(k)

)
(14)

where γ is a uniformly distributed random angle. Since the relative helicity in a helical forced
simulation depends on the prescribed energy spectrum, we use different shapes for the initial
energy spectrum in order to achieve different relative helicities. The considered spectrum is
E(k) = kpe−p/2(k/kF )2 , with a maximum at k = kF and different possible values for p: p = 4 for
a Batchelor spectrum and p = 2 for a Saffman spectrum.

In non-helical Euler-forced simulations, we ensure exact vanishing net helicity in the initial
field by adjusting angles between the real and imaginary parts of all the forcing modes, so that
total helicity

∑
k h(k) = 0.

Our implementation of the truncated Euler equations has been validated against the spec-
tra (13) predicted by Kraichnan [22], as shown in figure 2. The agreement between analytical
spectra and DNS points is good at all relative helicities and for both Batchelor and Saffman
infrared spectra.

3. Anisotropy induced by forcing in non-rotating simulations

In this section, we study the anisotropy induced by the Euler, ABC and negative viscosity
forcings on the statistics of non rotating (and expected to be isotropic) turbulence, namely
energy, helicity and polarization angle-dependent spectra. Except for the run forced through
negative viscosity (for which only one velocity field is available), statistics of all the runs in
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Run Forcing kF kmaxη kη Reλ ReL Hrel Resolution

Anh non-hel. 5.5 1.20 142 82.4 239 -2.74E-3 5123

A1
h helical 5.5 1.22 140 81.3 219 0.451 5123

A2
h helical 5.5 1.19 143 81.7 210 0.617 5123

AABC ABC 5 1.38 123 81.9 216 0.643 5123

Bh helical 3.5 1.22 139 115 396 0.617 5123

BABC ABC 3 1.45 117 116 397 0.622 5123

C1
nh non-hel. 1.5 2.71 62.6 110 432 9.61E-3 5123

C2
nh non-hel. 1.5 1.23 138 191 1208 7.38E-3 5123

C1
h helical 1.5 2.19 77.5 136 640 0.201 5123

C2
h helical 1.5 1.29 132 213 1469 0.227 5123

Dnv neg. visc. 2.5 1.94 498 430 5587 8.22E-4 20483

Table 1. Parameters used in the non-rotating simulations: kmax is the maximal resolved wavenumber (after dealiasing),
η is the Kolmogorov lengthscale and kη = 1/η. Reλ and ReL are Reynolds numbers respectively based on the Taylor scale

λ and on the longitudinal integral lengthscale L. Hrel refers to global relative helicity, i.e. in Euler-forced runs it includes

both the modes in the truncated system and the modes corresponding to wavenumbers outside the Euler sphere. Letters A,
B, C and D indicate different sets of non-rotating runs at decreasing kF , subscripts nh, h, ABC and nv stand for non-helical

Euler, helical Euler, ABC and negative viscosity forcing, respectively.

this section and in section 4 were obtained by time-averaging over at least one eddy-turnover
time after the statistically stationary state was reached. Table 1 reports the parameters of the
non-rotating runs considered in this section. We will show that anisotropy can be detected in
most cases and that its characteristics depend on the forcing nature, on the value of the forcing
wavenumber kF , and on the relative helicity of the spherically truncated system in the case of
helical Euler forcing. Different Reynolds numbers are also considered.

For the runs in set A, kF = 5.5 (Euler forced runs) and 738 modes are in the Euler sphere,
or kF = 5 (run AABC, ABC forcing) involving only 6 modes, as in all ABC-forced runs. To
allow a close comparison between all runs of the A series, we have ensured that the flow regimes
are the same in terms of Reynolds numbers. While in run Anh (non-helical Euler forced) the
largest-wavenumber forcing modes contain the same energy as the lowest-wavenumber ones, in
run A1

h (helical Euler forcing) the 48 largest-wavenumber modes (among 738 forcing modes)
hold 15% of the total energy. In comparison, in run A2

h (highly helical Euler forcing) the 48
largest-wavenumber modes hold 92% of the kinetic energy in the Euler sphere and the relative
helicity is nearly equal to that of run AABC.

We also perform simulations at a different forcing wavenumber kF : in set B, run Bh is a
helical Euler-forced run with kF = 3.5 and large relative helicity, and run BABC is an ABC-
forced run with kF = 3. Similarly to A2

h, in run Bh the 8 largest-wavenumber modes (among
178 forcing modes) hold 81% of the Euler field energy, and the relative helicity is comparable
to that of run BABC.

The non-helical and helical Euler forced runs in set C at kF = 1.5 allow to investigate the
dependence on Reynolds number. kF = 1.5 is the lowest possible forcing wavenumber allowing
non-linear interactions in the truncated system, which leads to 18 forcing modes.

Finally, run Dnv is forced through the negative viscosity method and reaches the largest
Reynolds number in the considered simulations, i.e. Reλ = 430. Since kF = 2.5, 80 modes are
forced. These data are provided by Kaneda’s group [20]. Only one instantaneous velocity field is
available and —in absence of time-averaging— the resulting spectra are not as smooth as those
from the other runs.

In terms of numerical resolution of the large scales, we note that the choice of kF affects
the integral lengthscale L, so that a possible effect of numerical confinement can appear. For
instance, [28] studied this in isotropic turbulence and [45] in the context of the Richtmyer-
Meshkov instability. Both noticed that the large scales—or equivalently the energy spectrum
close to its maximum—are sensitive to confinement effects if L becomes larger than 10% of the
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(a) (b)

Figure 3. Spherically integrated kinetic energy spectra: (a) for runs in set A (kF ' 5); (b) for runs in set C (kF = 1.5).

Spectra are shifted vertically for better view, and are compensated by the Kolmogorov inertial scaling k5/3. kF indicates

the forcing wavenumber, as in the following plots.

computational domain size. However, [28] and [45] conclude that confinement has no effect on
small-scale statistics, which is the object of our study.

In the coming sections 3.1 to 3.3, we investigate the statistics of forced turbulence, by
measuring kinetic energy, helicity and polarization spectra, and examine the possible symmetry-
breaking induced by the forcing by studying the dependence of these spectra on the polar angle.

3.1. Energy spectra and energy directional anisotropy

Figure 3 shows the spherically integrated kinetic energy spectra for runs in sets A and C. The
forcing wavenumber appears clearly as a marked peak in Fig. 3(a) (kF ' 5). In Fig. 3(b) at
kF = 1.5, all the forcing wavevectors are included in the smallest shell, so that no energy peak
is visible. The Kolmogorov inertial scaling k−5/3 appears in a wider spectral range than in
Fig. 3(a) due to higher Reynolds numbers. In both Figs. 3(a) and (b), the presence of helicity
in the forcing, and thereby of a helicity cascade, modifies the kinetic energy spectral scaling at
wavenumbers slightly larger than kF . In particular, in helical runs the energy spectra are flatter
in a small range neighbouring kF .

Figure 4 shows the direction-dependent kinetic energy spectra Ei(k) for runs of sets A and
D. At first glance, over these logarithmic plots, the inertial and small scales are isotropic since
all the curves at different orientations collapse on the spherically integrated spectrum E(k),
independently of the forcing method. Only in a vicinity of the forcing wavenumber, at large
scales, does one observe a separation between the curves. This can be both attributed to less
accurate sampling at low wavenumbers—although time-averages are used—and to the forcing.
Spectra of run AABC (bottom set in Fig. 4a) seem to be more prone to this departure from
isotropy over almost a decade of wavenumbers about the forcing one.

We however wish to focus more closely on the departure of the spectra from isotropy by inves-
tigating the relative difference between any directional spectrum and the spherically-integrated
spectrum, computed as ∆Ei(k) = (Ei(k)− E(k)) /E(k) for i = 1, · · · , 5. This quantity is plotted
in Figs. 5 (set A), 6 (set B), 7 (set C) and 8 (set D). A quick observation of these figures shows
that large-scale directional anisotropy develops in several runs. It is in particular confirmed that
small scales are generally more isotropic for the Euler-forced than for the ABC-forced runs, at
the same Reynolds number and value of kF .

More specifically, one observes that:

(1) for the same values of kF and Reλ, the Euler-forced runs display an increasing anisotropy
as their relative helicity increases (compare runs Anh, A1

h and A2
h [Fig. 5(a)-(c)]);

(2) for a similar level of helicity, the anisotropy of the Euler-forced runs is generally stronger
at decreasing kF (compare runs Anh and C1

nh [Fig. 5(a) and 7(a)] for the non-helical case,
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(a) (b)

Figure 4. Directional energy spectra Ei(k) compensated by k5/3, as functions of wavenumber k for the five angular

sectors for: (a) set A (kF = 5, 5.5); (b) run Dnv. The five sectors are indicated in legend, and the same colorcode applies
throughout the paper.

(a) (b)

(c) (d)

Run Anh Run A1
h

Run A2
h Run AABC

Figure 5. Directional anisotropy of the kinetic energy ∆Ei(k) for runs: (a) Anh; (b) A1
h; (c) A2

h; (d) AABC. The insets
focus on the large wavenumber inertial and dissipative ranges.
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(a) (b)

Run Bh Run BABC

Figure 6. Directional anisotropy of the kinetic energy ∆Ei(k) for: (a) run Bh; (b) run BABC.

or runs A2
h and Bh for the helical case [Fig. 5(c) and 6(a)]);

(3) for similar values of kF , Hrel and Reλ, the anisotropy is stronger in ABC-forced than in
Euler-forced runs (compare runs A2

h and AABC [Fig. 5(c) and 5(d)], or runs Bh and BABC

[Fig. 6(a) and 6(b)]).

All these results can be interpreted by considering the number of sufficiently excited modes in
each run: the lower this number, the more anisotropy develops. This explains straightforwardly
the aforementioned item 3. In fact, the anisotropy level is the strongest in the ABC-forced
runs since the ABC force excites directly only six modes: four in the horizontal sector and one
in each vertical sector (see equation (12)). For runs AABC (Fig. 5d) and BABC (Fig. 6b), the
kF -centered horizontal and vertical sectors hold more energy than the others. Nevertheless the
opposite happens at small scales, which is consistent with the numerical and theoretical results
given by [4,5,50,51] for highly anisotropic forcing as recalled in the introduction.

Similarly, item 1 above can be explained by the fact that, when net helicity is large in the
truncated Euler dynamics, most of the energy remains concentrated in the largest wavenumbers
so that only the corresponding modes are significantly excited by the forcing scheme. Therefore,
if the number of the largest wavenumbers is sufficiently small, a small number of modes hold
most of the energy associated to the truncated Euler system and anisotropy develops. However,
the number of largest wavenumbers does not increase monotonically with kF , and a larger value
of kF may yield larger small-scale anisotropy than a smaller value of kF . In fact, the anisotropy
level of run Bh (highly helical Euler forced, kF = 3.5, 8 largest wavenumbers) is almost as large
as that of run BABC (ABC forced, kF = 3), as seen in Fig. 6. In addition, their anisotropies
are opposite because they depend on the different orientations of wavenumbers corresponding
to the most excited modes.

We also observe in e.g. Figs. 5(a) and 7(a)-(b), that non-helical Euler-forced simulations do
not develop strong directional anisotropy. In fact, even the lowest possible forcing wavenumber
allowing non-linear interactions in the truncated system, kF = 1.5, leads to 18 forcing modes,
which have the same energy densities if the net helicity of the truncated Euler system is zero.
Furthermore, the anisotropy level of a kF = 1.5 helical Euler forced run cannot be as strong as
that in run Bh (kF = 3.5, 8 largest wavenumbers) or in runs AABC and BABC (ABC-forced, 6
forcing modes), because in the sphere of radius kF = 1.5 there are 12 largest wavenumbers (the
ones with two unitary components and one null component).

We finally investigate the influence of the Reynolds number. Figure 7 shows the energy
directional anisotropy for the non-helical runs in set C (Euler forced, kF = 1.5, at moderate
and high Reynolds numbers). The results for the helical runs C1

h and C2
h, not shown here, are

qualitatively similar. By comparing the moderate Reynolds number case in run C1
nh (Fig. 7(a))

with the higher Reynolds number case in run C2
nh (Fig. 7(b)), no obvious trend towards isotropy

is observed at increasing wavenumber and Reynolds number. Instead, for the largest Reynolds
number, anisotropy clearly increases with the wavenumber, in agreement with [4,5,50,51]. The
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(a) (b)

Run C1
nh Run C2

nh

Figure 7. Directional anisotropy of kinetic energy ∆Ei(k) for: (a) run C1
nh; (b) run C2

nh.

Figure 8. Directional anisotropy of kinetic energy ∆Ei(k) for run Dnv.
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(a) (b)

Figure 9. Directional helicity spectra Hi(k) compensated by k5/3for: (a) runs A1
h, A2

h and AABC; (b) runs C2
h and C1

h.

(a) (b)

Figure 10. Relative helicity spectra H(k)/(2kE(k)) for helical runs in: (a) set A; (b) set C.

same behavior is observed in run Dnv at an even higher Reynolds number, as shown in Fig. 8
(note that the spectra plotted in this figure have been obtained by using larger bins than in the
other cases, since no time-averaging is possible over this single velocity field snapshot).

3.2. Helicity spectra and helicity directional anisotropy

Figure 9 shows helicity directional spectra for helical runs in sets A and C. As in energy di-
rectional spectra, no small scale anisotropy can be detected from these helicity spectra, and
large scales seem to be more anisotropic in the case of ABC forcing. By comparing run A2

h
with run AABC in Fig. 9(a), one observes that the ABC-forced run displays a wider inertial
range, although the two runs have similar Reynolds numbers. Figure 10 shows relative helicity
spectra H(k)/(2kE(k)) for helical runs in sets A and C. A slope close to −1 at low wavenum-
bers indicates that energy and helicity spectra scale with the same power of k at large scales.
The observed small-scale −1/2 slope was reported in previous studies of both isotropic [29] and
rotating [31] helical turbulence. The maximal value of relative helicity is approximately 1 and
is obtained in the shells containing wavenumbers with modulus kF for all five simulations.

As for the kinetic energy, we define the normalised departure of the directional helicity
spectrum from the spherically-integrated one as ∆Hi(k) = (Hi(k) − H(k))/H(k). Figure 11
shows this for some helical runs in sets A and B. The distribution of directional anisotropy is

15



(a) (b)

(c) (d)

Run A2
h Run AABC

Run Bh Run BABC

Figure 11. Helicity directional anisotropy ∆Hi(k, θ) for: (a) run A2
h; (b) run AABC; (c) run Bh; (d) run BABC.

similar between energy and helicity (compare Fig. 11(a,b) with Fig. 5(c,d), and Fig. 11(c,d)
with Fig. 6(a,b)). Conclusions similar to those presented in section 3.1 can therefore be drawn
for helicity, that is, the ABC-forced runs display a higher level of directional anisotropy with
respect to Euler-forced runs.

In summary, by looking at the results obtained for the most anisotropic forcings, that is Figs.
5(d), 6(b), 11(b), and 11(d), that represent energy and helicity directional anisotropy for the
ABC-forced runs with kF = 5 and kF = 3, and Fig. 6(a) (directional anisotropy of the highly
helical Euler-forced run with kF = 3.5), it is clear that the anisotropy for each angular sector
is constant down to the smallest resolved scales or that it even increases with the wavenumber.
This is consistent with the results of Yeung & Brasseur [50,51] for highly anisotropic forcings.

3.3. Polarization anisotropy

We focus now on the directional dependence of z(k) through the normalised spectrum and
the normalised directional spectra of its real part, respectively <Z(k)/E(k) = (Epol(k) −
Etor(k))/E(k) and <Zi(k)/E(k) = (Epol

i (k) − Etor
i (k))/E(k). We recall that <Z(k) = 0 in

strictly isotropic turbulence.
The <Z(k)/E(k) quantity is plotted in Fig. 12 for runs of set A (the other runs, not shown,

display similar trends). In the non-helical run (Fig. 12a), <Z(k) displays the features expected
in strictly isotropic turbulence (that is, its spherically integrated spectrum and its directional
spectra vanish up to statistical uncertainty), both in the inertial and in the dissipative ranges.
Runs A1

h (Fig. 12b) and A2
h (Fig. 12c) clearly show that, in Euler forced runs, the presence of

helicity induces a slight polarization anisotropy over most of the inertial and dissipative ranges,
and that isotropy is obtained only at the smallest scales. Larger values of the polarization
anisotropy are found in the inertial range in ABC-forced (Fig. 12d) and highly helical Euler-
forced runs (Fig. 12c) due to the relatively low number of excited modes, but it is definitely
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(a) (b)

(c) (d)

Run Anh Run A1
h

Run A2
h Run AABC

Figure 12. Normalised directional polarization spectra <Zi(k)/E(k) for: (a) run Anh; (b) run A1
h; (c) run A2

h; (d) run

AABC.

larger in the ABC-forced case.

4. Anisotropy induced by rotation

In the previous section we studied the anisotropy artificially induced by forcing, which is a
necessary pre-requisite before assessing the global anisotropic structure of forced rotating tur-
bulence. In the present section, we consider rotating homogeneous turbulence which we simulate
numerically as in the previous section but setting Ω 6= 0 in Eq. (1). Anisotropy has now two
contributions: one, artificial, due to the forcing (as illustrated in section 3), and another one
inherent to the phenomenology of rotating flows per se. However—unlike in the non-rotating
case—in the presence of background rotation, the Euler and ABC forcing schemes a priori give
rise to substantially different physical systems, as explained in Section 2: in Euler-forced runs
the modes in the spherically truncated system evolve independently of the others, whereas low
wavevectors modes in ABC-forced runs are coupled with all the other modes. As a consequence,
if rotation is large enough, energy is allowed to cascade backwards. This inverse cascade, previ-
ously observed in [40], manifests as an increase of the energy in the smallest wavenumbers, and
the flow is not statistically stationary.

In this section we first investigate the effect of rotation and of helicity, and the differences
of anisotropy between ABC-forced runs, with a dual (direct and inverse) cascade, and helical
Euler-forced runs, with only forward cascade. Then we study through high resolution Euler-
forced runs the anisotropy that naturally arises because of background rotation in the absence
of inverse cascade. Both the rotation rate vector and the fixed direction n defining the Craya
frame are in the x3 direction. Table 2 reports the parameters of 5123 (set R) and 10243 (set S)
rotating runs forced through Euler and ABC schemes. In all Euler-forced runs presented in this
table, the spherically truncated Euler equation includes the Coriolis force. We also performed
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Run Forcing kF kmaxη kη kΩ Reλ ReL Roω RoL Hrel Resolution

R1
nh non-hel. 5.5 1.21 140 43.4 111 373 1.26 0.206 -6.60E-3 5123

R2
nh non-hel. 5.5 1.14 149 82.5 149 435 0.857 0.161 -2.70E-3 5123

Rh helical 5.5 1.34 127 48.0 116 307 1.10 0.228 0.522 5123

RABC ABC 5 2.42 70.2 25.7 111 351 1.13 0.195 0.591 5123

S1
nh non-hel. 5.5 1.16 295 9.01 151 808 5.91 0.605 -2.85E-3 10243

S2
nh non-hel. 5.5 1.17 290 44.1 187 959 2.03 0.216 -5.27E-3 10243

Sh helical 5.5 1.29 264 47.5 193 797 1.81 0.240 0.386 10243

Table 2. Parameters used in the rotating turbulence simulations. kΩ =
(

(2Ω)3 /ε
)1/2

is the Zeman wavenumber. Letters

R and S refer to runs at resolutions 5123 and 10243, respectively. The other definitions are the same as in Tab. 1.

Figure 13. Spherically averaged energy spectra E(k) compensated by k5/3, for runs in set R.

runs without rotation in the Euler system and observed no significant change in the small scale
anisotropy.

4.1. Effects of forcing anisotropy and inverse cascade

As shown in Table 2, runs R1
nh, Rh and RABC have comparable Reynolds and Rossby numbers,

runs Rh and RABC also have comparable relative helicity, and run R2
nh has a Rossby number

significantly lower than the other three runs. Thus, by comparing run Rh with run RABC one
can estimate the combined effect of the forcing nature and of the presence of an inverse cascade,
when turbulence is subject to a background rotation. Furthermore, the comparison of runs R1

nh
and Rh allows to study the effect of helicity, and comparing run R1

nh with run R2
nh allows to

study the effect of a decrease in Rossby number. Figures 13, 14 and 15 show the spherically
averaged energy spectra, directional energy spectra and energy directional anisotropy for runs
in set R.

Figure 13 shows that, in runs R1
nh (moderate Rossby number non-helical Euler forced) and

Rh (moderate Rossby number helical Euler forced) the slope of the energy spectrum is close
to −5/3. Since the Reynolds number is not very large, this is a consequence of weak rotation,
as argued and observed in DNS by [2]. However run RABC (moderate Rossby number ABC-
forced), which has Reynolds and Rossby numbers values comparable to those of the Euler forced
runs, shows a steeper spectrum (−7/3 slope), close to the one of run R2

nh (low Rossby number
non-helical Euler-forced). Note that a slope equal to −2.2 was already observed in [30,31] for
rotating DNS forced through the ABC forcing.

Figure 14 shows the direction-dependent kinetic energy spectra for the same runs. From this
energetic point of view, wavevectors closer to the horizontal plane k ·Ω = 0 (red curves) hold
more energy than wavevectors closer to Ω (blue curves), thereby indicating a trend towards two-
dimensionalisation as expected in the presence of rotation. Directional anisotropy is larger at
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Figure 14. Directional energy spectra Ei(k), compensated by k5/3 for runs in set R. Markers indicate the Zeman scale

kΩ =
√

(2Ω)3 /ε.

(a) (b)

(c) (d)

Run R1
nh Run R2

nh

Run Rh Run RABC

Figure 15. Relative directional anisotropy of kinetic energy ∆Ei(k) for: (a) run R1
nh; (b) run R2

nh; (c) run Rh; (d) run
RABC.
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Run R1
nh Run R2

nh

Run Rh Run RABC

(a) (b)

(c) (d)

Figure 16. Real part of polarization normalised by the energy spectrum for: (a) run R1
nh; (b) run R2

nh; (c) run Rh; (d)

run RABC.

large scales than at small scales, as shown by the departure between the less energetic vertical
orientation (θ ' 0) and the more energetic horizontal orientation (θ ' π/2) of wavevector.
However, the small scales are still significantly anisotropic. In fact, for runs in set R, the Zeman
wavenumber kΩ is relatively large: observing anisotropy at all scales is therefore consistent with
the classical dimensional argument according to which isotropy should be obtained only at scales
significantly smaller than the Zeman scale [12,31,52].

Second, considering only the relative anisotropy in the energy spectrum, we compute the
scale-normalised departure between each directional spectrum and the corresponding average
spectrum, ∆Ei(k) = (Ei(k) − E(k))/E(k). Figure 15 shows this quantity for the four runs of
set R. It confirms that the relative anisotropy persists through the inertial scales down to the
smallest ones, and that the difference between E1(k) and E5(k) is up to 100% for the strongly
rotating non helical Euler-forced flow (run R2

nh, Fig. 15(b)), and 50% for the other runs. The
energy directional anisotropy inherently induced by the ABC forcing and evidenced in Section
3 is partly concealed in the anisotropy due to large rotation, as observed when comparing Figs.
15(c) (helical Euler forced) and 15(d) (ABC forced). The effect of helicity can be deduced by
comparing Figs. 15(a) and 15(c), which shows that the presence of helicity has no significant
effect on small scale anisotropy. Note finally that the presence of the inverse cascade has no
clear effect on small-scale energy directional anisotropy (compare Figs. 15c and d).

The third quantity, plotted in Fig. 16 for runs in set R, is the normalized directional
anisotropy of the real part of polarization <Z(k)/E(k). It is proportional to the difference
between poloidal and toroidal energy, as explained in section 2.1.1 (see also [8,12,14]). When
rotation is strong enough, wavevectors close to the horizontal plane hold much more energy than
wavevectors close to Ω and this quantity provides information on the structure of turbulence
at the considered scale. This concentration of energy is observed for runs in set R in Fig. 15.
Fig. 16 shows that for all the runs the real part of the spherically averaged polarization is neg-
ative at small wavenumbers (close to kF ), and positive at larger wavenumbers, which indicates
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(a) (b)

Figure 17. Helical shell-Euler forced run: the truncated system includes wavenumbers such that 4.6 ≤ k ≤ 5.4 and does

not include the Coriolis force. The parameters of the simulation are Reλ = 180, Roω = 1.13, Hrel = 0.50. (a) Directional

energy spectra; (b) real part of polarization normalised by the energy spectrum.

that at large scales the toroidal energy is greater than the poloidal one, while at small scales the
opposite happens. This is related to the presence of large scale “vortical” structures and of small
scale “jetal” structures. Upon comparing Figs. 16(a) and (b), one sees that increasing rotation
increases the normalised polarization anisotropy, which is largest in the equatorial plane and
vanishes in the axial direction, with a monotonous dependence in between.

In runs R2
nh (non-helical high-rotation Euler-forced, Fig. 16b), the real part of polarization

reaches a maximum before decreasing towards the smallest dissipative scales, although not
reaching isotropy at the largest resolved wavenumber kmax. In comparison, the slower rotating
case (run R1

nh) presented in Fig. 16(a) maintains moderate polarization anisotropy down to the
smallest scales, a behaviour similar to that of the helical case (Rh) of Fig. 16(c), even though the
presence of helicity clearly increases small scale polarization anisotropy. Run RABC (moderate
rotation ABC-forced, Fig. 16d), shows a polarization anisotropy level similar to that of run R2

nh.
Therefore, although the relative helicity and the Reynolds and Rossby numbers of the ABC-

forced run RABC (Fig. 16d) are similar to those of run Rh (Fig. 16c), the polarization anisotropy
of the former is much higher than that of the latter. The level of this anisotropy for run RABC

is comparable to that obtained with a stronger rotation in Euler-forced runs (Fig. 16(b)).
At this point, one may wonder if the differences observed between ABC-forced and Euler-

forced simulations depend mainly on the intrinsic anisotropy of the ABC force or on the presence
of an inverse cascade. In order to answer this, we also performed a helical shell-Euler-forced
rotating run (Fig. 17), in which the truncated system includes only modes corresponding to
wavenumbers k such that 4.6 ≤ k ≤ 5.4. Figure 17(a) shows the corresponding energy directional
spectra and spherically-integrated spectrum, the slope of the latter is clearly stronger than
−5/3 (we observe approximately k−8/3 for this run). Therefore, while an inverse cascade does
not affect substantially energy directional anisotropy, the reason for a steeper energy spectrum
slope in ABC forced runs is just the presence of an inverse cascade, absent in standard Euler-
forced runs (forced for k < kF ). The polarization anisotropy for the shell-Euler-forced run,
shown in Fig. 17(b), is larger than that of the equivalent Euler-forced run without inverse
cascade (Fig. 16c), but smaller than the ABC-forced run (Fig. 16d). The increased polarization
anisotropy in ABC-forced rotating runs therefore seems to be induced both by the intrinsic
anisotropy of the ABC forcing and by the presence of an inverse cascade.

Of course in a forced simulation with inverse cascade energy increases with time at large
scales, and therefore at some time the integral lengthscale L is too large with respect to the
box size and confinement effects cannot be neglected any longer. For the shell-Euler run and
run RABC—and in the considered time interval—L is about 20% of the box size, slightly larger
than the threshold value indicated in [28,45]. However, in this section we analysed statistics in
the inertial and dissipative ranges, and therefore the related results are only negligibly sensitive
to confinement [28].
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Figure 18. Directional energy spectra Ei(k) for runs in set S. Markers indicate the Zeman scale kΩ =
√

(2Ω)3 /ε.

4.2. Effect of rotation in higher Reynolds number cases

In this section we study the anisotropy that naturally arises in the presence of background
rotation through 10243 resolution simulations, i.e. considering runs in set S that have larger
Reynolds numbers than those of set R (see Tab. 2). Run S1

nh also has smaller Zeman wavenumber,
and thus allows to study the anisotropic features of scales much smaller than the Zeman scale.

The directional energy spectra for runs of set S are plotted in Fig. 18. A wide inertial range
is observed, with a slope close to −5/3 for runs S1

nh and Sh due to weak rotation. At first glance,
in the lowest rotation case (run S1

nh) directional spectra collapse on the spherically integrated
spectrum and small scales seem to return to isotropy.

Fig. 19 shows the relative directional energy anisotropy for runs S1
nh and S2

nh (there is no
substantial difference in energy directional anisotropy between runs Sh and S1

nh). Surprisingly,
it shows that, notwithstanding the Reynolds number increase with respect to set R, the relative
anisotropy stays roughly constant down to the smallest scales, after decreasing over the upper
inertial spectral subrange. Even in the largest Rossby number case, run S1

nh (Fig. 19a), the
amplitude of the relative energy departure at small scales is still significant and much larger
than the anisotropy induced by forcing in absence of rotation (compare Fig. 19a with Fig. 5a).
A second important observation is that there seems to be two subranges in the inertial spectral
range over which anisotropy behaves differently. In the first one (smallest wavenumbers), the
relative anisotropy for all sectors decreases with wavenumber. Then, for wavenumbers greater
than an intermediate value, the relative anisotropy remains roughly constant. The separating
wavenumber is clearly larger than kΩ for run S1

nh (large Rossby number) and is close to kΩ for
the other runs, S2

nh and Sh, which have moderate Rossby numbers. Therefore, it is not clear how
the separating scale between these two anisotropic ranges depends on the Zeman wavenumber.

Finally, we present helicity directional spectra and directional anisotropy in Figs. 20(a)
and (b), respectively. These figures show that helicity directional isotropy is reached at some
intermediate wavenumber, but that it disappears for larger wavenumbers. Similarly to energy, at
small scales, sectors closer to the horizontal plane hold more helicity. Figure 20(c) also displays
the relative helicity spectrum of every sector, Hreli(k) = Hi(k)/ (2kEi(k)). From the viewpoint
of relative helicity, no directional isotropy is obtained, and—no matter the scale—sectors closer
to the horizontal plane hold lower relative helicity. Therefore, even if both energy and helicity
are concentrated in more horizontal wavevectors, the relative contents of helicity is larger for
the less energetic and more vertical wavevectors.
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(a) (b)

Run S1
nh Run S2

nh

Figure 19. Energy directional anisotropy ∆Ei(k) for: (a) run S1
nh; (b) run S2

nh.

(a) (b)

(c)

Figure 20. (a) Directional helicity spectra H(k, θ) compensated by k5/3, (b) helicity directional anisotropy ∆Hi(k), (c)
relative helicity directional spectra Hreli(k) = Hi(k)/ (2kEi(k)), for run Sh.
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5. Threshold wavenumber between two anisotropic ranges

Recall from the introduction that if the kinematic viscosity ν tends to zero (and the Reynolds
number tends to infinity), both η and rΩd tend to zero. The only relevant small-scale charac-
teristic lengthscale is then the Zeman scale rΩ, which is the scale at which the characteristic
rotation time equals the characteristic inertia time. For this reason, according to classical di-
mensional arguments [12,31,52], in the asymptotically inviscid limit, scales much larger than rΩ

should be strongly affected by rotation and should therefore be more anisotropic, while scales
much smaller than rΩ are expected to be dominated by the nonlinear dynamics and to have
isotropic properties. However, only finite Reynolds number turbulence can be tackled through
simulations and experiments, and very large Reynolds numbers are needed to achieve a good
scale separation. DNS by [12,31] seem to confirm return to isotropy at small scales, while in
experiments by [25] the anisotropy is found to be stronger at small scales. In particular, in
the forced rotating simulation of [31] isotropization seems to occur at a precise wavenumber
(close to kΩ). In [12], in which decaying rotating turbulence is investigated, isotropy is obtained
only if rotation is weak enough, and a link between kΩ and the wavenumber corresponding to
maximum anisotropy is observed. Therefore, both the anisotropic character of small scales and
the role of the Zeman scale are not fully understood.

In section 4, our analysis—that uses normalised indicators and includes simulations with
different Rossby numbers—shows no return to isotropy, in contrast with previous numerical
results [12,31] but in agreement with experiments [25]. Nevertheless, even if isotropy is not
obtained at small scales in our simulations, two different anisotropic ranges with qualitatively
different anisotropic features can be identified (see e.g. Figs. 18 and 19). The low-wavenumber
range shows large anisotropy decreasing with wavenumber, while the anisotropy level at larger
wavenumbers is significantly lower, although not zero. Then, one may wonder if the threshold
wavenumber between these two ranges has a specific physical interpretation. In order to answer
this question, we analyse a larger number of Euler-forced runs (17 runs with 5123 resolution
and 6 runs with 10243 resolution), with Roω ranging from 0.69 to 9.6, Reλ ranging from 73.9
to 414, and scale separation rΩ/η ranging from 1.3 to 68. Note that this set also includes runs
with different forcing scales (kF = 1.5, 3.5 and 5.5), different relative helicity (ranging from 0
to 0.84), and runs that include or not the Coriolis force in the spherically truncated system.

First, we define a systematic method to compute the threshold wavenumber kT , separating
small-wavenumber (large anisotropy) and large-wavenumber (low anisotropy) ranges. Then,
we investigate its dependence on the other parameters of the flow and look for a physical
interpretation for kT .

Since for every run five energy directional-anisotropy indicators ∆Ei(k) are available, we
first reduce them to a single indicator a(k) as

a(k) =
1

5 〈∆Ei〉

5∑
i=1

(∆Ei(k)− 〈∆Ei〉)1/2. (15)

This definition of a(k) permits to characterize the dispersion of ∆Ei(k) by taking the standard
deviation for each k. We have checked that another definition of a(k) gives very similar results,
so that our conclusions below are robust.

Figure 21 shows the anisotropy indicator a(k) corresponding to run S2
nh (Fig. 19b). In all

rotating runs we found that a(k) quickly decreases with wavenumber at large scales, reaches a
minimum and then slowly increases with wavenumber up to the dissipative scales. Therefore,
we compute kT as the wavenumber corresponding to the minimum of a(k), after smoothing.

As a first attempt, it is natural to investigate the dependence of kT on the Zeman wavenum-
ber kΩ, with the purpose of checking the existence of a range in which kT ∼ kΩ. In Fig. 22(a),
kT /kη is plotted as a function of kΩ/kη. For kΩ/kη . 1/4 (weak or moderate rotation), kT /kη
clearly increases with kΩ/kη, with a power law of exponent 1/3. For larger values of kΩ/kη,
markers are more scattered, and no clear trend is observed. One possible explanation for the
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Figure 21. Anisotropy indicator (defined by Eq. (15)) for run S2
nh.

(a) (b)

Figure 22. kT /kη plotted as a function of (a) kΩ/kη , (b) kΩd/kη . For comparison, the slope corresponding to kT ∼ kΩ

is shown too.

existence of these two regimes is that, if rotation is too strong (or equivalently kΩ/kη is too
large), the threshold wavenumber kT is located in the dissipative range, whereas in the op-
posite case it is in the inertial range. These two ranges are phenomenologically different, and
different laws can be expected in the two cases. The rest of our discussion will be performed in
the regime kΩ/kη . 1/4, in which kT /kη ∼ (kΩ/kη)

1/3. This amounts to discarding the lowest
Rossby number runs.

In short, Fig. 22(a) shows two important results: first, depending on the closeness of kΩ to
kη two subranges with different behaviours are observed and second, in the low kΩ range, kT

scales as k
1/3
Ω k

2/3
η . In this regime, kT is therefore not proportional to kΩ, and depends on the

dissipative scale as well. Recalling from the introduction that, from the definitions of kΩd, kΩ

and kη, kΩd = k
1/3
Ω k

2/3
η , this means that kT scales as kΩd. This result is confirmed by Fig. 22(b),

which furthermore shows that the factor between kT and kΩd is close to 1, therefore:

kT ≈ kΩd =

(
2Ω

ν

)1/2

. (16)

This relation identifies kT as the wavenumber at which the rotation time equals the character-
istic dissipation time, provided that kΩ/kη is not too large (in practice, kΩ . kη/4). In other
words, at small wavenumbers anisotropy quickly decreases with the wavenumber, then reaches a
minimum at k ≈ kΩd, after which it slowly increases up to the dissipative scales. Also recalling
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(a) (b)

Figure 23. (a) kT /kΩ plotted as a function of Roω , (b) kT /kF plotted as a funcion of kΩ/kF .

Figure 24. Dependence of the kT scaling law on the Reynolds number.

from the introduction that, under the hypothesis ω′ ∼ νk2
η, Ro

ω should scale as (kη/kΩ)2/3,
Eq. (16) yields: kT ∼ kΩRo

ω. To check this, kT /kΩ is plotted as a function of Roω in Fig. 23(a).
Again, this scaling is satisfied for the data corresponding to kΩ < kη/4, and the proportionality
factor is close to 1.

In order to make sure that the scaling law found above is not artificially induced by the
forcing, further investigation is required. If rotation is too weak, the threshold wavenumber
kT may be close enough to kF for the forcing scheme to affect its value. In Fig. 23(b), kT /kF
is plotted as a function of kΩ/kF (runs for which kΩ > kη/4 are not included). No trend is
visible from these data, so that no forcing effect is detected. Such an effect might, however, be
evidenced in simulations with larger forcing wavenumber or larger Rossby number.

Finally, we investigate the dependence of the kT scaling law on the Reynolds number, see
Fig. 24 in which kT / (kΩRo

ω) is plotted as a function of Reλ. As already shown in Fig. 23(a),
this quantity is always close to one. Moreover, there is no correlation between it and Reλ. It
seems therefore that, in the range covered by our runs, the scaling law of kT (Eq. (16)) does
not depend on the Reynolds number.

Note that in the asymptotic inviscid limit, according to our scaling law, kT ∼ kΩd →∞
and thus only the low-wavenumber anisotropic range (k < kT ) should persist. In this range
anisotropy decreases with wavenumber, which is consistent with the classical argument according
to which isotropy should be obtained at scales infinitely smaller than the Zeman scale (if the
minimum of a(k) tends to zero).
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6. Summary and conclusions

In this work, we have investigated the effect of three large-scale spectral forcing methods, namely
the Euler, the ABC and the negative viscosity forcing schemes, on the anisotropy of turbulence.
We have first considered the case of turbulence believed to be isotropic and we have quantified
the scale dependent anisotropy of the flow, before considering rotating turbulence in which
anisotropy is naturally produced by the action of the Coriolis force.

Since isotropy or anisotropy of turbulence concerns all the scales in the flow, we have pro-
posed to not merely quantify it by one-point statistics, but by multiscale statistics. We have thus
considered refined two-point statistics by decomposing the spectral velocity tensor into different
contributions: energy, helicity and polarization spectral densities. Moreover, we have computed
directional spectra by partial integration of these spectral densities over five sectors. The di-
rectional energy spectra allow for instance to distinguish trends towards bidimensionalization
or vertically-sheared horizontal flows. Helicity spectra further indicate the helical contents at
the considered scale or wavenumber. And finally, the less commonly used polarization spec-
trum testifies of the local structure of the flow at a given scale, through the difference between
toroidal and poloidal energy. Overall, these three direction-dependent spectra contain the com-
plete information for characterizing axisymmetric turbulence at the level of two-point velocity
correlations.

First, for non-rotating turbulence, we have shown that energy and helicity directional
anisotropies can arise at all scales under the effect of forcing, when the number of excited
modes is too low or when few of the forcing modes hold enough energy with respect to the
others. As a consequence, the ABC forcing scheme always affects directional anisotropy since,
regardless of the forcing wavenumber kF , it only excites six modes. On the contrary, the Euler
forcing is not bound to exciting a limited number of modes. In fact, even if the relative helicity
is very large (so that the energy is concentrated in the largest forced wavenumbers), one can
always set a suitable value of kF such that the induced anisotropy is negligible. Our implemen-
tation of Euler forcing is original in the sense that it can be achieved with any choice of kF and
the amount of helicity injected in the flow can be controlled, whereas previous implementations
were limited to kF = 1.5 and non-helical turbulence. We have shown that polarization direc-
tional anisotropy can develop as well in forced turbulence expected to be isotropic, but that it
gradually decreases at increasing wavenumber so that it is negligible at small scales.

Second, we considered forced homogeneous turbulence subject to external rotation. The flow
dynamics is then influenced both by the large-scale synthetic forcing and by the background
rotation. We showed that in the ABC-forced rotating simulations the energy spectrum slope is
altered. The reason is that, in presence of rotation, the ABC forcing allows energy to cascade
backwards. Furthermore, the polarization anisotropy level is similar to that obtained at lower
Rossby numbers in Euler-forced runs with no inverse cascade. This last result is partly due to
the anisotropic nature of the ABC forcing and partly to the inverse cascade.

We then showed that, in rotating turbulence, energy and helicity directional anisotropies
are present at the smallest scales of the flow even at large Rossby numbers (even though the
anisotropy level decreases at increasing Rossby number). However, two different wavenumber
ranges, in which anisotropy evolves differently, were evidenced: directional anisotropy decreases
at increasing wavenumber at large scales, then becomes minimal at an intermediate wavenum-
ber before slowly increasing with wavenumber up to the dissipative scales. The characteristic
lengthscale separating these two ranges is not the Zeman scale (at which rotation effects are of
the order of inertial ones). When it is large enough, we rather identified it as the scale at which
dissipative effects are of the same order as those of rotation. This provides not only a qualita-
tive but also a quantitative threshold separating the two anisotropic subranges. This behaviour
is observed consistently at all the Reynolds numbers and for all the different configurations
we have examined. In the asymptotic limit of infinite Reynolds number, our results predict
that anisotropy monotonically decreases at increasing wavenumber, a scenario consistent with
the classical dimensional argument according to which isotropy should be obtained at scales
infinitely smaller than the Zeman scale.
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