
HAL Id: hal-01630065
https://hal.science/hal-01630065

Submitted on 25 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A High-Speed Accelerator for Homomorphic Encryption
using the Karatsuba Algorithm

Vincent Migliore, Cédric Seguin, Maria Méndez Real, Vianney Lapotre,
Arnaud Tisserand, Caroline Fontaine, Guy Gogniat, Russell Tessier

To cite this version:
Vincent Migliore, Cédric Seguin, Maria Méndez Real, Vianney Lapotre, Arnaud Tisserand, et al.. A
High-Speed Accelerator for Homomorphic Encryption using the Karatsuba Algorithm. ACM Trans-
actions on Embedded Computing Systems (TECS), 2017, 16 (5s), �10.1145/3126558�. �hal-01630065�

https://hal.science/hal-01630065
https://hal.archives-ouvertes.fr

138

A High-Speed Accelerator for Homomorphic Encryption

using the Karatsuba Algorithm

VINCENT MIGLIORE, CÉDRIC SEGUIN, MARIA MÉNDEZ REAL, VIANNEY LAPOTRE,
ARNAUD TISSERAND, CAROLINE FONTAINE, and GUY GOGNIAT, Univ. Bretagne-Sud,

UMR CNRS 6285, Lab-STICC, F-56100 Lorient, France

RUSSELL TESSIER, Department of Electrical and Computer Engineering, University of Massachusetts,

Amherst, MA, USA

Somewhat Homomorphic Encryption (SHE) schemes can be used to carry out operations on ciphered data.

In a cloud computing scenario, personal information can be processed secretly, inferring a high level of con-

fidentiality. The principle limitation of SHE is the size of ciphertext compared to the size of the message.

This issue can be addressed by using a batching technique that “packs” several messages into one cipher-

text. However, this method leads to important drawbacks in standard implementations. This paper presents a

fast hardware/software co-design implementation of an encryption procedure using the Karatsuba algorithm.

Our hardware accelerator is 1.5 times faster than the state of the art for 1 encryption and 4 times faster for 4

encryptions.

CCS Concepts: • Security and privacy → Public key encryption; Hardware security implementation;

• Hardware → Hardware accelerators;

Additional Key Words and Pharses: Homomorphic Encryption, Karatsuba, hardware accelerator, FV

ACM Reference format:

Vincent Migliore, Cédric Seguin, Maria Méndez Real, Vianney Lapotre, Arnaud Tisserand, Caroline Fontaine,

Guy Gogniat, and Russell Tessier. 2017. A High-Speed Accelerator for Homomorphic Encryption using the

Karatsuba Algorithm. ACM Trans. Embed. Comput. Syst. 16, 5s, Article 138 (September 2017), 17 pages.

https://doi.org/10.1145/3126558

1 INTRODUCTION

Homomorphic Encryption (HE) is a recent promising tool in modern cryptography that supports
operations on encrypted data. This property allows for the protection of private and sensitive data
in a cloud computing scenario. Figure 1 provides a flowchart of a basic Homomorphic cloud service.
Historically speaking, early cryptographic schemes presented partial homomorphic properties, for
multiplication [1] and addition [2]. Only after the approaches in [3] and [4] were presented was it
possible to support both types of operations at the same time. These schemes have been followed
by many other related contributions.

This article was presented in the International Conference on Hardware/Software Codesign and System Synthesis

(CODES+ISSS) 2017 and appears as part of the ESWEEK-TECS special issue.

Authors’ addresses: V. Migliore, C. Seguin, M. M. Real, V. Lapotre, A. Tisserand, and G. Gogniat, Université de Bre-

tagne Sud, Rue de Saint-Maudé, 56100 Lorient; emails: {vincent.migliore, cedric.seguin, maria.mendez, vianney.lapotre,

arnaud.tisserand, guy.gogniat}@univ-ubs.fr; C. Fontaine, Institut Mines-Telecom Atlantique, Campus de Brest, Technopôle

Brest-Iroise, 29238 Brest; email: caroline.fontaine@imt-atlantique.fr; R. Tessier, University of Massachusetts, 134 Marston

Hall, Amherst, MA 01003; email: tessier@umass.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2017 ACM 1539-9087/2017/09-ART138 $15.00

https://doi.org/10.1145/3126558

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 138. Publication date: September 2017.

https://doi.org/10.1145/3126558
mailto:permissions@acm.org
https://doi.org/10.1145/3126558

138:2 V. Migliore et al.

Fig. 1. Flow of an homomorphic cloud service.

Most promising Fully Homomorphic Encryption (FHE) schemes base their arithmetic on a ring
of polynomials with integer coefficients [5], [6], [7], [8], [9], [10]. Each operation requires a double
reduction: a modular reduction by an irreducible polynomial, typically required after each poly-
nomial multiplication, and an integer reduction on each polynomial coefficient.

A key aspect of Homomorphic Encryption is the representation of messages. A message can
be seen as a binary value, or an integer if it has more than one bit. If messages are represented
as integers, only integer additions, subtractions and multiplications are possible. This list excludes
standard operators like comparison. To enable such operations, it is necessary to switch to a binary
message representation. The maximum value of a message is called the message space.

A second aspect of Homomorphic Encryption is the size of the encrypted data. Depending on
the complexity of the cloud service, the cipher size can vary from a few KB to a few MB for 1
message (which can be binary). To address this penalty, two main solutions exist: transciphering
and batching.With transciphering, data is sent to the server using standard symmetric encryption
and then is decrypted on the server-side with homomorphic encryption. This operation requires a
symmetric secret key, which is sent to the server encrypted with homomorphic encryption. This
technique is not in the scope of this paper, but the reader can refer to [11] for further information.
With batching, several messages are “packed” within one ciphertext using the Chinese Remainder
Theorem (CRT) [12]. When homomorphic operations are computed on the server side, operations
are executed for each message in parallel. Thus, the size of encrypted data per bit of information
is reduced by the number of messages packed.

In practice, actual implementations of homomorphic encryption cannot perform batching effi-
ciently due to the limitations of the standard algorithm used for such computation, i.e the NTT
algorithm [13]. To perform a batching operation, the irreducible polynomial chosen for the FHE
scheme must be factorizable in the message space. In particular, xn + 1, the most efficient choice
for NTT, is only factorizable for integer messages and not binary ones, and to our knowledge there
is no efficient alternative. Without batching, NTT is a very powerful tool because once polynomi-
als are converted to their NTT form, all computations are performed modulo xn + 1 and thus, one
can perform all required computations in this form.

In the batching case, the drawback is very significant. First, one needs to double the num-
ber of NTT points to avoid performing polynomial reduction during computations. Second, each

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 138. Publication date: September 2017.

A High-Speed Accelerator for Homomorphic Encryption using the Karatsuba Algorithm 138:3

polynomial multiplication must perform one NTT, one component-wise multiplication, and then
one inverted NTT. This process is in contrast to the no-batching case where polynomials remain
in NTT form. On the client side, because computing capacity is limited, this drawback can become
very costly. As a consequence, the well known SEAL library only implements batching for non bi-
nary messages, which reduces the interest of the implementation for many algorithms. In practice,
few approaches use hardware to target homomorphic encryption with batching for binary mes-
sages due to the incompatibility with NTT. To our knowledge, only [14] and [15] provide complete
accelerators with batching, although the former focuses on the server side only and the latter only
targets complex homomorphic algorithms. In this paper, we provide the first batching compliant
implementation of homomorphic encryption on the client side using the Karatsuba algorithm [16],
and compare our results to the latest homomorphic libraries. The implementation greatly extends
the work in [15] with important modifications to adapt the computation to the encryption both in
terms of software and hardware. The main contributions of this work are as follows:

• Encryption step acceleration using a hardware/software co-design approach that leverages
the Karatsuba algorithm (up to 4 ciphers in parallel).

• High performance software computations using vector programming (AVX2/SSE4.2 and
NEON).

Compared to the server-side accelerator [15] in which parallel operations could not be per-
formed due to the complexity of the homomorphic multiplication, we have exploited the polyno-
mial arithmetic simplicity of the encryption operation to parallelize our design. Thus, the main
challenge of this work was simultaneously dealing with a larger hardware design and much larger
transfers between hardware and software. This limitation has been addressed by exploiting the
structure of polynomials in Homomorphic Encryption.

This paper is organized as follows. Section 2 provides notation and basic mathematical knowl-
edge about encryption and the Karatsuba algorithm. Section 3 describes the hardware and software
accelerator architecture. Section 4 presents implementation results and compares them with a state
of the art software implementation. Section 5 summarizes and concludes the paper.

2 THEORETICAL BACKGROUND

2.1 Notation

In the following, a polynomial is represented in uppercase and its coefficients in lowercase. For
polynomial A, ai represents its ith coefficient. A vector of polynomials is noted in bold. For vec-
tor A, A[i] is the ith polynomial of the vector. For set R and polynomial A, A← UR represents a
uniformly sampled polynomial in R, A← χσ is a polynomial sampled in a discrete Gaussian dis-
tribution with standard deviation σ and BR a very narrow discrete Gaussian distribution in which
polynomials have binary coefficients. For coefficient ai of polynomial A, ai, (j ..k) corresponds to
the binary string extraction of ai between bits j and k . This notation is extended to polynomial A
where A(j ..k) is the sub-polynomial in which the binary string extraction is applied to each coef-
ficient. A modular reduction by an integer q is [·]q . For integer a, �a�, �a� and �a� operators are
floor, ceil and nearest rounding operations, respectively. This notation is extended to polynomials
by applying the operation on each coefficient. For vectors A and B, 〈A,B〉 represents

∑
A[i]B[i].

In the following, polynomials have coefficients in Zq , i.e. integer coefficients in [0,q[.

2.2 Ciphering

This paper focuses on the encryption operation for the Ring-Learning With Error (R-LWE) [17]
based schemes, and in particular the Fan Vercauteren (FV) [7] scheme. The basic idea of R-LWE is to

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 138. Publication date: September 2017.

138:4 V. Migliore et al.

hide a secret by using a noisy distribution. For a secret polynomial S ← BR and noisy polynomials
A← UR and E ← χR , a R-LWE sample is the couple (−A · S + E, A). In the case of FV, Skey = S
is the secret key and Pkey = (−A · S + E,A) is the public key. For an integer t such as a message
m ∈ [0, t[(integer message), the encryption operation is performed as follows:

C =

([
Δm + Pkey[1]U + E1

]
q
,
[
Pkey[2]U + E2

]
q

)
(1)

with U ← BR , (E1,E2) ← χ 2
R and Δ = �q/t�. If the noise term EU + E1 + SkeyE2 is below Δ/2, the

message can be decrypted without error. In the following, we set t = 2 which is a common choice
in the literature. In particular, it allows a wide range of operations (such as comparison) instead of
just integer addition, subtraction and multiplication (i.e. when t > 2).

To accelerate this operation, we use a software/hardware co-design implementation of a polyno-
mial multiplication algorithm which is based on the Karatsuba algorithm. For ciphering, Karatsuba
efficiently performs Pkey[1]U and Pkey[2]U operations. In addition, high-speed binary polynomial
generation and a discrete Gaussian sampler are required to generate U , E1 and E2. However, we
decided to do not include these primitives in the scope of this work as we believe a more mature
background is required.

2.3 The Batching Technique

The arithmetic of R-LWE schemes must perform polynomial operations modulo an irreducible
polynomial in Zq (usually chosen in the literature as a cyclotomic polynomial for security con-
cerns). Some cyclotomic polynomials have an additional property, they are reducible in Z2. If each
factor is unique and has a multiplicative order of 1, then the batching technique is possible. For-
mally, for a vector of k messages m and a given irreducible polynomial Φ in Zq compatible with
batching, the batching polynomial M can be expressed as:

M =
k∑

i=1

mi · S i · Φi mod Φ, with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ ≡
k∏

i=1

φi mod 2

Φi =
Φ

φi

S i ≡ Φ−1
i mod φi

(2)

To recover the ith message, it suffices to perform

mi ≡ M mod φi (3)

mi is called the residue polynomial. Then, for two batching polynomials Ma and Mb , polynomial
additions, subtractions and multiplications, perform the same operation between residue polyno-
mials in parallel.

As stated in Section 1, the best choice for NTT is the cyclotomic polynomial xn + 1. With
such parameters, NTT can be adapted to compute polynomial modular reduction during com-
putations (called Negative Wrapped Convolution). However, the factorization of xn + 1 in Z2 is
(x + 1)n . So this polynomial is not compatible with batching due to the unique factor and the mul-
tiplicative order. NTT Positive Wrapped Convolution is the current alternative. It performs poly-
nomial arithmetic modulo xn − 1 during computations. However, xn − 1 is not compatible with
homomorphic encryption because it is clearly reducible (1 is an obvious root). This greatly penal-
izes NTT, which requires several adaptations. First, the number of points of the NTT algorithm
must be twice as large versus the Negative Wrapped Convolution case to not perform polynomial
reduction. This issue is quite critical when the degree is slightly higher than a power of two. For

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 138. Publication date: September 2017.

A High-Speed Accelerator for Homomorphic Encryption using the Karatsuba Algorithm 138:5

example, for degree-3000 polynomial multiplication, the required NTT has 2 × 4096 = 8192 points.
Second, modular reduction by a cyclotomic polynomial Φ must be carried out. This implies a need
to perform an inverted-NTT, a modular reduction, and then an NTT.

These limitations show that NTT has important issues dealing with batching. This issue
motivates our architecture based on the concurrent polynomial multiplication algorithm called
Karatsuba. Karatsuba does not suffer from batching limitations and it is possible to adapt the
algorithm to various polynomial sizes.

2.4 Karatsuba Algorithm

The Karatsuba algorithm is an improvement on the standard polynomial multiplication algorithm
which reduces the number of sub-products. In SHE, polynomials have the same number of coeffi-
cients, and our setup always provides an even number of coefficients. Thus, in the following, we
only discuss the Karatsuba algorithm with these constraints. Input polynomials A and B of degree
n − 1 are split into two parts of equivalent size, n

2 coefficients. Let AH and AL be two polynomials
composed of the coefficients of the highest degree of A and the lowest degree of A, respectively.
BH and BL are constructed using the same approach. Input polynomials can now be expressed as
A = AL +AHx

n/2 and B = BL + BHx
n/2.

WhenA and B are multiplied using the standard approach, the resulting decomposition is given
by:

A × B = (AL +AHx
n/2) (BL + BHx

n/2)

= ALBL + (ALBH +AHBL)xn/2 +AHBHx
n

(4)

Karatsuba optimization exploits the fact that the middle factor (ALBH +AHBL) can be cleverly
computed as (AL +AH) (BL + BH) −ALBL −AHBH . ALBL and AHBH are already computed and
do not require additional multiplications.

In total, Karatsuba requires 3 sub-polynomial multiplications instead of 4, at a cost of
two pre-computations, (AH +AL) and (BH + BL), and two post-computations for the recon-
struction of the middle factor. These pre- and post-computations only require additions and
subtractions. To further reduce the complexity of the polynomial multiplication, one can apply
recursively the Karatsuba algorithm to each sub-polynomial multiplication, ALBL , AHBH and
(AH +AL) (BH + BL). The number of times that the Karatsuba algorithm is applied is called
the number of Karatsuba recursions. After several Karatsuba recursions, one has to perform
many low degree polynomial multiplications instead of a large polynomial multiplication. This
recursiveness allows computation sharing between software and hardware. For example, several
recursions can be performed in software and the remaining ones in hardware.

Because each Karatsuba recursion halves the size of sub-polynomials, Karatsuba can achieve
polynomial multiplication of degree 2r (p + 1) − 1, where r is the number of Karatsuba recursions
and p the degree of the smallest sub-polynomial.

3 ACCELERATOR ARCHITECTURE

3.1 High-Level Overview

We based our architecture on the design in [15] which uses Karatsuba algorithm to accelerate
server-side operations. This work uses the same Homomorphic Encryption setup (e.g. degree-
2559 polynomials with 125-bit coefficients) to speed-up client-side operations, in particular the
ciphering. Figure 2 presents the flow of the proposed accelerator that supports 4 parallel encryp-
tions. The accelerator operates as follows: Six Karatsuba pre-recursions are computed in software
and three are performed in hardware. After software pre-computations for each input polynomial,

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 138. Publication date: September 2017.

138:6 V. Migliore et al.

Fig. 2. Flow of the encryption operation in our architecture, where i ∈ {1, 2} represents the ith member of
the ciphertext C. Values Pkey[i],U , and Ei are, respectively, the public key, a binary sampled polynomial and
a Gaussian sampled polynomial.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 138. Publication date: September 2017.

A High-Speed Accelerator for Homomorphic Encryption using the Karatsuba Algorithm 138:7

Fig. 3. Software representation of one polynomial of the public key.

729 sub-polynomials with 40 coefficients are generated and sent sequentially to the hardware. The
hardware is fully pipelined and operations on sub-polynomials are executed as soon as polynomi-
als arrive. At the end of Karatsuba pre-computations, 19,683 degree-4 polynomials are generated
on each input polynomial that must be multiplied term by term. These multiplications are com-
puted in hardware by four parallel polynomial multiplier units using the standard polynomial
multiplication algorithm. Because the accelerator computes up to four encryptions in parallel,
four post-computation units are implemented in parallel in hardware. These post-computations
are computed sequentially in software, although multi-threading can possibly be used. The distri-
bution of Karatsuba pre- and post-recursions between hardware and software is a key element of
our architecture. Further details are provided in Section 3.3.5.

3.2 Software Implementation

Our Karatsuba software design is implemented using contemporary vector programming (AVX2,
SSE4.2, NEON, . . .). For simplicity, we describe our work for the AVX2 instruction set, but the
approach remains valid for SSE4.2 and NEON with the exception that their vectors have smaller
length. AVX2 Single Instruction Multiple Data (SIMD) instructions are performed on 256-bit vec-
tors. The vector can be seen as 4 doubles (64-bit operands), 8 floats (32-bit operands) or 8 integers
(32-bit operands). For each elementary operation, the computation is performed on each element
of the vector in parallel. AVX2 supports additions, subtractions, multiplications, maskings and
various methods to speed-up specific algorithms.

3.2.1 Representation of Polynomials in Memory. An efficient representation of polynomials in
memory has been made to enhance the efficiency of vector programming with Karatsuba. As men-
tioned in Section 2.2, Karatsuba multiplies the public key Pkey with a randomly-generated binary
polynomial. Thus, two different kinds of storage are required: a full size polynomial with 125 bits
per coefficient for the public key, and a small polynomial with 1 bit per coefficient for the binary
polynomial.

Figures 3 and 4 provide data representations of a full size polynomial and a binary polynomial,
respectively. For the full size polynomial, coefficients are split into five 32-bit chunks. Because
AVX2 operations do not support addition with carry, guard bits are required for carry propagation
between operations. In our case, this choice was quite simple because with 125-bit coefficients, it is
not possible to have less than five chunks to be able to have at least one guard bit per chunk. This
setup has the benefit of providing multiple guard bits per chunk, which allows for the computation
of successive operations before carry propagation. Section 3.2.2 provides a further explanation on
the impact of guard bits. For binary polynomials, only 1 bit per coefficient is needed, implying an
inefficient use of memory and unnecessary computation overhead if the previous memory scheme
is followed. Figure 4 provides an optimized representation with 20 times less memory consump-
tion. First, the number of chunks per coefficient is reduced to one. Second, multiple coefficients are
stored per chunk. Because our Karatsuba implementation has six recursions in software, at least

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 138. Publication date: September 2017.

138:8 V. Migliore et al.

Fig. 4. Software representation of binary polynomials.

six guard bits are required. Thus, one 32-bit chunk can store up to four coefficients. For efficiency
considerations, we decided to store four polynomials using 2,560 chunks instead of one using 640
chunks.

3.2.2 Elementary Polynomial Arithmetic. Karatsuba pre- and post-computations are quite sim-
ple and only require polynomial additions and subtractions. That is why, our software implemen-
tation focuses on polynomial addition and subtraction. As a reminder, our setup provides five
guard bits per chunk, and fifteen guard bits at the coefficient level. For addition, operations can be
easily implemented. With five guard bits per chunk, five additions at the chunk level are allowed
before an overlap. This effect is a consequence of the fact that an addition can increase the result
by one bit in the worst case. Then, a coefficient reconstruction is required to restore the guard
bits. This operation consists of taking the guard bits of one chunk, and adding them to the next
one like a standard carry propagation. This operation, apart from restoring the guard bits, has the
consequence of consuming the guard bits of the last chunk of each coefficient. As the addition
consumes one guard bit per chunk, one guard bit at the coefficient level is consumed per addi-
tion. Therefore, our data representation supports fifteen successive polynomial additions before
requiring a modular reduction of each coefficient.

The subtraction operation uses standard two’s complement arithmetic. For integer subtraction
of two integers A and B with log2 q bits, two’s complement subtraction can be expressed as :

A + B + 1 = A − B (5)

with B the binary inverse of B. In the standard case, carry propagation is performed during the
subtraction computation. In our case, due to the guard bits, we cannot invert chunks directly. If we
note tai

the guard bits of a chunk ai and mai
the other bits, we must in fact compute the inverse

of tai
+mai+1 . This operation creates data dependencies between chunks, breaking the parallelism

of computations. This can be easily addressed using the following property:

tai
+mai+1 = −tai

−mai+1 − 1

= −tai
− 1 −mai+1 − 1 + 1

= tai
+mai+1 + 1

(6)

We just keep in mind that now the leading bit of a given chunk provides the sign. Thus, it reduces
by 1 bit the number of guard bits during subtractions compared to additions.

The asymmetry between AVX2 vector length, polynomial length, and coefficient length must
also be considered. An AVX2 vector has 256 bits which covers eight chunks. At the coefficient
level, the fact that a AVX2 vector is longer than a coefficient is not a problem. Because coefficients

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 138. Publication date: September 2017.

A High-Speed Accelerator for Homomorphic Encryption using the Karatsuba Algorithm 138:9

are reconstructed later, a point-wise addition on the chunks is sufficient. At the polynomial level,
the situation is not as simple. The computation process, and especially Karatsuba computations,
leads to the creation of polynomials of various sizes. If the polynomial size is not a multiple of the
AVX2 vector, a data overlap is possible. In this case, a masking operation on the latest operation is
required to prevent operations and results outside of the valid data range.

3.2.3 Polynomial Modular Reduction. Polynomial modular reduction is performed after each
polynomial multiplication. Without batching, this operation is quite simple. For example, with the
cyclotomic polynomial xn + 1, the reduction of a polynomial A = AL +AH · xn is AL −AH . With
batching, the cyclotomic polynomial may have numerous non-zero coefficients (Hamming weight),
leading to a possible complex reduction. The standard algorithm for such an operation is the Barrett
reduction [18]. However, this algorithm requires two polynomial multiplications and one polyno-
mial subtraction which is undesirable for performance. To address the reduction in our design, we
have made an exhaustive search on cyclotomic polynomials to extract good candidates compatible
with batching, i.e. with the smallest Hamming weight. Then, we have exploited the structure of
these polynomials to perform polynomial modular reduction as an addition/subtraction of sub-
polynomials. A degree-n cyclotomic polynomial can be written as:

Φ =
m∑

i=0

αi · X β ·i , with

{
α ∈ {−1, 0, 1}

(m, β) ∈ Z such as n =m · β (7)

Because αi is an integer and Φ has been chosen to maximize β , the underlying polynomial has
numerous empty coefficients which greatly simplifies the polynomial reduction.

The polynomial reduction algorithm is performed by solving a system of equations. We note A,
a polynomial to be reduced by a cyclotomic polynomial Φ, B the quotient polynomial and R the
residue. First, we split polynomials A, B and R into several degree-β polynomials.

A =
2·m−1∑

i=0

Ai · X βi , B =
m−1∑
i=0

Bi · X βi , R =
m−1∑
i=0

Ri · X βi (8)

Second, we extract the equations system by exploiting the relationship between A, B and R:

A = B · Φ + R (9)

Because degR < n, we have the following system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀i ∈ {m, 2m},Ai =

i∑
j=0

Bj · αi−j (a)

∀i ∈ {0,m − 1},Ai =

i∑
j=0

Bj · αi−j + Ri (b)

(10)

With Equation (10(a)), we can calculate the differentBi , and Equation (10(b)) determines the residue
polynomial R. We have implemented a script to automatically determine the different Ri . For
degree-2560 polynomials with 125-bit coefficients (22 batches), our software library performs the
polynomial reduction in 114 μs on average (1000 runs). This value is competitive with Barrett re-
duction, because a simple polynomial multiplication using NFLlib for the same parameters costs
1.7 ms on average. To improve the performance of the polynomial modular reduction, we first
compute sub-polynomial additions to maximize the number of successive operations before re-
construction. Then subtractions are performed with the limitation explained in Section 3.2.2.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 138. Publication date: September 2017.

138:10 V. Migliore et al.

3.2.4 High-speed Batching Implementation. One of the key elements for batching to be a good
alternative to the standard approach is the batching cost. In Equation (2), for k batches, possibly 2 ·
k polynomial multiplications, k polynomial additions and 1 polynomial reduction are required. In
our architecture, we need to avoid polynomial multiplications as much as possible for efficiency.
We performed several optimizations to greatly reduce the complexity of this step. First, Si · Φi in
Equation (2) can be precomputed as they are constant for a given cyclotomic polynomial Φ. Second,
messages are binary so the product mi · Si · Φi can be replaced by a simple test. Third, degmi =

0, deg Si = degφi − 1 and deg Φi = deg Φ − degϕi , so degmi · Si · Φi = deg Φ − 1. Thus the final
polynomial reduction can be avoided. Finally, the complete process is reduced to k conditional
polynomial additions, which can be quickly implemented.

3.2.5 Karatsuba Pre- and Post-computation Details. Karatsuba pre- and post-computations have
been implemented with a recursive algorithm which follows the approach presented in [15]. The
pre-computation is quite easy to implement because operations are polynomials additions only. It
is only necessary to reconstruct each coefficient after at most five successive polynomial additions,
as explained in Section 3.2.2. When this operation is performed it is optimized to reduce perfor-
mance overhead. The Karatsuba algorithm is composed of several successive recursions. At the
ith recursion, sub-polynomials are the results of at most i sub-polynomial additions. We experi-
mented with several approaches to determine the best moment to implement the reconstruction.
In our case, the best results were achieved when the reconstruction is implemented during the first
Karatsuba recursion. A simple reasoning leads to this result. Between each Karatsuba recursion,
the number of sub-polynomials increases but each elementary sub-polynomial has lower coeffi-
cients. However, each recursion increases the total size of sub-polynomials by 1.5. Thus, the earlier
the reconstruction is performed, the smaller the amount of data that must be considered. The last
recursion also requires reconstruction to support compatibility with the hardware accelerator. A
minor modification to the hardware that performs this last reconstruction results in an acceler-
ator performance improvement. Because the AVX2 vector performs addition on eight chunks in
parallel, it is important to have a chunk count that is a multiple of eight to avoid masking opera-
tions. For a polynomial of 2,560 coefficients, this criterion is met during pre-computation since the
smallest sub-polynomial addition has 80 coefficients after the fifth recursion. To prevent masking,
four binary polynomials are stored in 2,560 chunks, as explained in Figure 3.

More issues are apparent for post-computation than for pre-computation. First, the number of
coefficients is not a multiple of eight, so operations require masking. Second, data is not always
aligned on 32-byte boundaries, so computation is penalized during non-aligned data loads. Third,
post-computation requires successive polynomial subtractions which are subject to the limitations
explained in Section 3.2.2. The final recursion of the pre-recursion and the first post-computation
in software have been adapted to automatically deal with sub-polynomials in such a way that
data is compatible with the PCI-E driver. The main benefit of this approach is avoiding data type
conversion as much as possible.

3.3 Hardware Implementation

3.3.1 Architecture Overview. Software and hardware components in our system communicate
via the PCI-E bus. The hardware accelerator is implemented on an FPGA (further details are pro-
vided in Section 4). A RIFFA [19] interface implemented for PCI-E Gen 3 with four lanes is used.
On the FPGA side, the interface provides data bursts of 128 bits at 250 MHz. Figure 5 shows
the hardware accelerator architecture. Computations are pipelined so computation operations are
executed during transfers. The pre-computation units perform the remaining pre-computations
and consist of three smaller units in cascade (one per recursion). For a sub-polynomial A, one

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 138. Publication date: September 2017.

A High-Speed Accelerator for Homomorphic Encryption using the Karatsuba Algorithm 138:11

Fig. 5. Hardware accelerator architecture.

smaller unit produces sub-polynomials AL , AH and AL +AH (according to notation provided in
Section 2.4), and pushes these polynomials to the following unit to perform one pre-computation
operation on AL , AH and AL +AH , respectively. After three recursions, the design has eight lines
of sub-polynomials but many lanes are not fully fed by sub-polynomials. Thus a crossbar is im-
plemented to better schedule sub-polynomials and reduce the number of sub-polynomial lanes. A
sub-polynomial multiplier is implemented to multiply the different sub-polynomials with the stan-
dard polynomial algorithm. The post-crossbar and the post-computation units are represented in
the same box because they are implemented successively but at the recursion level to reduce the
storage overhead.

Many improvements have been made to the preliminary work in [15] to support encryption
operations. First, the pre-computation was adapted to efficiently pre-compute four binary poly-
nomials in parallel during public key pre-computation. Second, the polynomial multiplier core
was modified to support the multiplication of four polynomials with unbalanced coefficient sizes
(10×135-bit integer multipliers). Third, five post-computations were implemented in hardware in-
stead of three to reduce bandwidth. These new aspects of the architecture are discussed in the
following sections of the paper.

3.3.2 Adaptation of the Pre-computation. Two lane types are supported for the computations:
one lane for the public key and a second for the binary polynomials. For the public key, coeffi-
cients are split into five 27-bit chunks. Elementary coefficient addition/subtraction is performed
in five steps, which corresponds to a simple chunk-wise addition/subtraction with carry propaga-
tion. This setup is sufficient to store each coefficient and matches the software representation of

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 138. Publication date: September 2017.

138:12 V. Migliore et al.

polynomials, simplifying the connection with software. The binary polynomials are much smaller
than standard ones and only 32 bits are required to send one coefficient of the four binary poly-
nomials. To maximize resource utilization, one coefficient of one binary polynomial is stored per
PCI-E burst. This approach allows for the pre-computation of five binary polynomials during Pkey

pre-computation. In practice, processing is only performed in four out of the five available slots
because the software only pre-computes four binary polynomials.

At the beginning of the pre-computation process, each binary polynomial coefficient has at most
7-bit width. Because three pre-computations are performed in hardware, in the worst case, output
coefficients of the pre-computation unit have 10-bit widths. The addition with carry units in the
previous pre-computation unit can be replaced by a simple adder and the datapath can be adjusted
to 10 bits to avoid carry propagation.

3.3.3 Adaptation of the Polynomial Multiplier. The polynomial multiplier performs sub-
polynomial multiplication of polynomials generated after the pre-computation process. These
sub-polynomials have a low degree, four in our case, and are implemented with the standard
multiplier algorithm. For efficiency, the multiplier is fully parallelized, and as shown in Figure 5,
requires five integer multiplier units. These integer multiplier units have been designed to support
four 10×135-bit integer multipliers in parallel to support four encryptions. Because binary poly-
nomial operations are scheduled to improve resource utilization, the polynomial multiplication
schedule has been adapted. Both polynomial multiplier and 4×{10×135-bit Integer Multiplier}
units follow the same approach: A pre-crossbar to schedule incoming data, multiplier units, and a
reconstruction unit. Figures 6 and 7 provide the schedule of the polynomial multiplier and internal
4×{10×135-bit integer multiplier} units. The block of data represented in gray is an elementary
block of data processed by the internal integer multipliers. From a high level point of view, the
polynomial multiplier pre-crossbar is responsible for supporting the convolution operation as
the integer multiplier pre-crossbar separates the coefficients of the four binary polynomials into
four different lanes. In Figure 7, it is apparent that five lanes of binary polynomials are possible.
However, to be compliant with our software architecture, we only use four lanes instead of five.

3.3.4 Adaptation of Post-Computation Operations. Due to limited PCI-E bandwidth, it was nec-
essary to implement two additional post-computations in hardware beyond the standard case. In
the standard case of three pre- and post-computations, input polynomials have 40 coefficients
with a 131-bit width and output polynomials have 79 coefficients with a 128-bit width due to in-
teger modular reduction. Thus, twice the bandwidth is needed for the output compared to the
input. Because chunks have 27 bits, for four polynomial multiplications, 2 × 4 × 27 = 216 bits are
needed for the output, which is larger than the 128 bits provided by RIFFA. Depending on the
number of post-computations, it is possible to have fewer output coefficients than the number
of required input coefficients. This assertion becomes true when implementing the two additional
post-computations in hardware in our case. Output polynomials now have 319 coefficients, and the
number of input polynomials for two post-recursions is nine, leading to 360 input coefficients. This
architectural modification has both pros and cons. Implementing additional post-computations in
hardware speeds-up the software post-computation process and reduces the size of the transfer
between the FPGA and the software. However, one needs to ensure that nine successive input poly-
nomials can be sent to the hardware accelerator without significant latency between them. As will
be explained in the next section, RIFFA input buffer management must be carefully implemented.

3.3.5 Selection of the Distribution Ratio between Hardware and Software for Karatsuba Re-

cursions. The distribution ratio of the Karatsuba recursions between hardware and software is
a critical design choice. Although software can implement Karatsuba pre- and post-recursions,

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 138. Publication date: September 2017.

A High-Speed Accelerator for Homomorphic Encryption using the Karatsuba Algorithm 138:13

Fig. 6. Polynomial multiplier schedule. ai [j] represents the ith coefficient of the jth binary polynomial, and
bi the ith coefficient of the public key. The gray block represents an element scheduled by the 4×{10×135-bit
Integer Multiplier}.

implementing numerous recursions in software has several limitations. First, software recursions
increase the transfer size through the PCI-E (as a reminder, each recursion increases the size of
the transfer by 1.5x). Since the software computation time increases, the overall computation time
increases as well. Second, post-computations in software are costly compared to pre-computation.
Our experiments show that post-computation can be eight times slower than pre-computation.
Moreover, for four parallel encryptions, post-computation must be performed four times in
software.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 138. Publication date: September 2017.

138:14 V. Migliore et al.

Fig. 7. 4×{10×135-bit Integer Multiplier} schedule. ai [j] represents the ith coefficient of the jth binary poly-
nomial, and bi the ith coefficient of the public key.

Implementing additional post-recursions in hardware (i.e. more than the number of pre-
recursions) is not a complex task because additional post-crossbars are unneeded. The main issue
is the implementation of the pre-crossbar. For fewer than three pre-recursions, there is not enough
parallelism to efficiently feed hardware multipliers (multipliers are unused 25% of the time). For
more than three, parallel implementation requires a complex sub-polynomial schedule which can
penalize the maximum design frequency. As a result, three pre-recursions are performed in hard-
ware to limit pre-crossbar complexity. For the post-computation, only five post-recursions are
performed due to PCI-E bandwidth limitations. This implementation greatly improves upon the
software performance by reducing computation time.

3.3.6 Limitations of the PCI-E Interface. As mentioned earlier, a RIFFA 2.1 interface is used
to make the connection between software and hardware components. The transfer bandwidth
mostly depends on the size of the transfer [19]. For our system, instead of initiating one transfer
per set of sub-polynomials, a large transfer with all pre-computed polynomials is initiated.
As explained in the discussion in Section 3.3.1 regarding PCI-E bursts, a transfer requires the
transmission of 729 degree-39 sub-polynomials, about 2.2 MB of data. With such a transfer, RIFFA
should achieve a bandwidth of 3,000 MB/s which corresponds to a transfer time of 741 μs. In
practice, we achieved a bandwidth of 2,000 MB, since our hardware accelerator shares the PCI-E
bus with several components.

This limitation leads to two consequences. First, although the total hardware computation time
(including transfers) is lengthened, the Karatsuba hardware computation can partially compensate
since it can be performed during transfers. However, the transfer latency impact is not negligible.
Compared to the best possible case of 583 μs to perform all hardware computations, performance
is slowed down by 47%. Second, two extra components were designed to interface RIFFA to our
Karatsuba accelerator. The packager component manages the input stream and the buffer compo-
nent manages the output stream. The packager temporarily stores input coefficients so they can
be sent to the accelerator without interruption. This approach compensates for the risk of pipeline
bursts. The buffer is responsible for improving upload transfers. It stores output coefficients from
the Karatsuba algorithm until it is able to perform a complete transfer to the software without
interruption. This approach addresses the issue of the input stream length being larger than the
output stream length. Two more post-computations than pre-computations were implemented to
reduce the number of output lanes, resulting in a reduction in the size of the output stream. For 729
input sub-polynomials with 40 coefficients (29,160 coefficients in total), our Karatsuba accelerator
produces 81 sub-polynomials with 319 coefficients (25,839 coefficients in total). The bandwidth

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 138. Publication date: September 2017.

A High-Speed Accelerator for Homomorphic Encryption using the Karatsuba Algorithm 138:15

Table 1. Hardware Resource Consumption for the FPGA-based Co-design Accelerator

RIFFA RIFFA/ Karatsuba interface Karatsuba

Setup (n, log2 q) (2560, 135)

ALM
for logic 8,207 286 30,566

for memory 110 0 30,030
total 8,317 286 60,596

Registers 11,334 203 79,440
Memory bits 697,720 8,464,384 25,164

DSPs 0 0 80

fmax 250 MHz (PCI-E limitation)

issue in this case is limiting because it requires a long wait before transfer initiation, leading to
the use of a large FIFO.

4 IMPLEMENTATION RESULTS

Our design has been implemented on a DE5-net platform from Terasic. The platform includes a
Stratix V (GXEA7N2F45C2) FPGA, several embedded memories (SRAM, Flash), and 8GB of DDR3
memory. For communication, the DE5-net provides four SPI+ connectors, a PCI-E interface (up
to 8 lanes) and one RS422. Our co-design architecture also includes a desktop computer which
runs the Microsoft Windows 7 operating system on an Intel Core i7-4790. The DE5-net board was
plugged into one of the PCI-E slots.

Table 1 shows the FPGA hardware resources consumption for the co-design accelerator. The
contribution of RIFFA, the interface between RIFFA and the Karatsuba accelerator, and the acceler-
ator itself are noted. The Karatsuba algorithm implementation is responsible for a substantial con-
sumption of FPGA arithmetic logic modules (ALMs). Half of these ALMs are used as memory. This
is the consequence of the pipeline cost and the temporary storage of coefficients required by the ar-
chitecture. Pipelining is important to reach the minimum 250 MHz frequency imposed by the PCI-
E. The substantial memory requirement of the design (more than 1 MB) is due to the interface be-
tween the multiplier and RIFFA, as described in Section 3.3.6. The buffer is responsible of more than
99% of the memory consumption. This issue reveals that the main Karatsuba limitation is the length
of data transfers. For the output stream, we need to send data without interruption to maximize the
bandwidth, and so a large amount of data is buffered for that purpose. To reduce the memory im-
pact, the bandwidth itself would need to be improved, possibly by reducing the load on the PCI-E
bus. It is also possible to implement additional post-computations in hardware, reducing the soft-
ware post-computation time. Several issues complicate the comparison of our work with the state
of the art. Because a large majority of implementations target the Negative Wrapped Convolution
NTT for efficiency, which is not compatible with batching for binary messages, direct comparisons
are not possible. As a result, we compared our design with software algorithms from the NFLlib
library. NFLlib is also based on NTT, but it is enough flexible to be adapted for batching. To speed-
up computations, NFLlib splits polynomial coefficients into small numbers using the RNS system.
RNS provides an efficient strategy to parallelize computations and works similarly to CRT. Table 2
compares the total computation time of this work with NFLlib and the software memory require-
ments. The results are given for the computation of Pkey ·U + E (Algorithm 1 provides more details
about this computation in NFLlib). As random number and Gaussian noise generation are not in the
scope of the implementation, they are not included. Our accelerator is approximatively 1.5 times

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 138. Publication date: September 2017.

138:16 V. Migliore et al.

Table 2. Computation Times and Software Memory Requirements
to Perform the Product/Accumulation Operation Required During

the Ciphering of FV (n=2560, log2 q = 135). Software
Computations are Performed on an Intel Core i7-4790

Computation time
Notation: average time (standard deviation)

Encryptions This work NFLlib [20]

1 1,935 μs (220μs) 3,078 μs (98μs)
2 2,191 μs (138μs) 5,646 μs (148μs)
3 2,410 μs (176μs) 8,218 μs (191μs)
4 2,525 μs (184μs) 10,814 μs (237μs)

Software memory requirements

This work NFLlib [20]

Pkey , U , E 150 KB 480 KB
Pre-allocation 570 KB 0 KB

Total 720 KB 480 KB

ALGORITHM 1: Product/Accumulation using NFLlib

Require: Pkey (in RNS and NTT form), U and E

1: Ũ ← NTT(RNS(U))
2: Ẽ ← NTT(RNS(E))
3: R̃ ← Pkey · Ũ + Ẽ
4: R ← invRNS(invNTT(R̃))
5: return R

faster for 1 encryption and 4 times faster for 4 encryptions. The important drawback in NFLlib is
the several computations of RNS and NTT. Karatsuba does not require such transformations.

For software memory requirements, because Karatsuba has several data dependencies between
recursions, pre-allocation is required for efficiency. NFLlib also requires pre-allocated memory,
but has been deported to the polynomial itself as they are mostly polynomial-dependents (NTT
intermediate coefficients, RNS and NTT pre-computed constants , . . .). However, the overall cost
benefits to NFLlib as very few polynomials are required during encryption.

We must also notice that a pure software implementation of Karatsuba is clearly not competitive
compared to NFLlib (more than 7 ms are spent just for pre- and post-computations). Thus, the
hardware accelerator significantly improves computation time. This work also greatly improves
the implementation in [15], the basis for our architecture. Because the architecture in [15] does
not exploit the specific structure of polynomials, the computation time of the same operation costs
2.44 ms per encryption, without any asymptotic gain for several successive encryptions.

5 CONCLUSION

In this paper, we described a high speed hardware/software accelerator to speed-up the cipher-
ing operation of lattice-based cryptography and, in particular, the promising FV homomorphic
scheme. This implementation focuses on batching techniques which pack several messages inside
one ciphertext to reduce the ratio between encrypted data length and message length. We tar-
get polynomial arithmetic and compare the approach speed-up to a state of the art Lattice-Based

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 138. Publication date: September 2017.

A High-Speed Accelerator for Homomorphic Encryption using the Karatsuba Algorithm 138:17

arithmetic software library, NFLlib. Our accelerator is approximatively 1.5 times faster for 1 en-
cryption and 4 times faster for 4 encryptions. To achieve such performance, a high speed software
library using AVX2 has been implemented, coupled with a fully pipelined hardware accelerator to
reduce the transfer latency impact between software and hardware. This paper also demonstrates
the interesting use of FPGAs as peripherals to improve computation times in homomorphic oper-
ations. Future work will consist of implementing the architecture on an FPGA/processor platform
targeted to embedded applications.

ACKNOWLEDGMENT

This study has been partially funded by the french Direction Générale de l’Armement (DGA).

REFERENCES

[1] T. E. Gamal. 1984. A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. In Proc. of

CRYPTO.

[2] P. Paillier. 1999. Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In Proc. of EUROCRYPT.

[3] C. Aguilar Melchor, P. Gaborit, and J. Herranz. 2010. Additively Homomorphic Encryption with D-Operand Multi-

plications. In Proc. of CRYPTO.

[4] C. Gentry. 2009. A Fully Homomorphic Encryption Scheme. Ph.D. Dissertation. Stanford University.

[5] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. 2012. (Leveled) Fully Homomorphic Encryption Without Bootstrap-

ping. In Proc. of ITCS.

[6] Z. Brakerski. 2012. Fully Homomorphic Encryption Without Modulus Switching from Classical GapSVP. In Proc. of

CRYPTO.

[7] J. Fan and F. Vercauteren. 2012. Somewhat Practical Fully Homomorphic Encryption. Cryptology ePrint Archive,

Report 2012/144.

[8] C. Gentry, A. Sahai, and B. Waters. 2013. Homomorphic Encryption from Learning with Errors: Conceptually-Simpler,

Asymptotically-Faster, Attribute-Based. In Proc. of CRYPTO.

[9] Z. Brakerski and V. Vaikuntanathan. 2014. Lattice-Based FHE as Secure as PKE. In Proc. of ITCS.

[10] A. Khedr, G. Gulak, and V. Vaikuntanathan. 2015. SHIELD: Scalable Homomorphic Implementation of Encrypted

Data-Classifiers. IEEE Transactions on Computers (2015).

[11] T. Lepoint and M. Naehrig. 2014. A Comparison of the Homomorphic Encryption Schemes FV and YASHE. In Proc.

of AFRICACRYPT.

[12] J. H. Cheon, J.-S. Coron, J. Kim, M. S. Lee, T. Lepoint, M. Tibouchi, and A. Yun. 2013. Batch Fully Homomorphic

Encryption over the Integers. In Proc. of EUROCRYPT.

[13] J. Pollard. 1971. The Fast Fourier Transform in a Finite Field. In Mathematics of Computation.

[14] S. Sinha Roy, K. Järvinen, F. Vercauteren, V. Dimitrov, and I. Verbauwhede. 2015. Modular Hardware Architecture for

Somewhat Homomorphic Function Evaluation. In Proc. of CHES.

[15] V. Migliore, M. Mendez Real, V. Lapotre, A. Tisserand, C. Fontaine, and G. Gogniat. 2016. Hardware/Software co-

Design of an Accelerator for FV Homomorphic Encryption Scheme using Karatsuba Algorithm. IEEE Transactions on

Computers.

[16] A. Karatsuba and Y. Ofman. 1962. Multiplication of Multi-Digit Numbers on Automata (in Russian). Doklady Akad.

Nauk SSSR. Translation in Soviet Physics-Doklady.

[17] O. Regev. 2009. On Lattices, Learning With Errors, Random Linear Codes, and Cryptography. Journal of the ACM.

[18] P. Barrett. 1986. Implementing the Rivest Shamir and Adleman Public Key Encryption Algorithm on a Standard Digital

Signal Processor. In Proc. of CRYPTO.

[19] M. Jacobsen, D. Richmond, M. Hogains, and R. Kastner. 2015. RIFFA 2.1: A Reusable Integration Framework for FPGA

Accelerators. ACM Transactions on Reconfigurable Technology and Systems.

[20] C. Aguilar-Melchor, J. Barrier, S. Guelton, A. Guinet, and L. T. Killijian, MArc-Olivier. 2016. NFLlib: NTT-Based Fast

Lattice Library.

Received April 2017; revised June 2017; accepted June 2017

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 138. Publication date: September 2017.

