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Traveling waves in a spring-block chain sliding down a slope

J. E. Morales, G. James and A. Tonnelier
INRIA-Grenoble 655 avenue de l’Europe, Montbonnot

38334 Saint Ismier, France ∗

(Dated: 27 July 2017)

Travelling waves are studied in a spring slider-block model. We explicitly construct front waves
(kinks) for a piecewise-linear spinodal friction force. Pulse waves are obtained as the matching of
two traveling fronts with identical speeds. Explicit formulas are obtained for the wavespeed and the
wave form in the anti-continuum limit. The link with localized waves in a Burridge-Knopoff model
of an earthquake fault is briefly discussed.

I. INTRODUCTION

Spatially discrete systems (lattice differential equa-
tions) have a wide range of applications in natural sci-
ences, engineering and social sciences. They frequently
occur in physics as mass-spring systems with nearest-
neighbors coupling and they have been used extensively
to describe the dynamics of microscopic structures such
as crystals or micromechanical systems [1–3], or to model
fragmentation phenomena [4]. Recent studies on soft
structures have led to a renewed interest in the dynamics
of elastically coupled systems with a special emphasis on
transition waves [5].
In this work, we consider a spring-block system that
slides down a slope due to gravity (see Fig. 1). Each
block is subjected to a nonlinear friction force. This sys-
tem differs from the Burridge-Knopoff model [6] consid-
ered for the modeling of earthquakes, which incorporates
local potentials.
We consider here a friction force of spinodal type:
the steady-state kinetic friction coefficient has a non-
monotonic profile versus sliding velocity such as the one
depicted in Fig.2. Such friction laws have been re-
ported to induce excitable dynamics (see [7] and refer-
ences therein) reminiscent of neural excitability [8, 9],
i.e., a perturbation above a certain threshold produces
a large excursion in the phase space before returning to
an equilibrium state. In biology, it is well documented
that a large class of excitable media is able to support
nonlinear solitary waves [10]. It has been recently shown
that excitable mechanical systems also have the ability to
induce self-sustained solitary waves [11–13]. In contrast
with classical excitable media, these systems are elastic
rather than diffusive.
The analysis of traveling patterns in discrete media often
relies on continuum approximations. In the slider block
model presented here, we directly tackle the discrete na-
ture of the equations and use an idealized piecewise-
linear friction force to derive semi-analytical expressions
for propagating waves. This ”bilinearization” approach
has been used in a variety of contexts to study traveling
waves in lattices, see e.g. [14–23].
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The paper is organized as follows. In Sec II, we first de-
rive the governing equations for the chain of elastically
coupled blocks. Then in Sec. III we study the dynamical
properties of an isolated block and demonstrate that a
bistable behavior exists when a spinodal friction force is
considered. In Sec. IV, we perform numerical simulations
of the coupled system and show that the bistability prop-
erty induces traveling patterns, as fronts and pulses. In
Sec. V, we construct the traveling fronts analytically us-
ing a piecewise-linear friction force. The anticontinuum
limit is presented in Sec. VI. The link between front and
pulse waves is studied in Sec. VII. We then conclude by
connecting the results to the Burridge-Knopoff model.

II. MODEL

Let us consider an isolated block of mass m and po-
sition x(t) that slips down a slope under gravity and is
subject to a velocity-dependent friction force F

(
dx
dt

)
. The

dynamical equations read

m
d2x

dt2
+ F

(
dx

dt

)
= G (1)

where G is the tangential component of the gravity force.
A steady state of (1) exists when the block achieves a
constant velocity motion dx

dt = V , where F (V ) = G. Let
us consider an infinite chain of identical blocks linearly
coupled through Hookean springs of stiffness k that slips
at the constant speed V over an inclined surface (see
Fig. 1). The dynamical equations in a frame moving at
velocity V are given by

dyn
dt

= un,

m
dun
dt

= k∆dyn − F (V + un) +G, n ∈ Z
(2)

where yn represents the displacement of the nth block
from the steady sliding state, and un is its velocity. The
term ∆dyn = yn+1−2yn+yn−1 is the discrete Laplacian.

The system may be interpreted as a variant of the
Burridge-Knopoff model [6] where the shear stress de-
scribed by the local potential is replaced by a constant
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FIG. 1. Mechanical representation of the block-spring slider
model where m is the mass, k is the spring constant and
V is the sliding velocity. The steady state corresponds to
F (V ) = G with G = mg sin θ.
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FIG. 2. Non-monotonic friction laws. (a) Coulomb-like fric-
tion force Fε, where ε = 10−4. (b) The cubic friction force
Fc(v), where b = 0.5, a = 1 and α = 0.2. (c) The piecewise
linear friction force F0(v).

tangential force induced by gravity. The dynamics of sys-
tem (2) is explored for three normalized non-monotonic
friction laws Fε, Fc and F0, depicted in Fig. 2(a-c) and
given by

Fε(v) =
[
1− α+

√
N(v)

] v√
ε+ v2

,

Fc(v) = 3.2v3 − 7.2v2 + 4.8v, (3)

F0(v) = v/a− αH(v − a),

where N(v) = ε+ 4 max(|v|−a, 0)2 +α2 max(a−|v|, 0)2,
and H is the Heaviside step function. For convenience,
the cubic friction force Fc is given for a = 1 where a
is the location of the local minimum, i.e. the transi-
tion point from the velocity-weakening (b < v < a) to
the velocity-strenghtening (v > a) regime. The friction
function Fε describes a regularized generalized Coulomb
law as ε → 0. The cubic friction force Fc describes a
smooth spinodal friction law similar to the one intro-
duced in [11]. The piecewise linear function F0 reduces
the velocity-weakening region to a jump discontinuity. It
captures some properties of spinodal friction laws and is
convenient for analytical computations.
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FIG. 3. Bifurcation diagrams of the single block model. Sta-
tionary state, u, as a function of the stationary sliding veloc-
ity, V , for (a) the regularized generalized Coulomb friction
force Fε (a = 1, α = 0.2, ε = 10−4), (b) the cubic friction
force Fc, and (c) the piecewise-linear friction force F0 (a = 1,
α = 0.2). Solid lines represent stable states (denoted U1 and
U3) and dotted lines are for unstable states (U2).

III. BISTABLE SINGLE BLOCK DYNAMICS

For a single block, (2) reads

dy

dt
= u.

(4)

m
du

dt
= −F (V + u) + F (V ).

The y-nullcline is defined by u = 0, whereas the u-
nullcline is obtained by solving F (V +u) = F (V ) so that
the vertical axis u = 0 always defines in the (u, y) plane
the set of fixed points for an isolated block. It is easy
to check that the two associated eigenvalues are given by

λ1 = −F ′(V )
m , λ2 = 0 so that the equilibrium straight

line is stable (but not asymptotically stable). In (4), the
dynamics of the velocity u does not depend on the posi-
tion y so that system (4) behaves like a one-dimensional
dynamical system whose bifurcation diagram is shown in
Fig. 3 for the three friction laws (3), where V is taken
as the bifurcation parameter. For V ∈ (a, Vmax), where
Vmax is the velocity value such that F (Vmax) equals the
local maximum in F and Vmax > a, there exist three fixed
points U1 < U2 < U3 = 0 whose stability is governed

by the eigenvalue µi = −F ′(V+Ui)
m , i ∈ {1, 2, 3}, respec-

tively. A saddle-node bifurcation occurs at V = Vmax

and a transcritical bifurcation takes place at V = a.
For V ∈ (a, Vmax), the two fixed points U1 and U3 are
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stable whereas U2 is unstable and behaves like an exci-
tation threshold. For an initial condition below U2 the
trajectory of the system tends towards U3 = 0, whereas
for a sufficiently strong perturbation the system reaches
asymptotically the state U1, illustrating the excitable dy-
namics of an isolated block. Depending on the initial
state, the system can switch from a neighborhood of U3

to U1 and vice versa. For the cubic friction force Fc(v),
the threshold is given by

U2 = −3

2
V +

9

8
+

1

8
∆(V ) (5)

where ∆(V ) =
(
−48V 2 + 72V − 15

)1/2
(one has ∆(V ) ∈

R for V ∈ [1/4, 5/4]). We have

U1 = −3

2
V +

9

8
− 1

8
∆ (V ) ,

and Vmax = 5/4. For the friction force F0(v), the thresh-
old is simply defined as

U2 = a− V, (6)

the stable fixed point u1 is given by

U1 = −αa, (7)

and we have Vmax = a(1 +α). For the regularized gener-
alized Coulomb law Fε, as ε→ 0 the threshold converges
to

U2 = (a− V )

[
1 +

2

α

]
and the stable fixed point u1 to

U1 = −V,

and we have Vmax = a(1 + α
2 ). In the following we are

interested in the excitability regime where the velocity of
the single block has two stable steady states and we fix a
V value in the interval delimited by the two bifurcation
points, i.e. V ∈]a, Vmax[. As we will show in the sequel,
the bistability property is a key feature for the existence
of traveling fronts in the block-spring chain.

IV. TRAVELING WAVES

Let us consider the block-spring slider model with the
regularized generalized Coulomb law Fε. We choose pa-
rameters so that each block exhibits a bistable behavior.
The parameters of the friction law are those of Fig. 3(a).
We initialize the network by applying a perturbation of
sufficiently large amplitude to the steady state U3 = 0,
and (yn(0)) is chosen to be constant. A localized per-
turbation is applied on the first block at the left edge of
the network; see Fig. 4 for more details. We consider a
finite chain of blocks with free boundary conditions. For
the numerical simulations, we use the adaptive Lsoda
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FIG. 4. Numerical simulations of Eq. (8) with the regularized
Coulomb friction force Fε with the same parameters as in Fig.
3. We display spatiotemporal plots of the velocity variable
un of (a) a traveling front (k = 0.5 and V = 1.01), (b) a
broadening pulse (k = 1 and V = 1.025), and (c) a steadily
propagating pulse solution (k = 1 and V = 1.046). An initial
perturbation u0(0) = −10 is applied on the first block of the
chain. Computations are performed for m = 0.15.

solver and, unless stated otherwise, we take m = 0.15.
We observe the existence of traveling fronts as shown
in Fig. 4(a). In addition, two types of pulse solutions
are observed: (i) pulse waves with expanding width and
(ii) pulse waves with constant shape as plotted in Fig.
4(b) and (c), respectively. Propagating fronts [similar
to the one shown in Fig. 4(a)] are the dominant pat-
tern when the threshold is close to the resting state, i.e.,
for V close to a (|U2| � 1). The speed of the propa-
gating front increases with the coupling value k but, at
the same time, the parameter range where front waves
exist shrinks (without vanishing). As the stationary slid-
ing velocity increases, a front to pulse transition occurs
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where the excitation spreads over the network and leads
to pulses with expanding width [see Fig. 4(b)]. The
rate of expansion of the enlarging pulse decreases as the
sliding velocity increases, leading to the existence of a
pulse with constant width as shown in Fig. 4(c). For
V → Vmax, the threshold approaches the fixed point U1

and a perturbation fails to produce a traveling pattern.
Qualitatively similar results are obtained for the cubic
friction force Fc and for the piecewise-linear friction force
F0.
The profiles of the traveling waves observed in Fig. 4(a,c)
are shown in Fig. 5(a,b), respectively, and are compared
with those obtained with the cubic law [Fig. 5(c) and
5(d)] and the piecewise-linear law (Fig. 5(e) and 5(f)).
The traveling patterns for the three friction forces have
similar shapes and mainly contrast in their amplitude,
which is determined by the distance between the two
stable fixed points. A non-monotonic wave profile is ob-
served for the traveling fronts with the existence of a dip
behind the front [see Fig.5(c) and 5(e) whereas the dip
is too small to be seen in Fig.5(a)]. The existence of
this dip can be justified in the limit of small coupling
(see section VI and Appendix B). Interestingly, similar
profiles were obtained for traveling fronts in a chain of
bistable oscillators [24]. To investigate the influence of
inertia on propagation, we show in Fig. 6 the stationary
profiles of traveling fronts and traveling pulses for two
different values of the mass parameter. It can be seen
that fronts and pulses both exist in the over- and under-
damped regimes. The main difference between the two
regimes occurs during a transitory time, where the under-
damped regime leads to transient oscillations at the rear
of the fronts (data not shown). The width of the station-
ary pulse is determined by the spatial extent of the initial
perturbation [compare Fig. 5(f), where a single block is
excited, with Fig. 7(a), where a broader excitation is
used]. The enlarging pulse observed in Figs. 4(b) and
7(b) may be seen as the superposition of two traveling
fronts with two different propagation speeds. The initial
front is qualitatively similar to the waveform shown in
Fig. 5(a) and is followed by a traveling front that prop-
agates in the same direction but with a lower speed and
that connects the two stable states in reverse order. The
localized pulse waves shown in Figs. 5(b), 5(d), and 5(f)
are thus expected to appear when the two traveling fronts
have the same speed. These observations are analytically
explained in the next section for the piecewise-linear law
F0.
To check the robustness and the attractivity of the travel-
ing patterns previously observed, we simulate a network
where a group of blocks are randomly perturbed. More
precisely, we consider a chain of n = 200 blocks where 20
blocks in the middle of the chain have initial conditions
that are uniformly distributed in a fixed interval. Sim-
ulations are done for different interval magnitudes and
different stationary sliding velocities V . Numerical re-
sults suggest that the generation of kink-antikink pairs is
frequent as shown in Fig. 8. In addition, some initial con-
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FIG. 5. Plots of the velocity waveforms un(t) of the block-
spring model in the traveling wave coordinate ξ = n − ct.
The wave profiles in (a,b) are obtained with the regularized
generalized Coulomb law Fε and correspond to the traveling
waves shown in Figs. 4(a) and 4(c), respectively. Plots (c)
and (d) represent the wave profiles obtained with the cubic
friction force, Fc. Plots (e) and (f) represent the wave profiles
obtained with the piecewise-linear friction law F0. The wave
speed is (a) c = 1.95, (b) c = 2.21, (c) c = 3.06, (d) c = 3.16,
(e) c = 3.16, and (f) c = 1.45. For the piecewise-linear law,
we use a = 1 and α = 0.2. Other parameters are those of Fig.
4 for (a,b), and we take (c) V = 1.025, k = 1 (d) V = 1.18,
k = 2, (e), V = 1.025, k = 1, and (f) V = 1.1, k = 1.

ditions lead to more complex traveling patterns including
pulse trains [see Fig. 8(b)]. An exhaustive numerical in-
vestigation will be necessary to refine this statement, but
that is beyond the scope of this paper.

V. CONSTRUCTION OF TRAVELING FRONTS
FOR THE PIECEWISE-LINEAR FRICTION

FORCE

Model (2) can be rewritten in terms of velocity as

m
d2un
dt2

= k∆dun −
dun
dt

F ′(V + un). (8)
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FIG. 6. Plots of the velocity waveforms un(t) of the block-
spring model in the traveling wave coordinate ξ = n−ct. The
wave profiles are obtained using the piecewise-linear friction
law F0 (where α = 0.2 and a = 1). The stiffness of the spring
is fixed to k = 1. We consider two different values of the
mass parameter: (a,b) m = 0.01 (over-damped regime) and
(c,d) m = 100 (under-damped regime). The stationary sliding
velocity is V = 1.025 for the two traveling fronts shown in
(a,c) and V = 1.1 for the two traveling pulses shown in (b,d).

A traveling front solution of (8) takes the form

un(t) = ϕ(n− c t) (9)

where

ϕ(∞) = U3 = 0 and ϕ(−∞) = U1 (10)

with U1 6= 0 a stable equilibrium. The function ϕ de-
scribes the waveform, and c is the wave speed that has
to be determined. Substitution of (9) into (8) gives the
advance-delay differential equation

c2mϕ′′(ξ) = k[ϕ(ξ+1)+ϕ(ξ−1)−2ϕ(ξ)]+c
d

dξ
F0[V+ϕ(ξ)],

(11)
where ξ = n − ct ∈ R is the travelling wave coordinate.
Front solutions connect two different stable steady states
as n → ±∞. In contrast, travelling pulses tend towards
the same stable equilibrium as n→ ±∞.
We consider here the piecewise linear force F0, and we as-
sume that each block is in a bistable regime, i.e. we have
V ∈ (a, a(1 + α)) and U1 = −αa as in (7). We assume
that the traveling front solution crosses the threshold (6)
for only one value of ξ. Translation invariance of travel-
ing waves allows us to fix this value to ξ = 0 and we seek
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FIG. 7. Plots of velocity waveforms un(t) for the block-spring
model. (a) Broad stationary pulse formed after the pertur-
bation of a set of blocks (15 blocks). Parameters are those of
Fig. 5(f). (b) Expanding pulse corresponding to a snapshot
of the traveling pattern shown in Fig. 4(b) at two different
locations (n = 25, n = 50). The initial front propagates at a
speed c = 2.45 and the rear front at c = 2 (the moving frame
coordinate is ξ = n− 2t).
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FIG. 8. Numerical simulations of Eq. (2) with the regular-
ized Coulomb friction force Fε for random initial conditions.
We display two typical spatiotemporal plots of the velocity
variable un for (a) V = 1.02 and (b) V = 1.03. A group of
20 blocks in the middle of the chain are perturbed from their
equilibrium values. Perturbation is done using random initial
conditions where un(0) is uniformly chosen in the intervals
(a) [−1.23, 0.77] and (b) [−1.34, 0.66].

a solution such that ϕ(ξ) < a− V for ξ < 0,
ϕ(0) = a− V,
ϕ(ξ) > a− V for ξ > 0.

(12)

Using (12) to simplify the nonlinear term F0(V + ϕ),
system (11) takes the form

c2mϕ′′(ξ) = k [ϕ(ξ + 1) + ϕ(ξ − 1)− 2ϕ(ξ)]

+
c

a
ϕ′(ξ)− αcδ(ξ), (13)

where δ(ξ) is the Dirac delta function.
Equation (13) is a linear non-autonomous differential
equation so that one may attempt to use the Fourier
transform to derive an analytic solution. However a cer-
tain amount of care is needed to correctly handle the
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Fourier transform of ϕ due to the nonzero boundary con-
dition at −∞. We look for ϕ(ξ) in the form{

ϕ(ξ) = αa [ψ(ξ) +H(ξ)− 1] ,
ψ(ξ) ∈ L2(R), limξ→±∞ ψ(ξ) = 0,

(14)

where ψ(ξ) has to be determined. Equation (13) is re-
expressed in terms of ψ(ξ) and Fourier transform is ap-
plied to determine ψ(ξ), and subsequently ϕ(ξ).
Integrating (13), gives

c2mϕ′ = k ∧′ ∗ ϕ+
c

a
ϕ+ αc(1−H), (15)

where ∧(ξ) = max (1− |ξ|, 0) is the tent function, and
where we used for any f ∈ L1

loc(R),

(∧′ ∗ f)(ξ) =

∫ ξ+1

ξ

f(s)ds−
∫ ξ

ξ−1
f(s)ds. (16)

Note that (15) together with (10) remains equivalent to
the original problem (13)-(10). Injecting (14) into (15),
gives

c2mψ′ − c

a
ψ − k ∧′ ∗ ψ = k ∧ −c2mδ, (17)

where we used the property ∧′ ∗(H − 1) = ∧. Taking the

Fourier transform as ψ̂(λ) =
∫
R e
−2πiλξψ(ξ)dξ in (17), we

obtain[
2iπλc2m− c

a
− k2iπλsinc2(λ)

]
ψ̂(λ) = ksinc2(λ)−c2m,

(18)
where we used ∧̂(λ) = sinc2(λ) with sinc(λ) =
sin(πλ)/πλ. Let us introduce

K̂(λ) =
(

2iπλ
[
c2m− ksinc2(λ)

]
− c

a

)−1
,

where one has K̂(λ),K(ξ) ∈ L2(R) (K denotes the

inverse Fourier transform of K̂). From dK̂
dλ ∈ L1(R)

and using −2iπξK = F−1
(
dK̂
dλ

)
∈ L∞(R), one has

limξ→±∞K(ξ) = 0 (F−1 denotes the inverse Fourier
transform). From (18), we obtain

ψ = kK ∗ ∧ − c2mK. (19)

Since ∧ ∈ L1(R) we have K ∗ ∧ ∈ L2(R), and because
K,∧ ∈ L2(R) then K ∗ ∧ ∈ C0(R) decays to zero when
ξ → ±∞. Consequently, ψ(ξ) given by (19) satisfies
the properties assumed in (14), and it defines a unique
solution in L2(R). Therefore (14) is a solution of (13)
with boundary conditions (10). Regularity properties of
ϕ(ξ) can be inferred from the following identity obtained
from (14) and (17)

c2m

αa
ϕ′ =

c

a
ψ + k ∧′ ∗ψ + k ∧ . (20)

This implies ϕ′ ∈ L1
loc(R) (since ∧′ ∗ ψ ∈ L2(R)) and

thus ones has ϕ ∈ C0(R). We also get from (15) that

ϕ′ ∈ C0(R+) ∩ C0(R−), hence ϕ ∈ C1(R+) ∩ C1(R−),
and thus (15) gives ϕ′ ∈ C1(R+) ∩ C1(R−). We get
finally

ϕ ∈ C2(R+) ∩ C2(R−) ∩ C0(R).

From the analytical expression of ϕ, we can derive an
equation to determine the wave speed of the front. Using
(14), we get

ϕ(ξ) + ϕ(−ξ)
2

=
αa

2
[ψ(ξ) + ψ(−ξ)− 1] , (21)

where ψ is defined by (19) (note that we used H(−ξ) =
1−H(ξ) to eliminate the Heaviside function). Using the
threshold condition ϕ(0) = a−V from (12) together with
(21) and (19), we obtain that the wave speed satisfies

αa[ψ(0+) + ψ(0−)− 1] + 2(V − a) = 0. (22)

This scalar equation allows us to compute c numerically
using a Newton-type method. Computation of K is done
using a Gauss-Konrod quadrature formula in a truncated
interval [−106, 106] (an alternate approach would be to
use the residue theorem with a numerical computation
of the poles of K [25]). We restrict to c > 0 (the case
c < 0 can be deduced by symmetry, see section VII). A
plot of the resulting analytical profile (14) is shown in
Fig. 9(a) and compared with the numerical simulation
of (8). A perfect matching is realized between the two
trajectories. The typical dependence of the wave speed
on the stationary sliding velocity, V , and on the coupling,
k, is shown in Fig. 9(b).

VI. ANTI-CONTINUUM LIMIT

In this section, the small coupling limit is explored.
We consider the case c > 0 (see Sec. VII for the case
c < 0). From (17) and (19) with k → 0, we have the
leading order equation

c2mK ′ − c

a
K − k ∧′ ∗K = δ, (23)

where we look for a solution of the form

K = K0 + kK1 +O(k2). (24)

Inserting (24) in (23), and equating orders of leading
terms in k, we obtain

c2m(K ′0 − νK0) = δ, (25)

c2m(K ′1 − νK1) = ∧′ ∗K0, (26)

where ν−1 = cam. Observe that (25) has the unique
bounded solution

K0(ξ) = − 1

c2m
eνξH(−ξ), (27)
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FIG. 9. (a) Travelling front solution ϕ(ξ) computed from the
explicit formula (14) where k = 0.3, V = 1.025, a = 1, and
α = 0.2 (full line). The trajectory is indistinguishable from
the one obtained from the numerical simulation of the chain.
The asymptotic approximation (29) obtained for k � 1 is
also shown (dashed gray line). We obtain c = 1.55 from the
threshold condition (12) (the dashed line defines the thresh-
old u2 = a − V ). (b) Wave speed curves in the (c, k) plane
obtained from (22) for V = 1.025, 1.05, 1.075, and 1.1 (from
right to left, respectively).

where K0 ∈ L1(R), hence the solution of (26) reads

K1 = K0 ∗ ∧′ ∗K0 = ∧ ∗K0 ∗K ′0,

=
1

c2m
∧ ∗K0 + ν ∧ ∗K0 ∗K0, (28)

where we used K ′0 = 1
c2mδ + νK0. Using (19) with (27)

and (28), the approximation for ϕ up to O(k2) reads

ϕ(ξ) = αa(eνξ − 1)H(−ξ) + αak
[
− c2mK1(ξ)

+(K0 ∗ ∧)(ξ)
]

+O(k2), (29)

where we used the identity H(−ξ) = 1−H(ξ).
Expression (29) allows to obtain an approximation of the
wave speed c for small k. From ϕ(0) = a − V and (29),
we get

a− V = αak
(
−c2mK1(0) + (K0 ∗ ∧)(0)

)
+O(k2),

= −αkc(∧ ∗K0 ∗K0)(0) +O(k2),

:= S(c)k +O(k2). (30)

We obtain after some calculations (see Appendix A)

S(c) = 2αma3 − αa2

c

(
(2amc+ 1)e−1/amc + 1

)
. (31)

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

c

k

(a)

0 0.05 0.1 0.15 0.2
0

0.01

0.02

0.03

0.04

0.05

c

k

(b)

FIG. 10. (a) Speed curves of the traveling front solution in
the (c, k) plane for V = 1.0025, 1.005, 1.0075 and 1.01 (from
right to left, respectively). Curves (c, k) computed with (34)
(dashed gray line) accurately describe the exact curves (c, k)
computed with (22) (black continuous) in the limit c → 0.
(b) A zoom of the dashed square region in panel (a) is shown.
Parameter values are α = 0.2 and a = 1.

To approximate c, we drop O(k2) terms in (30). The
wave speed can be estimated from the solution of

ν − 2 + (ν + 2)e−ν =
V − a
αma3k

(32)

where ν−1 = acm. It can be shown that the left-hand
side of (32) defines a bijective function on R that passes
through the origin so that (32) admits a unique solution.
Let us fix the values of V and a, and look for solutions
c ≈ 0 when k ≈ 0. Observing the exponential decay
e−ν → 0 as c → 0, we have, from (31) and (30) the
leading order approximation

ν = 2 +
V − a
αma3k

(33)

for k, c → 0. Therefore we obtain the following approxi-
mation for the wave speed:

c ∼ 1

2am+ V−a
αa2k

, (34)

where the leading-order approximation reads c ∼ αa2k
V−a .

Formula (34) was derived under the assumption that c
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is small for k small, and one can easily check that c
given by (34) satisfies c → 0 as k → 0. To evaluate
the accuracy of the asymptotic approximation (34), we
compare in Fig. 10 the (c, k) curves obtained from (22)
with those computed from (34) for different sliding ve-
locities V . The asymptotic approximation (29) of the
waveform is compared with the exact solution [see Fig.
9(a)]. A good matching between the two wave profiles is
found. Monotonicity analysis of the approximated wave-
form (29) shows that the velocity profile is nonmonotonic,
i.e., a dip always exists behind the front (see Appendix
B).

VII. REVERSE TRAVELING FRONTS AND
PULSES

In the previous section, we constructed traveling fronts
connecting the two stable equilibria U1 = −αa (when
n → −∞) and 0 (when n → +∞). In this analysis we
have restricted our attention to traveling fronts with pos-
itive velocity c(V ) (for now we consider the dependency
of front velocity in V and discard the other parameters).
Using symmetry arguments, we show in the sequel the
existence of travelling fronts with negative velocity satis-
fying the same boundary conditions. We also deduce the
existence of traveling fronts with positive velocity sat-
isfying reverse boundary conditions (un → −αa when
n→ +∞ and un → 0 when n→ +∞).

Let us start with some symmetry considerations. Con-
sider the advance-delay equation (11) with boundary con-
ditions

ϕ(−∞) = U1, ϕ(+∞) = U3. (35)

This problem admits the invariance

ϕ(ξ)→ ϕ(−ξ), c→ −c, (U1, U3)→ (U3, U1). (36)

Moreover, the piecewise-linear friction force F0 is anti-
symmetric about v = a, i.e., we have

F0(a+ h) + F0(a− h) = 2− α, for all h ∈ R.

As a consequence, one can readily check that (11) with
(35) are invariant by the one-parameter family of trans-
formations

ϕ→ −λ− ϕ, V → 2 a+ λ− V,
(37)

(U1, U3)→ (−λ− U1,−λ− U3),

where λ ∈ R is arbitrary.
Now let us use the above invariances in order to ob-

tain reverse traveling fronts. We define ζ̃ = −αa − ϕ,
so that ζ̃ and ϕ connect stable equilibria in reverse or-
der at infinity. Applying invariance (37) for U3 = 0
and λ = αa = −U1, it follows that ϕ is a solution
of (11) if and only if ζ̃ is a solution of the same equa-

tion with modified sliding velocity Ṽ = a (2 + α) − V .
From the results of Sec. V, this problem admits for

all Ṽ ∈ (a, a(1 + α)) a front solution ζ̃ satisfying the

boundary conditions ζ̃(−∞) = −αa, ζ̃(+∞) = 0, with

velocity c(Ṽ ) > 0. From invariance (36), this equation

possesses another front solution ζ(ξ) = ζ̃(−ξ) with ve-

locity −c(Ṽ ) < 0, which satisfies the boundary condi-
tions ζ(+∞) = −αa, ζ(−∞) = 0. It follows that for
all V ∈ (a, a(1 + α)), Eq. (11) with sliding velocity V
admits the front solution ϕ̃ = −αa − ζ, satisfying the
boundary conditions (10) and having a negative velocity
−c(a (2 + α)− V ). Consequently, the search of front so-
lutions of (10) and (11) can be reduced to the case c > 0
examined in Sec. V, since all fronts with c < 0 can be
deduced by symmetry.

Furthermore, ϕ(ξ) = ϕ̃(−ξ) = −αa− ζ̃(ξ) defines an-
other solution of (11) with sliding velocity V . This front

has a positive velocity c(Ṽ ) = c(a (2 + α) − V ) and sat-
isfies the reverse boundary conditions

ϕ(−∞) = 0, ϕ(+∞) = −αa. (38)

The coexistence of this reverse front and the front satisfy-
ing (10) and (11) with the different velocity c(V ) can be
used to understand the broadening of pulses reported in
Sec. IV, as well as the existence of steadily propagating
pulses observed for particular sliding velocities. Indeed,
we can see from Fig. 10(b) that the function V 7→ c(V )
is decreasing [this is also clear from the leading order ap-
proximation (34)]. Consequently, gluing the above two
fronts to form a pulse decaying to 0 at infinity, the trail-
ing front (at the rear of the propagating pulse) will be

slower if V < Ṽ , resulting in a broadening of the pulse.
This regime occurs for V ∈ (a, a(1 + α

2 )). In the critical

case V = a(1 + α
2 ), we have V = Ṽ and the two fronts

have identical velocities, thereby maintaining a steadily
propagating pulse [this case is shown in Fig. 5(f)]. Con-
versely, for V ∈ (a(1 + α

2 ), a(1 + α)), the trailing front is
faster and no pulse wave can propagate. Starting from
an initial bump condition, an annihilation occurs when
the trailing front reaches the leading front. In conclusion,
the condition for the existence of broadening pulses reads

V < V ∗ where V ∗ = a
(α

2
+ 1
)
. (39)

For V > V ∗, pulse fails to propagate whereas for V = V ∗

a stable pulse is observed, with a width determined by
the initial perturbation. In the small coupling limit, this
pulse has a wave speed c ∼ 2ak according to approxima-
tion (34).

VIII. DISCUSSION

We studied localized traveling waves in a nonlinear lat-
tice describing a block-spring chain sliding down a slope
and experiencing friction. Wave propagation was illus-
trated for different spinodal friction laws. For a partic-
ular range of stationary sliding velocities, the medium
is made of blocks exhibiting bistabilities, and it supports
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nonlinear transition waves (wave fronts). Interesting con-
nections can be made with recent results on waves in
bistable lattices [5, 26]. For an idealized piecewise-linear
friction force, we constructed analytically traveling fronts
and analyzed their wave speeds. In contrast with the dis-
crete Nagumo equation, propagating fronts exist at small
coupling values, i.e., propagation failure does not occur
at weak-coupling strengths. As already observed in a
different context [27], the traveling pulses are shaped by
the concatenation of two traveling front solutions, and
pulse propagation failure occurs when the back wave is
faster than the front wave. We determined analytically
the parameter range where pulses of constant width oc-
cur, i.e., the leading front and the trailing front have the
same velocity. It is worth noting that this analysis does
not rely on a time scale separation and differs from the
asymptotic construction of pulses done in [28]. In partic-
ular, the pulse width is not determined by the equality of
the velocity of the two fronts but depends on the initial
excitation.

The present study is also of interest for the under-

−80 −60 −40 −20 0 20
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

ξ

FIG. 11. Comparison of a front solution un(t) of (2) with
velocity c = cf ≈ 0.79 (solid line) with a pulse (veloc-
ity c = cBK ≈ 15.70) supported by the Burridge-Knopoff
model (dotted line). The velocity waveforms are plotted in
the traveling-wave coordinate ξ = n − ct. Computations are
performed for the cubic friction law Fc and the following pa-
rameters : γ = 0.05, kc = 10, and V = 1.025. The pulse
velocity cBK is well approximated by the (rescaled) front ve-
locity cf/γ ≈ 15.85.

standing of the dynamics of the Burridge-Knopoff model,
where the time evolution of the system is given by

γÿn = kc∆dyn − F (V + ẏn)− yn. (40)

Let us define yn(t) = −F (V ) + γzn(t/γ) and k = γkc.
Assuming γ � 1, then, the Burridge-Knopoff model (40)
can be approximated in the fast time scale by

z̈n = k∆dzn − F (V + żn) + F (V ) (41)

which coincides with (2). Equation (41) is obtained from
(40) neglecting the γzn term, i.e., model (2) does not in-
corporate a ”dynamic recovery” and only describes the
initial excitation of the Burridge-Knopoff system. There-
fore, for small γ values, one may expect that the front

waves of (2) provide useful information on the dynamics
of pulse propagation in the Burridge-Knopoff model (40).
More precisely, fronts approximate the transition region
from the ground state to the excited state. This is shown
in Fig. 11 where the fast time scale of the Burridge-
Knopoff model is accurately reproduced by model (2).
In addition, numerical experiments suggest that the wave
speed of the solitary wave of the Burridge-Knopoff model
is well approximated by the (rescaled) velocity of kinks of
(2); see caption of Fig. 11. In the case of the piecewise-
linear friction law F0, the computation of the front ve-
locity is much simpler than for the solitary wave of the
Burridge-Knopoff model. A detailed study of solitary
waves in the excitable Burridge-Knopoff model is pre-
sented in [7].
Interesting numerical problems left open in this study
concern the continuation of stationary front and pulse
solutions and the analysis of their linear stability. For
the piecewise-linear friction law, front stability will be
analytically addressed in a future work (in that case, the
discontinuity of the friction force introduces some diffi-
culties).
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Appendix A: Computation of S(c)

We compute here the explicit expression of S(c) =
−αc (∧ ∗K0 ∗K0) (0). We reexpress K0 as K0(ξ) =

−G(ξ)
c2m where G(ξ) = eνH(−ξ), hence we have

S(c) = − α

c3m2
(∧ ∗G ∗G) (0). (A1)

We have

(G ∗G)(−s) =

∫ 0

−s
G(τ)G(−s− τ)dτ = se−νsH(s)

with s > 0, therefore

(∧ ∗G ∗G) (0) =

∫
R
∧(τ)(G ∗G)(−τ)dτ

=

∫ 1

0

(1− τ)(τe−ντ )dτ

=
ν + e−νν − 2 + 2e−ν

ν3

=
e−ν

ν3
(2 + ν) +

−2 + ν

ν3
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with ν = (cam)−1. We further calculate

e−ν

ν3
(2+ν)+

−2 + ν

ν3
= −ν−2

[
2ν−1 − (2ν−1 + 1)e−ν − 1

]
.

(A2)
Inserting (A2) into (A1) gives

S(c) =
αν−2

c3m2

[
2ν−1 − 1− (2ν−1 + 1)e−ν

]
, (A3)

and (31) follows.

Appendix B: Profile of the approximated front

From (28) and (29) one has the following asymptotic
approximation of the waveform

ϕ(ξ) = αa(eνξ − 1)H(−ξ)− αck ∧ ∗K0 ∗K0(ξ) +O(k2).

We note ϕ1 = ∧ ∗K0 ∗K0 and we calculate ϕ1 = 0 for
ξ ≥ 1 and

ϕ1(ξ) =
1

m2c4ν3

(
(2 + ν(1− ξ))eν(ξ−1)

+(2− ν(1 + ξ))eν(ξ+1) + (2νξ − 4)eνξ
)

for ξ ≤ −1. For ξ � 0 we obtain the following approxi-
mation:

ϕ1(ξ) ∼ −2(cosh(ν)− 1)

m2c4ν2
ξeνξ.

Therefore the traveling front takes the leading form

ϕ(ξ) ∼ −αa+
2α(cosh(ν)− 1)k

m2c3ν2
ξeνξ

as ξ � 0. Using c ∼ αa2k
V−a we have

ϕ(ξ) ∼ −αa+ 2(V − a)(cosh(ν)− 1)ξeνξ, (B1)

which is a decreasing function of ξ for ξ � 0. The leading
approximation of the wavefront is zero for ξ ≥ 1 and has
a decreasing profile for ξ sufficiently small, therefore the
wavefront is nonmonotonic and presents (at least) one
dip after the front. Notice that the function occuring on
the righthand side of (B1) has a minimum at ξ = −1/ν
that may be used to approximate the dip location.
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