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Uncertainty Quantification for Stochastic Approximation Limits
Using Chaos Expansion∗

S. Crépey † , G. Fort ‡ , E. Gobet§ , and U. Stazhynski ¶

Abstract. The uncertainty quantification for the limit of a Stochastic Approximation (SA) algorithm is ana-
lyzed. In our setup, this limit ζ? is defined as a zero of an intractable function and is modeled as
uncertain through a parameter θ. We aim at deriving the function ζ?, as well as the probabilistic
distribution of ζ?(θ) given a probability distribution π for θ. We introduce the so-called Uncertainty
Quantification for SA (UQSA) algorithm, an SA algorithm in increasing dimension for computing
the basis coefficients of a chaos expansion of θ 7→ ζ?(θ) on an orthogonal basis of a suitable Hilbert
space. UQSA, run with a finite number of iterations K, returns a finite set of coefficients, providing
an approximation ζ̂?K(·) of ζ?(·). We establish the almost-sure and Lp-convergences in the Hilbert

space of the sequence of functions ζ̂?K(·) when the number of iterations K tends to infinity. This is
done under mild, tractable conditions, uncovered by the existing literature for convergence analysis
of infinite dimensional SA algorithms. For a suitable choice of the Hilbert basis, the algorithm also
provides an approximation of the expectation, of the variance-covariance matrix, and of higher order
moments of the quantity ζ̂?K(θ) when θ is random with distribution π. UQSA is illustrated and the
role of its design parameters is discussed numerically.

Key words. Stochastic Approximation in Hilbert space, Uncertainty Quantification, Chaos expansion, Almost-
sure convergence.

AMS subject classifications. 62L20, 41A10, 41A25, 60B12, 60F15, 90C15.

1. Introduction. Since the seminal work of Robbins and Monro [25], the Stochastic Ap-
proximation (SA) method has become mainstream for various applications—see e.g. [18, 5] for
a general introduction and examples of applications. SA is used to find a zero of an intractable
function h : Rq → Rq of the form z 7→ E[H(z, V )], where V is some random variable (r.v.)
and H(z, v) can be computed explicitly (as opposed to its expectation h).

Example 1 (Portfolio optimization). A typical example comes from portfolio optimization:
consider a manager who has to devise an investment portfolio made of q+1 stocks whose values
at time t are denoted by St = (Sit : 1 ≤ i ≤ q+1); we can assume without loss of generality that
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all the initial conditions are deterministic and the normalization Sq+1
0 = 1 holds. Portfolio

weights (real numbers) w := (w1, . . . , wq+1) in each stock have to be determined, such that
some risk criterion (encoded by a convex function Λ) is minimized. Namely, if the investment
horizon is T > 0, minimizing the portfolio risk writes

argminw∈Rq+1 E

[
Λ

(
q+1∑
i=1

wiS
i
T

)]
,

under a budget constraint

W0 −
q+1∑
i=1

wiS
i
0 = 0

pertaining to some initial wealth W0. The above problem is equivalent to solve

argminz=(w1,...,wq)∈RqE [L(z, ST )] ,(1.1)

where L(z, ST ) := Λ

(
q∑
i=1

wiS
i
T + (W0 −

q∑
i=1

wiS
i
0)Sq+1

T

)
.

This is a convex problem. However, except in simple cases such as a quadratic loss function
Λ, the computation of the objective function to minimize is not explicit, hence the minimizers
z? (when they exist) are not explicit either. Actually, under smooth conditions on the function
Λ, the optimal weights are the zeros of z 7→ E[H(z, ST )], where H(z, S) = ∇zL(z, S). The
optimal weights can be computed using the SA method (see [28, Section 5.9]).

Example 2 (Value-at-Risk evaluation). Another well-known SA application is for the deter-
mination of a quantile ζ? of order α , for some α ∈ (0, 1), of a distribution µ on the real line
with continuous cumulative distribution function. To exemplify furthermore, let us consider
the current concerns of banks subject to more and more stringent risk controls under the super-
vision of regulatory authorities. Recently, the European Banking Authority (EBA) Guidelines
– Final Report 19 July 2018 – required that (Art. 137) “Institutions should analyze carefully
the possible interaction of operational risk losses with credit and market risks”. This could be
implemented by considering for µ the distribution of V = X1 +X2 +X3, where the X’s stand
for the losses related to operational risk, credit risk and market risk. In the financial context,
such a quantile ζ? (which is not necessarily unique) corresponds to a so-called Value-at-Risk
at level α.
Computing the ζ? can be done by a SA procedure (see e.g. [10, Chapter 1]) with

H(z, v) := α− 1v≤z h(z) := α−
∫
v≤z

µ(dv).

A convergence analysis of the related SA algorithm can be found in e.g. [3]. The application
of this algorithm may be relevant when the law µ is not explicit, but only simulatable, as in
this case for V = X1 +X2 +X3.

Uncertainty Quantification (UQ) applied to SA limits corresponds to the situation where
the distribution of the r.v. V or/and the function H are not known exactly. The goal is
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to quantify how this uncertainty impacts the roots of h. In this paper, the UQ is studied
in the form where (i) the distribution of V depends on an unknown parameter θ in Θ, i.e.
V ∼ µ(θ,dv); (ii) the function H may depend on the parameter θ; (iii) the value of θ is
unknown, but some a priori knowledge given by a probability distribution π on Θ is available.
Specifically, our mathematical framework is the following: for any (z, θ) ∈ Rq ×Θ, set

(1.2) h(z, θ) :=

∫
V
H(z, v, θ)µ(θ,dv).

Define

(1.3) S := {ζ : Θ→ Rq measurable and s.t. for π-almost every θ, h(ζ(θ), θ) = 0}.

The UQ problem consists in (i) computing some ζ? in S and (ii) characterizing the distribution
of ζ?(θ) when θ ∼ π. In this paper, (i) we propose an algorithm designed to produce ζ? ∈ S,
and we partially address (ii) by providing quantities related to the moments of ζ?(θ) when
θ ∼ π.

Example 1 (continued). To perform the optimization program in (1.1), the asset manager
usually proceeds as follows. She collects historical financial data related to stock prices; then,
she estimates the parameters within a model, such as a Geometric Brownian Motion SiT =
Si0 exp((µi− 1

2 |σ
i|2)T+σiW i

T ), for some drift/volatility/correlation parameters θ = (µi, σi, ρij :

1 ≤ i, j ≤ q + 1), where ρij = Cor(W i
T ,W

j
T ) measures the correlation between Brownian

motions. Doing so, she has defined V = (S1
T , . . . , S

q+1
T ) and its distribution µ(θ,dv); sampling

according to µ(θ,dv) is straightforward.
The parameters θ are naturally estimated with an error (since the volume of data is finite) and
it is reasonable to assume some Gaussian fluctuations on θ (usually statistical errors satisfy
a Central Limit Theorem), giving rise to a Gaussian distribution for π.
For the asset manager, the outputs of interest are (a) the map θ 7→ w?i (θ), which gives the
optimal portfolio for each possible value of the parameter θ (as well as the optimal portfolio
risk (given in (1.1)), and (b) the distribution of this portfolio when θ ∼ π, thus revealing how
much the optimized outputs depend on the uncertain parameters θ. This is a very informative
point of view to assess the robustness of her results according to the collected data, and to
quantify how much the model uncertainty on S (through a mis-estimation of the parameters)
affects the optimal allocation w?.
Our subsequent UQSA algorithm answers both questions (a) and (b), and it does so by means
of a single Monte Carlo loop, as opposed to what would be one Monte Carlo loop per θ of
interest in a naive implementation.

Example 2 (continued). In the last two decades since the definition of risk perimeters (op-
erational, credit, market), banks have collected a huge amount of data to model and measure
the marginal distribution of each risk perimeter, but there is a real lack of information about
the dependency between the Xi’s. One standard approach to comply with the EBA guidelines
is to put a Gaussian or Student-t copula, parameterized by correlation parameters θ, so that
the distribution µ(θ,dv) is now defined. One can sample from this distribution (for any fixed
θ). Due to the lack of data, estimating accurately the dependence parameter θ is unfeasable
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and one possible approach is to put a prior distribution π (e.g. uniform distribution on [−1, 1]
for a correlation coefficient).

As an output of the subsequent UQ algorithm for SA, the risk manager can get an ap-
proximation of the Value-at-Risk map θ 7→ ζ?(θ). By sampling θ ∼ π (and fast evaluation at
each simulated θ of the previously estimated function ζ?(θ)), she may then have access to the
empirical distribution of the Value-at-Risk subject to the uncertain dependence parameter.

1.1. Review of the Literature. In UQ applications (see [19, 29]), the quantity of interest
ζ? is typically related to the solution of a PDE. It is given as the output of a blackbox (for
instance, a numerical solver), which requires heavy computations. In our case, ζ? is defined
as the root of a non-explicit function defined as an expectation, so that it can be obtained
as the output of an SA algorithm. In both cases, the quantity of interest may depend on
a parameter θ (uncertainty on the inputs of the blackbox, uncertainty on the expectation).
The question is then to characterize θ 7→ ζ?(θ) through UQ. In the last two decades, UQ has
become a huge concern for both research and industrial applications; our goal is to study the
UQ problem for the SA limits, which, to the best of our knowledge, has not been investigated
so far.

A crude Monte Carlo (MC) method for the above problem could consist in sampling M

values {θi, 1 ≤ i ≤M} under π, and then compute, for each sample θi, an approximation ζ̂?(θi)
of ζ?(θi) where ζ? ∈ S. The distribution of the r.v. {ζ?(θ), θ ∼ π} is then approximated by the

empirical distribution of {ζ̂?(θi) : 1 ≤ i ≤M}. When ζ? solves a PDE, a global error analysis
is performed in [2], accounting for both the sampling error and the PDE discretization error,
which are decoupled in some way. In our SA setting, a naive approach would be to compute

ζ̂?(θm) as the output of a standard SA algorithm for fixed θm. The approach we propose below
will be different since it will couple in an efficient way the outer Monte Carlo sampling of θm
and the inner Monte Carlo sampling used to feed the SA algorithm. The resulting algorithm
computes the function θ 7→ ζ?(θ) as a whole by a single Monte Carlo sampling, which is bound
to work well if the function ζ? is regular (as made precise by our convergence result below)—a
regularity which is not exploited in the naive approach.

A second method, developed in [20, 16], is a perturbative approach taking advantage of
a stochastic expansion of {ζ?(θ), θ ∼ π} that is available when θ has small variations (a
restriction that we do not need or want to impose in our case).

A third strategy, which dates back to Wiener [32] and has been developed in the fields
of engineering and UQ in the 2000s (see [12, 19] and references therein), is based on chaos
expansions. This technique, also known as the spectral method, consists of projecting a point
ζ? ∈ S on an orthonormal basis {θ 7→ Bi(θ), i ≥ 0} of real-valued and square-integrable (with
respect to π) functions, and computing the Rq-valued coefficients {ui, i ≥ 0} of ζ = ζ? in its
decomposition

ζ =
∑
i≥0

uiBi, ui = 〈ζ;Bi〉π :=

∫
ζ Bi dπ.(1.4)
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In the most common case where B0 ≡ 1, the expectation and the variance-covariance matrix
are related to the Rq-valued projection coefficients {ui, i ≥ 0} through

(1.5) Eθ∼π[ζ(θ)] = u0 and Varθ∼π(ζ(θ)) =
∑
i≥1

uiu
>
i .

This provides a tool to approximate the first and second moments of {ζ?(θ), θ ∼ π} from
an approximation {û?i , i ≥ 0} of the coefficients {u?i , i ≥ 0}. In the case of polynomial basis
(see [19, Appendix C]), higher order moments are also explicitly related to the coefficients.
For an approximation of more general statistics (confidence intervals for instance), one can
define an approximation ζ̂? of the function ζ? by using {û?i , i ≥ 0}, sample independent and

identically distributed (i.i.d.) variables θj ’s under the distribution π, compute the ζ̂?(θj)’s and
obtain the empirical estimators of the desired quantities. Since such post-processing is quite
obvious, from now on we focus on the computations of a function ζ? in S (or equivalently of
its coefficients {u?i , i ≥ 0}).

In [17], Kulkarni and Borkar provide a finite dimensional procedure to approximate the
minimum of ζ 7→

∫
L(ζ(v), v)µ(dv) on some subset of the real valued functions, for some

explicit non-negative function L satisfying some strict convexity properties with respect to
(w.r.t.) its first argument. They first introduce a truncation by considering functions of the
form ζ =

∑m
i=1 xiBi for some adequate family of functions {B1, · · · , Bm} such that computing

ζ is equivalent to the computation of x1, · · · , xm. The problem is then solved by a classical SA
procedure in Rq where H(z, v) = ∂sL(s, v)|s=∑q

i=1 ziBi(v) × {Bk(v), 1 ≤ k ≤ q}. They analyze
the error due to finite dimensional truncation. However, this analysis makes apparent that,
in order to achieve actual convergence results (as opposed to error bounds in [17]), one really
needs to let m increase during the algorithm. Moreover, even when the function ζ is explicitly
known (which is not the case in our setup) and estimating individual coefficients ui in (1.4)
is straightforward by MC simulations, the global convergence of a method where more and
more coefficients are computed by Monte Carlo is nontrivial, subject to a fine-tuning of the
speeds at which the number of coefficients and the number of simulations go to infinity (see
[13]).

Our methodological contribution is the derivation of an algorithm for the UQ analysis
of SA limits. It is based on chaos expansion, it is able to overcome the finite dimensional
truncation by increasing the dimension, and it uses Monte Carlo sampling only for feeding
the SA algorithm.

Asymptotically, our method reaches the case with no truncation, so that it is among the
family of infinite dimensional SA algorithms.

There exists a large number of works on infinite dimensional SA methods. Recently,
numerous works have been devoted to statistical learning in Hilbert spaces, in particular,
Reproducing Kernel Hilbert Spaces (RKHS, see e.g. [9] and references therein). However, sta-
tistical learning in Hilbert spaces reduces to finite dimensional SA: based on N input/output
examples {(xi, yi), 1 ≤ i ≤ N}, it consists of solving

(1.6) argminϕ∈H
1

N

N∑
i=1

(L(ϕ(xi), yi) + Ω(‖ϕ‖H)) ,
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where H is a RKHS associated to a positive-definite real-valued kernel K, L is a non-negative
loss function, and Ω is a strictly increasing function acting as a penalty term. By the Repre-
senter Theorem (see [27, Theorem 4.2]), each minimizer admits a representation of the form
ϕ? =

∑N
i=1 ω

?
iK(·, xi) so that, under regularity conditions on L and Ω, the solution of (1.6)

can be solved by a SA algorithm in RN .
In [31], [6] and [34], the authors study SA in Hilbert spaces in the case H(z, V ) = H̃(z)+V ,

where z here lives in a Hilbert space. The conditions of convergence are infinite dimensional
formal analogues of those in the finite dimensional case (see Section 3.1). Unfortunately,
although interesting from a theoretical point of view, these SA algorithms are defined directly
in the infinite dimensional Hilbert space, so that they are not feasible in practice.

An alternative to the above is to iteratively increase the dimension, to infinity in the limit,
while remaining finite at each iteration. There have been several papers in this direction,
generally known as the sieve approach. Goldstein [14] proves almost-sure convergence in the
norm topology for a modified Kiefer-Wolfowitz procedure (see [15]) in infinite dimensional
Hilbert space using a sieve approach. Nixdorf [23] shows asymptotic normality for a modified
sieve-type Robbins-Monro procedure. Yin [33] proves almost-sure convergence in the weak
topology for a sieve-type Robbins-Monro procedure. The papers [14, 23, 33] treat specific
expressions of H : H × V → H with sieve approaches. The paper [8] also proposes a sieve
approach in a SA scheme, but each iteration necessitates the exact computation of a projection
on a finite subspace of the Hilbert space (see [8, Algorithm TRMP]), which is not practical
(exact computation of the coefficients ui by the integral in (1.4)). We will see below that, when
H = L2

π for some probability distribution π, our approach allows replacing the computation
of this expectation by a simulated sample mean.

None of the above literature in an infinite dimensional Hilbert space H is suitable for UQ.
Indeed, all these previous papers solve problems of the form

(1.7) Finding ζ? ∈ H :

∫
H(ζ?, v)µ(dv) = 0,

so that, first, the distribution µ does not account for the uncertainty and, second, for any
v, the computation of the quantity H(ζ, v) may have a prohibitive computational cost, as it
entails the infinite dimensional input data (function) ζ.

1.2. Contributions and Outline of the Paper. Our SA algorithm combines (i) the sieve
approach in the special caseH is L2

π for some probability distribution π, (ii) the UQ framework
by allowing µ in (1.7) to depend on θ ∈ Θ with an a priori knowledge θ ∼ π (see Eq. (1.2)), and
(iii) a tractable computational cost for the function H. Moreover, while addressing a more
general framework where the projection on a subspace of H is approximated, our convergence
proof relies on weaker assumptions (see Section 3.1, where we show that, in our setup, the
assumptions of [8] may fail to hold). As a result:

• We obtain a fully constructive, easy to implement algorithm for the UQ analysis of
SA limits in a chaos expansion setup, dubbed UQSA (Uncertainty Quantification for
Stochastic Approximation);
• We are able to derive a convergence proof under easy-to-check hypotheses, in terms of

underlying problems corresponding to fixed values of θ, avoiding conditions involving
Hilbert space notions that are often hard to check in practice (or may even be violated);
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• We discuss complexity issues and provide extensive reports and discussion on numerical
tests.

The paper is outlined as follows. The UQSA algorithm is introduced in Section 2. Section
3 states the almost-sure convergence of the algorithm and its Lp convergence w.r.t. the
underlying Hilbert space norm. The proof is deferred to Section 4. Section 5 presents the
results of numerical experiments, including a detailed discussion of the choice of the design
parameters.

Note that, beyond model uncertainty, applications of our approach include sensitivity
analysis w.r.t. θ, or quasi-regression of an unknown function (see [1]), for instance in the
context of outer Monte Carlo computations involving some unknown inner function ζ? = ζ?(θ)
(cf. [4]).

2. Problem Formulations and Algorithmic Designs. Let V be a metric space endowed
with its Borel σ-field, Θ be a measurable subset of Rd, and H : Rq × V × Θ → Rq be given.
Let π be a probability distribution on Θ and µ be a transition kernel from Θ to V. For any
measurable functions f, g : Θ→ R, we define the scalar product induced by π by

(2.1) 〈f ; g〉π :=

∫
Θ
f(θ)g(θ)π(dθ).

By extension, for measurable functions f = (f1, · · · , fq) : Θ→ Rq and g : Θ→ R, we write in
vector form

(2.2) 〈f ; g〉π :=

〈f1; g〉π
· · ·
〈fq; g〉π

 .
We denote by L2

π the Hilbert space of functions f : Θ → Rq such that the norm ‖f‖π :=√∑q
i=1 〈fi; fi〉π is finite. In the special case where q = 1, we write L2,1

π .

Hereafter, all the r.v. are defined on the same probability space, with probability and
expectation denoted by P and E.

2.1. The naive SA algorithm. A naive approach for finding ζ? in S (see (1.3)) would be
to calculate ζ?(θ) for each value of θ separately, for example by the following standard SA
scheme (see [5, 10, 18]): Given a deterministic sequence {γk, k ≥ 1} of positive step sizes and
a sequence of i.i.d. r.v. {Vk, k ≥ 1} sampled from µ(θ, ·), obtain ζ?(θ) as the limit of an
iterative scheme

ζk+1(θ) = ζk(θ)− γk+1H(ζk(θ), Vk+1, θ), k ≥ 0.(2.3)

Explicit conditions can be formulated to the effect that ζ?(θ) = limk ζ
k(θ) holds P-a.s. (see

e.g. [10, Chapter 1]). When limk kγk = O(1), the error E
[
|ζk(θ)− ζ?(θ)|2

]
after k iterations

(and thus k Monte Carlo samples) is O(1/k) (see [10, Chapter 2]). Here the expectation is
w.r.t. the random variable ζk(θ), for any fixed value θ. When limk kγk = +∞, the same
rate of convergence can be reached by replacing ζk(θ) with an averaged estimator (see the
Polyak-Ruppert procedure [24]).

However, except in the case where Θ is finite with few elements, the estimation of ζ?(θ),
separately for each θ ∈ Θ, is unfeasible or too demanding computationally.
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2.2. Chaos Expansion Setup. Let {θ 7→ Bi(θ), i ≥ 0} be an orthonormal basis of L2,1
π

(for the scalar product (2.1)). Orthonormal polynomials are natural candidates, but there are
other possibilities. For examples of the most commonly used bases, we refer the reader to [7,
Chapter 2]. For x, y ∈ Rq we denote by x · y and |x| the scalar product and the Euclidean
norm in Rq. We denote by l2 the normed vector space of the Rq-valued sequences {ui, i ≥ 0}
with ‖u‖2l2 :=

∑
i≥0 |ui|2 < +∞. As is well known, given an orthonormal basis {Bi, i ≥ 0} in

L2,1
π , any function ζ ∈ L2

π is characterized by a sequence {ui, i ≥ 0} in l2 such that

(2.4) ζ(·) =
∑
i≥0

uiBi(·).

Throughout the paper, we use the natural isomorphism Is : l2 → L2
π given by

ζ = Is(u) =
∑
i≥0

uiBi, i.e. ui = 〈ζ;Bi〉π for each i ∈ N,(2.5)

and the corresponding isometry ‖ζ‖π = ‖u‖l2 (see [21, Proposition 10.32]), hence

(2.6) 〈u, u′〉l2 = 〈Is(u), Is(u′)〉π, u, u′ ∈ l2,

where the scalar products 〈·, ·〉l2 and 〈·, ·〉π are the ones associated with the respective (Hilbert)
norms.

An alternative strategy for finding ζ? in S under the additional constraint that ζ? ∈ L2
π

would consist in the combination of (i) a truncation at a fixed level m of the expansion (2.5),
(ii) the estimation of the first (m+ 1) Rq-valued coefficients {u?i , 0 ≤ i ≤ m} of ζ?, based on
a Monte Carlo approximation

u?i = 〈ζ?;Bi〉π ≈ û?i :=
1

M

M∑
k=1

̂ζ?(θk,i)Bi(θk,i),(2.7)

where {θk,i, k ≥ 1, i ≤ m} are i.i.d. with distribution π, and (iii) for each value θk,i, the

computation of an approximation ̂ζ?(θk,i) of ζ?(θk,i) (which can be done e.g. through (2.3)).
Let us discuss the computational cost of the step (ii) in the case where q = 1 (for ease of
notation), θ ∈ Rd, and of a Jacobi polynomial basis for the Bi’s. The following control on the
truncation error of ζ? holds (see [11, Theorem 6.4.2] or [7, Chapter 5]):

(2.8)

∥∥∥∥∥∑
i>m

u∗iBi

∥∥∥∥∥
2

π

= O
(
m−

2(η−1)
d

)
,

where η is the order of continuous differentiability of ζ? (in some cases this bound may be

strengthened to O(m−
2η
d )). Neglecting the error associated with the approximation ̂ζ?(θk,i),

we have

(2.9) E

∥∥∥∥∥
m∑
i=0

(u∗i − û∗i )Bi

∥∥∥∥∥
2

π

 = O
(m
M

)
.
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For balancing the error components (2.8) and (2.9), we must set M ∼ m1+
2(η−1)
d . To reach an

accuracy ε, m has to increase as ε−d/(2(η−1)) and M has to increase as ε−(1+d/(2(η−1))). The
computational cost in terms of number of Monte Carlo samples to estimate m coefficients is
therefore m×M = ε−(1+d/(η−1)). This quantity suffers from the curse of dimensionality, which
makes this approach inefficient for high d, especially when combined with a nested procedure

for the computation of ̂ζ?(θk,i).

2.3. The UQSA Algorithm. Through the decomposition (2.4) and the isomorphism (2.5),
finding ζ? in L2

π ∩ S (see (1.3)) can be restated as

Finding u? in l2 :

∫
V
H

∑
i≥0

u?iBi(θ), v, θ

 µ(θ,dv) = 0, π-a.s.(2.10)

If in addition, h(ζ?(·), ·) ∈ L2
π (see condition A4 below when deriving sufficient conditions

for the convergence of UQSA), the problem is equivalent to finding ζ? ∈ L2
π such that

(2.11)

∫
Θ

(∫
V
H (ζ?(θ), v, θ) µ(θ,dv)

)
Bi(θ)π(dθ) = 0Rq , ∀i ≥ 0.

This observation can be used for devising an original SA scheme for the u?i in (2.10). A
first attempt in this direction is to restrict the problem to a set of functions ζ(·) of the form∑m

i=0 uiBi(·), together with h(ζ(·), ·), for some fixed m ≥ 1. In this case an SA algorithm for
the computation of {u?i , i ≤ m} is given by: for any k ≥ 0,

(2.12) uk+1
i = uki − γk+1 H

 m∑
j=0

ukjBj(θk+1), Vk+1, θk+1

 Bi(θk+1), i = 0, · · · ,m,

where the {(θk, Vk), k ≥ 0} are i.i.d. with distribution π(dθ)µ(θ,dv). However, in practice,
neither ζ? nor h(ζ(·), ·) are typically of the form

∑m
i=0 uiBi and, even when they are, we may

not know for which m. We emphasize that, in the general case ζ? ∈ L2
π, as the first argument

of H in (2.12) is the current truncation
∑m

i=0 u
k
iBi(θk+1) and not ζ?(θk+1), this algorithm

does not converge to the projection of ζ? onto the space spanned by {B0, · · · , Bm}. See the
numerical evidence reported in Section 5.4.

In order to tackle the infinite dimensionality of the problem space L2
π, our algorithm

introduces further an N-valued sequence {mk, k ≥ 0} specifying the number of coefficients ui
that are updated at each iteration. The sequence {mk, k ≥ 0} is non-decreasing and converges
to ∞, which is the key property to avoid the truncation phenomenon.

The UQSA algorithm is given in Algorithm 2.1. The inputs of the algorithm are: a
positive stepsize sequence {γk, k ≥ 1}; two positive integer-valued sequences {mk, k ≥ 1} and
{Mk, k ≥ 1} corresponding to the number of non null coefficients in the approximation of ζ?

and to the number of Monte Carlo draws of the pair (θ, V ) at each iteration k; an initial value
u0 ∈ Rq m0 ; a total number of iterations K; a closed convex subset A of l2 on which to project
each newly updated sequence of coefficients, with related projection operator denoted by ΠA.
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Algorithm 2.1 The UQSA algorithm

Input: Sequences {γk, k ≥ 1}, {mk, k ≥ 0}, {Mk, k ≥ 1}, K ≥ 1, {u0
i , i = 0, . . . ,m0}, a

convex set A ⊆ l2.
for k = 1, . . . , K do

for s = 1, . . . ,Mk do
Independently from the past, sample (θsk, V

s
k ) under the distribution π(dθ)µ(θ,dv)

end for
For all i > mk−1 define uki = 0
for i = 0, . . . ,mk do

ûki = uk−1
i − γkM−1

k

∑Mk
s=1H

(∑mk−1

j=0 uk−1
j Bj(θ

s
k), V

s
k , θ

s
k

)
Bi(θ

s
k)

end for
uk = ΠA(ûk)

end for
return The vector {uKi , i = 0, . . . ,mK}.

The motivations for the introduction of the projection set A at each iteration, and for
the averaging over Mk Monte Carlo draws at step k, are discussed in Sections 3.2 and 5.5.3,
respectively. The output of the algorithm is a sequence {uKi , i ≤ mK} approximating a
solution u? to the problem (2.10). The associated function,

(2.13) ζK :=

mK∑
i=0

uKi Bi,

is an approximation of a solution ζ? to the problem (2.11).

3. The UQSA Algorithm Converges. The roots of h are unchanged if H is replaced with
(−H) (see (1.2)). In this section, we use the convention which allows h to be thought of as
the gradient of a convex function. This is also consistent with Example 1 (see also the last
paragraph there), where h(z) = E [∇zL(z, ST )].

3.1. Assumptions. Let

(3.1) T ? :=

u? ∈ l2;

∫
V
H

∑
i≥0

u?iBi(θ), v, θ

 µ(θ,dv) = 0, π-a.s.

 .

Note that (2.10) is equivalent to u? ∈ T ?.
A1. The set T ? is compact and non-empty.

T ? may contain several elements. In the SA literature, allowing for multiple limits is quite
standard. This encompasses for example, the important case of computing quantiles and
average quantiles1 (cf. [3, Section 2]): the SA approximation for the quantile component may
converge to several limits (e.g. when, at these locations, the cumulative distribution function

1also called Value-at-Risk and Expected Shortfall in financial applications.
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is flat), while, for the average quantile component, the limit is unique (see e.g. [4, Lemma
A.1.]).

A2. {Mk, k ≥ 1} and {mk, k ≥ 1} are deterministic sequences of positive integers; {γk, k ≥
1} is a deterministic sequence of positive real numbers such that, for some κ ∈ (0, 1],∑

k≥1

γk = +∞,
∑
k≥1

γ1+κ
k < +∞,

∑
k≥1

γ2
k

Qmk
Mk

< +∞,
∑
k≥1

γ1−κ
k qmk < +∞,(3.2)

where the sequences {qm,m ≥ 0} and {Qm,m ≥ 0} are defined by

qm := sup
u?∈T ?

∑
i>m

|u?i |2, Qm := sup
θ∈Θ

∑
i≤m
|Bi(θ)|2.(3.3)

Since T ? is compact, we have limm qm = 0 (see e.g. Lemma A.1 in Section A). Assumption
A2 requires, in particular, that Qm < +∞ for any m: if Θ is bounded, it holds for any
continuous basis functions. In the case of polynomial basis, the inverse of the coefficient Qm
is the minimum of m-th Christoffel function, which is studied in depth in [22].

We now introduce two possible conditions on the behavior of H. In Section 3.2 we consider
different cases illustrating the two sets of assumptions.

A3. One of the following conditions:
a) There exists a constant CH such that, for any z ∈ Rq,

sup
θ∈Θ

∫
V
|H(z, v, θ)|2µ(θ,dv) ≤ CH(1 + |z|2).

b) The map from L2
π into R defined by ζ 7→

∫
V×Θ |H(ζ(θ), v, θ)|2µ(θ,dv)π(dθ) is bounded,

i.e. it maps bounded sets into bounded sets.

The condition A3 implies that for any z ∈ Rq, and θ ∈ Θ,

(3.4)

∫
V×Θ
|H(z, v, θ)|µ(θ,dv)π(dθ) <∞, h(z, θ) :=

∫
V
H(z, v, θ)µ(θ,dv) exists,

and

(3.5) ∀ ζ ∈ L2
π, θ 7→ h(ζ(θ), θ) ∈ L2

π.

Note that the condition A3-a) implies A3-b), which in turn implies that ζ 7→ h(ζ(·), ·) is a
bounded map from L2

π into itself. We also assume

A4. The mapping ζ 7→ h(ζ(·), ·) from L2
π into itself is continuous.

A5. For π-almost every θ: for any z, z? ∈ Rq such that h(z, θ) 6= 0 and h(z?, θ) = 0,

(z − z?) · h(z, θ) > 0,

where a · b denotes the usual scalar product on Rq.
11



Note that A5 is the standard assumption for SA with fixed θ, and can be seen as a local
separation condition. In the case of a single minimum (T ? = {u?} and ζ? = Is(T ?)), previous
works on SA in a Hilbert space H assume an integrated drift condition (see e.g. [8, Assumption
A3P(2)]). For ζ ∈ L2

π, denoting ζm :=
∑m

i=0 〈ζ;Bi〉π Bi, this condition is: there exists m∗

such that, for any m ≥ m∗ and η > 0,

(3.6) inf
{ζ:‖ζm−ζ?‖2π>η}

∫
Θ

(ζm(θ)− ζ?(θ)) · (h(ζm(·), ·))m(θ) π(dθ) > 0.

The assumption (3.6) may not hold in some settings : for example, set h(z, θ) := z −ϕ(θ) for
some ϕ ∈ L2

π; then ζ? = ϕ, and (h(ζm(·), ·))m = ζm − ζ?m. This implies that the integral in
(3.6) is ∫

Θ
|ζm(θ)− ζ?m(θ)|2 π(dθ) = ‖ζm − ζ?m‖2π

and, for any m, we can choose ζ and η > 0 such that this quantity is zero (choose ζ = ζ?m

and η = 0.5 ‖ζ? − ζ?m‖2π).

A6. For any B > 0, there exists a constant CB > 0 such that, for any (ζ, ζ?) ∈ L2
π×Is(T ?)

with ‖ζ − ζ?‖π ≤ B,∫
Θ

(ζ(θ)− ζ?(θ)) · h(ζ(θ), θ)π(dθ) ≥ CB min
ζ̄∈Is(T ?)

∥∥ζ − ζ̄∥∥2

π
.

Note that the above minimum exists since, by A1, Is(T ?) is compact.

3.2. Projection Set. Three possible choices regarding the projection set A in Algo-
rithm 2.1 are considered for the convergence analysis. For all of them, it is assumed that
A includes T ?.

Case 3.1. A is l2 (i.e. no projection).

Case 3.2. A is a closed ball of l2 containing T ?.
Case 3.3. A is a closed convex set of l2 containing T ?, with compact intersections with

closed balls of l2.

Note that the projection set A is bounded in Case 3.2, unbounded in Case 3.1 and poten-
tially unbounded in Case 3.3. Example 3 below is an illustration of Case 3.3.

Case 3.1 is the most convenient from the algorithmic viewpoint since no actual projection
is required. However, it requires the stronger condition A3-a) to ensure the stability, combined
with A6 to ensure the convergence.

The projection in the Case 3.2 is explicit: given the ball {u ∈ l2 : ‖u‖l2 ≤ B}, it is

(3.7) u 7→ min

(
1,

B

‖u‖l2

)
u.

The milder assumption A3-b) is required for the stability, again combined with A6 for the
convergence.

Case 3.3 requires a potentially nontrivial projection on a closed convex set: see e.g. Ex-
ample 3 below. The stronger condition A3-a) is required for both the stability and the con-
vergence, but A6 is not needed.
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Example 3. Given a positive sequence {an, n ≥ 0} such that
∑

i≥0 a
2
i <∞ and a strictly

increasing sequence of non-negative integers {dn, n ≥ 0}, define

(3.8) A :=

u ∈ l2 :
∑

dn≤i<dn+1

|ui|2 ≤ a2
n ∀n ≥ 0

 .

If A is bounded (which holds when d0 = 0 for example), then it is a compact convex subset
of l2. Similarly, the set A ∩ {u ∈ l2 :

∑
i≥0 u

2
i ≤ B} is a compact subset for any B >

0 (see Lemma B.1 for both cases). The orthogonal projection on A consists of projecting
(udn , . . . , udn+1−1) on the ball of radius an for all n ≥ 0. The final choice of the sequence
(an)n is left to the user expertise, typically based on a preliminary mathematical analysis
giving bounds on (ui)i.

3.3. Main Result.

Theorem 1. Assume A1, A2, A4 and A5; also assume A3-a) if A is unbounded and A3-b)
if A is bounded. Let there be given i.i.d. random variables {(θsk, V s

k ), 1 ≤ s ≤Mk, k ≥ 1} with
distribution π(dθ)µ(θ,dv). Let uK be the output of the UQSA Algorithm, and let ζK be the
associated function through (2.13).
Stability. For any ζ? ∈ Is(T ?), limk→+∞

∥∥ζk − ζ?∥∥
π

exists, is finite a.s., and we have

(3.9) sup
k≥0

E
[∥∥∥ζk − ζ?∥∥∥2

π

]
< +∞.

Convergence. In addition, in case 3.3, and in cases 3.1 and 3.2 under the additional assump-
tion A6, there exists a random variable ζ∞ taking values in Is(T ?) such that

(3.10) lim
k→∞

∥∥∥ζk − ζ∞∥∥∥
π

= 0 a.s. and, for any p ∈ (0, 2), lim
k→∞

E
[∥∥∥ζk − ζ∞∥∥∥p

π

]
= 0.

Remark 3.1. The standard assumption ensuring a Central Limit Theorem (CLT) for SA
algorithms in a Hilbert space (cf. [8, Assumption B3(1)] or [23, Section 3, equation 3.3]) is
not satisfied in our setup: as a counter-example, one can take a function h(z, θ) such that
∂zh(ζ?(θ), θ) = θ and any polynomial basis, due to the recurrence relations of order two that
are intrinsic to such bases. The study of convergence rates and CLT for the UQSA algorithm
is therefore a problem per se, which we leave for future research (see [30, Chapter 6] for partial
results).

4. Proof of Theorem 1. For any z = (z1, · · · , zq) ∈ Rq and any real-valued sequence
p := {pi, i ≥ 0} such that

∑
i≥0 p

2
i < ∞ we write

z ⊗ p := ((z1p0, · · · , zqp0), (z1p1, · · · , zqp1), · · · ) ,

which is in l2. Set Bm(θ) := (B0(θ), . . . , Bm(θ), 0, 0, . . .). Define the filtration

Fk := σ (θs` , V
s
` , 1 ≤ s ≤M`, 1 ≤ ` ≤ k) , k ≥ 1.

We fix u? ∈ T ?, which exists by A1, and we set ζ? := Is(u?).
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4.1. Stability. The first step is to prove that the algorithm is stable in the sense that

lim
k

∥∥∥uk − u?∥∥∥
l2

exists a.s. ,(4.1)

sup
k

E
[∥∥∥uk − u?∥∥∥2

l2

]
< +∞,(4.2)

lim inf
k→∞

∫
Θ

(ζk(θ)− ζ?(θ)) · h(ζk(θ), θ)π(dθ) = 0, a.s.(4.3)

where ζk is associated to uk through (2.13). By definition of uk+1 (see Algorithm 2.1) and
the property ΠA(u?) = u? (which holds since T ? ⊆ A), we obtain∥∥∥ζk+1 − ζ?

∥∥∥2

π
=
∥∥∥uk+1 − u?

∥∥∥2

l2
=
∥∥∥ΠA(ûk+1)−ΠA(u?)

∥∥∥2

l2
≤
∥∥∥ûk+1 − u?

∥∥∥2

l2

≤
∥∥∥uk − u? − γk+1Hk − γk+1η

k+1
∥∥∥2

l2
,

where

Hk :=E

 1

Mk+1

Mk+1∑
s=1

H
(
ζk(θsk+1), V s

k+1, θ
s
k+1

)
⊗Bmk+1(θsk+1)

∣∣∣Fk


=

∫
Θ×V

H
(
ζk(θ), v, θ

)
⊗Bmk+1(θ) π(dθ)µ(θ,dv) =

∫
Θ
h(ζk(θ), θ)⊗Bmk+1(θ) π(dθ),

ηk+1 :=
1

Mk+1

Mk+1∑
s=1

H
(
ζk(θsk+1), V s

k+1, θ
s
k+1

)
⊗Bmk+1(θsk+1)−Hk.

For the equivalent definitions of Hk, we used the Fubini theorem (using A2 and A3). Observe
that, by definition of Bmk , Hk and ηk+1 are sequences in l2 such thatHki = 0Rq and ηk+1

i = 0Rq

for all i > mk+1. Define

Hki :=

{
Hki i ≤ mk+1,∫

Θ h(ζk(θ), θ)Bi(θ) π(dθ) i > mk+1.

Recalling that uki = 0Rq for i > mk+1, we obtain∥∥∥uk+1 − u?
∥∥∥2

l2
=
∥∥∥uk − u?∥∥∥2

l2
− 2γk+1

mk+1∑
i=0

(uki − u?i ) · Hki − 2γk+1

mk+1∑
i=0

(uki − u?i ) · ηk+1
i

+ 2γ2
k+1

mk+1∑
i=0

ηk+1
i · Hki + γ2

k+1

∥∥∥ηk+1
∥∥∥2

l2
+ γ2

k+1

∥∥∥Hk∥∥∥2

l2

=
∥∥∥uk − u?∥∥∥2

l2
− 2γk+1

∑
i≥0

(uki − u?i ) · H
k
i − 2γk+1

mk+1∑
i=0

(uki − u?i ) · ηk+1
i

+ 2γ2
k+1

mk+1∑
i=0

ηk+1
i · Hki + γ2

k+1

∥∥∥ηk+1
∥∥∥2

l2
+ γ2

k+1

∥∥∥Hk∥∥∥2

l2
− 2γk+1

∑
i>mk+1

u?i · H
k
i .(4.4)
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A5 implies that, for each θ,∑
i≥0

(
(uki − u?i ) · h

(
ζk(θ), θ

))
Bi(θ) = (ζk(θ)− ζ?(θ)) · h

(
ζk(θ), θ

)
≥ 0.

Taking expectation w.r.t. θ ∼ π, we obtain by the isometry (2.6), for all k ≥ 0

(4.5) Rk :=

∫
Θ

(ζk(θ)− ζ?(θ)) · h
(
ζk(θ), θ

)
π(dθ) =

∑
i≥0

(uki − u?i ) · H
k
i ,

which is non negative. Also note that
∑+∞

i=0 (uki −u?i )·Hki ∈ Fk. By definition, E
[
ηk+1
i |Fk

]
= 0,

Hk ∈ Fk and uk ∈ Fk so that

(4.6) E

[mk+1∑
i=0

ηk+1
i · Hki

∣∣∣Fk
]

= 0, E

[mk+1∑
i=0

(uki − u?i ) · ηk+1
i

∣∣∣Fk
]

= 0.

Let us consider the term
∥∥ηk+1

∥∥2

l2
. We write

E
[∥∥∥ηk+1

∥∥∥2

l2

∣∣∣Fk] ≤ E

∥∥∥∥∥∥ 1

Mk+1

Mk+1∑
s=1

H
(
ζk(θsk+1), V s

k+1, θ
s
k+1

)
⊗Bmk+1(θsk+1)−Hk

∥∥∥∥∥∥
2

l2

∣∣∣Fk


≤ 1

Mk+1

∫
Θ×V

∥∥∥H (ζk(θ), v, θ)⊗Bmk+1(θ)
∥∥∥2

l2
π(dθ)µ(θ,dv)

=
1

Mk+1

∫
Θ×V

∣∣∣H (ζk(θ), v, θ)∣∣∣2(mk+1∑
i=0

Bi(θ)
2

)
π(dθ)µ(θ,dv)

≤
Qmk+1

Mk+1

∫
Θ×V

∣∣∣H (ζk(θ), v, θ)∣∣∣2 π(dθ)µ(θ,dv).(4.7)

Next we consider the term 2γk+1
∑

i>mk+1
u?i · H

k
i . By using 2ab ≤ a2 + b2 with a ←

(γ1−κ
k+1 )1/2|u?i | and b← (γ1+κ

k+1 )1/2|Hki |, we have∣∣∣∣∣∣2γk+1

∑
i>mk+1

u?i · H
k
i

∣∣∣∣∣∣ ≤ γ1−κ
k+1

 +∞∑
i>mk+1

|u?i |2
+ γ1+κ

k+1

 +∞∑
i>mk+1

∣∣∣Hki ∣∣∣2


≤ γ1−κ
k+1qmk+1

+ γ1+κ
k+1

∥∥∥Hk∥∥∥2

l2
,(4.8)

where we used A2 in the last inequality. Note that∥∥∥Hk∥∥∥2

l2
=

+∞∑
i=0

∣∣∣∣∫
Θ
h(ζk(θ), θ)Bi(θ) π(dθ)

∣∣∣∣2 =

∫
Θ

∣∣∣h(ζk(θ), θ)
∣∣∣2 π(dθ)

≤
∫

Θ×V

∣∣∣H (ζk(θ), v, θ)∣∣∣2 π(dθ)µ(θ,dv).(4.9)
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Combining (4.4) to (4.9), we obtain

E
[ ∥∥∥uk+1 − u?

∥∥∥2

l2
|Fk
]
≤
∥∥∥uk − u?∥∥∥2

l2
− 2γk+1R

k + γ1−κ
k+1qmk+1

+

(
γ2
k+1 + γ1+κ

k+1 + γ2
k+1

Qmk+1

Mk+1

)∫
Θ×V

∣∣∣H (ζk(θ), v, θ)∣∣∣2 π(dθ)µ(θ,dv).(4.10)

To control the integral in (4.10), we distinguish two cases.
First case: A is unbounded. Using A3-a) we write∫

Θ×V

∣∣∣H (ζk(θ), v, θ)∣∣∣2 π(dθ)µ(θ,dv) ≤ CH
∫

Θ

(
1 +

∣∣∣ζk(θ)∣∣∣2)π(dθ)

≤ C1

(
1 +

∥∥∥uk − u?∥∥∥2

l2

)
,

where C1 := 2CH(1 + supu?∈T ? ‖u?‖
2
l2). Note that C1 is finite by A1.

Second case: A is bounded. Note that, by definition of uk, there exists a constant B such
that a.s. supk≥0

∥∥uk∥∥
l2
≤ B. Assumption A3-b) implies that, for some deterministic

C2 > 0,

sup
k≥0

∫
Θ×V
|H(ζk(θ), v, θ)|2π(dθ)µ(θ,dv) ≤ C2.

In either case, we deduce from (4.10) that

E
[∥∥∥uk+1 − u?

∥∥∥2

l2

∣∣∣Fk] ≤ ∥∥∥uk − u?∥∥∥2

l2
− 2γk+1R

k + γ1−κ
k+1qmk+1

(4.11)

+

(
γ2
k+1 + γ1+κ

k+1 + γ2
k+1

Qmk+1

Mk+1

)
(C1 ∨ C2)

(
1 +

∥∥∥uk − u?∥∥∥2

l2

)
.

Conclusion. In view of the above controls and A2, the assumptions of the Robbins-Siegmund

lemma are verified (see [26]). An application of this lemma yields that limk

∥∥uk − u?∥∥2

l2
exists

and
∑

k≥0 γk+1R
k < +∞ a.s.. This concludes the proof of (4.1). Taking expectations in (4.11)

and applying the Robbins-Siegmund lemma to the sequence E
[∥∥uk − u?∥∥2

l2

]
yields (4.2). Also

note that

(4.12) R := lim inf
k→+∞

Rk = 0, a.s.

Indeed, on the event {R > 0}, there exists a random index K, finite a.s. such that Rk >
R/2 holds for any k ≥ K, which implies that

∑
k≥0 γk+1R

k = +∞ (as, by assumption,∑
k≥1 γk = +∞). Therefore {R > 0} ⊆ {

∑
k≥0 γk+1R

k = +∞}, where we saw above that

{
∑

k≥0 γk+1R
k = +∞} is a zero probability event. Hence so is {R > 0}, which proves (4.3).

We know from (4.1) that for any ζ̄ ∈ Is(T ?), limk

∥∥ζk − ζ̄∥∥
π

exists a.s. For later use, we
need the existence of this limit simultaneously for all ζ̄ ∈ Is(T ?) with probability one. Note
that limk

∥∥ζk − ζ̄∥∥
π

is continuous in ζ̄ (by triangle inequality). Using that Is(T ?) is separable
as a subset of the separable Hilbert space L2

π, we deduce that

lim
k

∥∥∥ζk − ζ̄∥∥∥
π

exists for all ζ̄ ∈ Is(T ?), a.s.(4.13)
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4.2. Proof of the Almost Sure Convergence in (3.10).
Proof for Case 3.1 or Case 3.2. Under the assumption A1, Is(T ?) is bounded so that, by

(4.1), the r.v. B := supζ?∈T ? supk
∥∥ζk − ζ?∥∥

π
is finite with probability one. Since by (4.12)

lim infk R
k = 0, with probability one, there exists a subsequence k′ such that limk′ R

k′ = 0.
From (4.5) and by A6 applied with ζ ← ζk

′
and ζ? ← Is(u?), there exists a positive

random variable CB (finite a.s. and independent of k by definition of the r.v. B) such that

Rk
′ ≥ CB min

ζ̄∈Is(T ?)

∥∥∥ζk′ − ζ̄∥∥∥2

π
.

Let {ζ̄k, k ≥ 0} be an Is(T ?)-valued sequence such that, for all k,

min
ζ̄∈Is(T ?)

∥∥∥ζk′ − ζ̄∥∥∥2

π
=
∥∥∥ζk′ − ζ̄k∥∥∥2

π
.

Such a sequence exists since T ? is compact by A1. Using that limk R
k′ = 0 we obtain

limk

∥∥∥ζk′ − ζ̄k∥∥∥
π

= 0 a.s. Since the sequence {ζ̄k, k ≥ 0} is in a compact set Is(T ?) (see A1),

up to extraction of a subsequence it converges to a (random) limit ζ∞ ∈ Is(T ?). Hence

lim
k

∥∥∥ζk′ − ζ∞∥∥∥
π

= 0 a.s.

To summarize, so far we have proved that for P-a.e. ω, there is a subsequence k′ (depending
on ω) and a point ζ∞(ω) ∈ Is(T ?) so that ζk

′
(ω) converges to this point. It remains to justify

that the full sequence ζk(ω) converges to the same limit ζ∞(ω). The key argument is to use
(4.13), which ensures that

lim
k

∥∥∥ζk − ζ∞∥∥∥
π

= lim
k

∥∥∥ζk′ − ζ∞∥∥∥
π

= 0 a.s.

As the almost-sure limit of random variables ζk, the limit ζ∞ is well defined as a random
variable. This concludes the proof of (3.10).

Proof for Case 3.3. Since by (4.12) lim infk R
k = 0 with probability one, there exists a

(random) subsequence {k′, k ≥ 1} such that limk R
k′ = 0 a.s. Since the sequence {uk′ , k ≥ 0}

is bounded in l2 a.s. (as limk

∥∥uk − u?∥∥
l2

exists a.s.) and belongs to the convex set A by
construction, it belongs to a compact set (see Lemma B.1). Therefore we can assume (up to

extraction of another subsequence) the existence of u∞ ∈ L2
π such that limk

∥∥∥uk′ − u∞∥∥∥
l2

= 0

a.s. We now prove that u∞ is a T ?-valued r.v. (possibly depending on the choice of u? ∈ T ?).
Set ζ∞ := Is(u∞) and define

R∞ :=

∫
Θ

(ζ∞(θ)− ζ?(θ)) · h(ζ∞(θ), θ)π(dθ).

Then for any j ≥ 1,

Rj −R∞ =

∫
Θ

(
ζj(θ)− ζ∞(θ)

)
· h
(
ζj(θ), θ

)
π(dθ)

+

∫
Θ

(ζ∞(θ)− ζ?(θ)) ·
(
h
(
ζj(θ), θ

)
− h (ζ∞(θ), θ)

)
π(dθ).
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By either A3-b) or A3-a) (depending on whether A is bounded or not) and since supk
∥∥uk∥∥

l2
<

∞ a.s., we have supk

∥∥∥h(ζk′(·), ·)∥∥∥2

π
<∞ a.s. Since

lim
k

∥∥∥ζk′ − ζ∞∥∥∥
π

= lim
k

∥∥∥uk′ − u∞∥∥∥
l2

= 0, a.s.,

it follows that

lim
k

∫
Θ

(
ζk
′
(θ)− ζ∞(θ)

)
· h
(
ζk
′
(θ), θ

)
π(dθ) = 0, a.s.

Furthermore, since, by A4, ζ 7→ h(ζ(·), ·) is continuous in L2
π, we have

lim
k

∫
Θ

(ζ∞(θ)− ζ?(θ)) ·
(
h
(
ζk
′
(θ), θ

)
− h (ζ∞(θ), θ)

)
π(dθ) = 0 a.s.

Hence 0 = limk R
k′ = R∞ a.s. In view of the definition of R∞ and of A5, we deduce that

u∞ ∈ T ? a.s. In view of (4.13), this implies that limk

∥∥ζk − ζ∞∥∥
π

= limk

∥∥∥ζk′ − ζ∞∥∥∥
π

= 0.

The conclusion now follows the same argument as for Cases 3.1 and 3.2.

4.3. Proof of the L2-Control (3.9) and of the Lp-Convergence in (3.10). The L2-control

sup
k≥0

E
[∥∥∥ζk − ζ∞∥∥∥2

π

]
< +∞

follows directly from (4.2) and the boundedness of T ? (see A1). This proves (3.9). Let C > 0
and p ∈ (0, 2). We write

E
[∥∥∥ζk − ζ∞∥∥∥p

π

]
= E

[∥∥∥ζk − ζ∞∥∥∥p
π

1{‖ζk−ζ∞‖
π
>C}

]
+ E

[∥∥∥ζk − ζ∞∥∥∥p
π

1{‖ζk−ζ∞‖
π
≤C}

]
.

The first term on the right hand side converges to 0 as C → +∞, uniformly in k: indeed, we
have

E
[∥∥∥ζk − ζ∞∥∥∥p

π
1{‖ζk−ζ∞‖

π
>C}

]
≤

supl≥0 E
[∥∥ζ l − ζ∞∥∥2

π

]
C2−p .

For any fixed C > 0, the second term converges to zero by the dominated convergence theorem.
This concludes the proof of Theorem 1.

5. Numerical Investigations. This section is devoted to the numerical analysis of the
convergence of the UQSA algorithm. The parameterization of the algorithm is discussed and
the sensitivity of its performance w.r.t. the design parameters is tested empirically.

Notably, the possibility of letting the number mk of estimated coefficients tend to infinity
appears not only as a necessary ingredient for proving the theoretical convergence of the
algorithm (see Theorem 1), but also as an important feature for its numerical performance,
regarding, in particular, the estimation of the lower order coefficients u?i and the mitigation of
the burn-in phase. We illustrate this assertion numerically, by testing both the genuine UQSA
algorithm with increasing mk and the fixed dimension version with mk = m (for different
values of m), respectively referred to as the “increasing mk” and the “fixed m” algorithms
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henceforth. The speed of the dimension growth turns out to be a determining factor of the
practical convergence rate of the algorithm. A correct tuning of this speed allows achieving
the right balance between the truncation error, i.e. the error due to the non-estimation of the
coefficients beyond the mth

k one, and the estimation error on the “active” coefficients up to
mk. Balancing these two contributions of the error seems to be the way to reach an optimal
performance of the algorithm.

5.1. Design Parameterization of the UQSA Algorithm. When running the UQSA al-
gorithm, the user has to choose some design parameters: given a problem of the form (2.10)
and the corresponding sequence {qm,m ≥ 0} via (3.2), the user has to choose the orthogonal
basis {Bi(θ), i ≥ 0}, which fixes in turn the sequence {Qm,m ≥ 0}. It remains to choose
{γk, k ≥ 1}, {mk,≥ 0} and {Mk, k ≥ 1}. In this section, we consider sequences of the form

(5.1) γk = k−a, mk = bkbc+ 1, Mk = bkpc+ 1,

for a, p ≥ 0 and b > 0, and we discuss how to choose these constants assuming that

(5.2) qm = O
(
m−δ

)
, Qm = O

(
m∆
)
,

for some δ > 0 and ∆ ≥ 0.
An easy calculation shows that A2 is satisfied if and only if

(5.3)
1

2
< a ≤ 1, 2− δb < 2a, b∆ + 1 < 2a+ p

(for κ = 1
a − 1 in A2, if a < 1, or κ > 0 small enough, if a = 1). Given δ > 0 and

∆ ≥ 0, there always exist a, b, p satisfying these conditions. Figure 1 displays the lines x 7→ 1,
x 7→ 2(1 − x)/δ and x 7→ (2x − 1)/∆ for different values of the pair (δ,∆) with ∆ > 0. The
colored area corresponds to the points (a, b) satisfying the conditions (5.3) in the case p = 0,
i.e. in the case where the number of Monte Carlo draws is constant over iterations. Note that
this set becomes all the more restrictive as δ → 0 and ∆ → ∞. Choosing p > 0 gives more
flexibility, but it also leads to higher computational cost (since the number of Monte Carlo
simulations increases along iterations, see the discussion in Section 5.5.3).

Figure 1. For different values of (δ,∆), in the case p = 0, the colored area is the admissible set of points
(a, b) satisfying (5.3). From left to right: (δ,∆) = (2, 1), (0.5, 1), (4, 3), and (0.5, 5).
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5.2. Benchmark Problem. We consider the problem (2.10) in the case where

Θ = [−π, π], π(dθ) =
1

2π
1[−π,π] dθ.(5.4)

We perform tests for two different models of function H:

1. H1(z, v, θ) := (z − ζ?(θ))
(

1 +
cos(v)

2
cos(z − ζ?(θ))

)
+ v,

2. H2(z, v, θ) := (z − ζ?(θ))
(

1 +
cos(v)

2
sin(z − ζ?(θ))

)
,

for a common function ζ? : Θ→ R given by

(5.5) ζ?(θ) :=

∣∣∣∣45 +
1

4
exp(sin(θ))− cosh(sin(θ)2)

∣∣∣∣ (1 + sin(2θ)),

and where, for any θ ∈ Θ, the conditional distribution µ(θ,dv) is a centered Gaussian law
with variance θ2. In both cases we have q = 1 and Is(T ?) = {ζ?}. It is easily checked that
for any z ∈ R, θ ∈ Θ and i = 1, 2 we have∫

V
|Hi(z, v, θ)|2µ(θ,dv) ≤ 8|z − ζ?(θ)|2 + 2θ2, (z − ζ?(θ)) · hi(z, θ) ≥

1

2
(z − ζ?(θ))2,

where hi is derived from Hi following (1.2). Hence, the assumptions A3, A4, A5 and A6 are
satisfied for both models.

The two models for H above correspond to two possible behaviors of the martingale
increment sequence {ηk, k ≥ 1} (cf. Section 4.1): E

[∥∥ηk∥∥
l2

]
bounded away from 0 (case of

Model 1) or E
[∥∥ηk∥∥

l2

]
→ 0 (case of Model 2). While the first case is more general, the second

one may also appear in practice and leads to quite different behavior of the UQSA algorithm,
requiring a different tuning of the parameters.

The choice of the function ζ? (see the plot on Figure 3) is motivated by its relatively
slow truncation error decay. Since ζ? extended by periodicity outside [−π, π] is piecewise
continuously differentiable, its truncation error satisfies (5.2) with δ = 2 (see Lemma A.1).
Numerically, one can check that the practical rate of convergence lies somewhere between 2
and 3, i.e. the theoretical value δ = 2 above is reasonably sharp (meaning that our example
ζ? is close to a “real” δ = 2 example and not much “easier”, which also motivated our choice
of this particular function ζ?). In real-life applications, the target function ζ? is bound to be
less challenging than the present one, e.g. monotone and/or convex/concave w.r.t. θ or some
of its components (for instance in the context of financial applications, see e.g. [4]). Moreover,
the user may be interested with a few coefficients u?i only, whereas we show numerical results
up to mK = 250 below.

The choice of N (0, θ2) for the kernel µ(θ,dv) is purely illustrative. This distribution
could be replaced by any other one (i.i.d., amenable to simulation) without expectable impact
regarding the qualitative conclusions drawn from the numerical experiments below.

Finally, for the orthonormal basis {Bi, i ≥ 0}, we choose the normalized trigonometric
basis on Θ = [−π, π] (cf. [7, Section 2.1]). Therefore, we have supi≥0 supΘ |Bi(θ)| < +∞, so
that

Qm = O(m),

i.e. ∆ = 1 in (5.1).
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5.3. Performance Criteria. In the numerical experiments that follow, we compare the
performances of the algorithms with increasing mk and fixed m, for different choices of (a, b, p).
The comparison relies on root-mean-square errors, approximated by the corresponding sample
means over 50 independent runs of the algorithms. After K iterations, the square of the total
error E2 is decomposed into the mean squared SA error E2

sa, which is the error restricted to the
(mK + 1) estimated coefficients of ζ?, and the squared truncation error E2

tr, i.e. E2 = E2
sa +E2

tr

where

E2 = E
[∥∥uK − u?∥∥2

l2

]
, E2

sa = E

[
mK∑
i=0

(uKi − u?i )2

]
, and E2

tr =

+∞∑
i=mK+1

(u?i )
2

(recalling uKi = 0 for i > mK). The benchmark values for the coefficients u?i are pre-calculated
by high-accuracy numerical integration. With the exception of Figures 3 and 5[left], all our
graphs are error plots in log-log scale.

5.4. Impact of the Increasing Dimension. In this section, we discuss the role of the
sequence {mk, k ≥ 0}. Since (δ,∆) = (2, 1), the set of admissible pairs (a, b) for our benchmark
problem is given by the leftmost graph of Figure 1.

We take a = 0.875, which is in the middle of the corresponding admissible interval. For
Model 1 (i.e. H = H1), a heuristic may be applied for a clever choice of b. In finite dimensional
SA schemes, the mean squared error after k iterations is typically of the order of γk = k−a

(see [10, Chapter 2]). For the UQSA algorithm, we may expect (in the case p = 0) a growth
of the variance proportional to the dimension mk ≈ kb. This suggests a heuristic guess for
the SA-error order given by k−a × kb = 1/ka−b. Now, by (5.2) (with in our case δ = 2), the
truncation error is of order k−bδ. Hence, to optimize the convergence rate, we take b such
that bδ = a − b. This approximately corresponds to b = 0.3, which is the value that we use
in our tests for Model 1. In the case of Model 2 (i.e. H = H2), this rule of thumb does not
apply, because the variance of the martingale increments goes to 0. In this case we simply
take b = 0.45, so that (a, b) = (0.875, 0.45) lies in the middle of the admissible set (see Figure
1[left]). Also note that the range [0.25, 0.5] for b is reasonable in view of the total number K
of iterations that we commonly use in the algorithm and of the number mK of coefficients of
interest.

Figure 2 displays the total error E for different strategies on the sequence {mk, k ≥ 0}: the
solid line is the case mk = bkbc + 1 (with b = 0.3 and 0.45 for Models 1 and 2 respectively),
while the other lines correspond to the cases mk = m = 8, 12, 16, 20 for Model 1 and mk =
m = 10, 20, 30, 40, 50 for Model 2 (larger values of m are used here since the convergence is
expected to be faster for Model 2). The performance of the algorithm with increasing mk is
similar or better throughout the whole iteration path. This holds true in the burn-in phase,
which is typically related to disproportion between the first values of γk and the magnitude
of the solution (estimated coefficients). In fact, with increasing mk, the dimension gradually
grows with k, with larger values of γk naturally associated with the estimation of the first
(and larger, for classical basis) coefficients, whereas, when mk = m is constant, the higher
order “small” coefficients are involved from the very beginning along with the larger values
of γk, leading to a longer burn-in phase. It is also true on the convergence part, where the
algorithms with fixed m only converge up to a certain accuracy depending on the value of m.
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Figure 2. The total error E as a function of the number of iterations, for different choices of the sequence
{mk, k ≥ 0}: mk increasing (solid line) and: [left] for Model 1 with mk = m = 8, 12, 16, 20 (other lines); [right]
for Model 2 with mk = m = 10, 20, 30, 40, 50 (other lines).

The better performance of the increasing mk version is more explicit for Model 2; while for
Model 1, fixed m versions have similar performance within certain ranges of values of k.

In practice, we do not know in advance the length of the burn-in phase or the magnitude
of the truncation error for various m. Hence, the genuine UQSA algorithm with increasing
mk, which ensures convergence without the need for additional knowledge, is preferable.

Let us now analyze the weak burn-in phase performance of the fixed m version (cf. Figure
2). The intuition is that learning many coefficients from the beginning (typically m = 20)
implies a large statistical error (usual competition between number of coefficients to learn and
number of data to learn them), whereas the statistical error is smaller when m is smaller (e.g.
m = 8, but this choice is suboptimal on the log-run, because the error becomes mainly the
approximation error due to m). The contrast between the burn-in phase and the convergence
phase is greater in the case of Model 2 (right panel of Figure 2 to be compared with the case
of Model 1 on the left panel), which benefits from an asymptotically null variance, whereas,
even upon numerical convergence, Model 1 is still hit by the variance inherent to the last term
v in H1.

Figure 3 displays the result of a single run of the UQSA algorithm in this case of Model
2. In dashed line, the function θ 7→ ζK(θ) is displayed for θ ∈ [−π, π]. For comparison,
the function θ 7→ ζ?(θ) is displayed in solid line. To illustrate the advantage of the UQSA
algorithm with increasing mk in the burn-in phase, we show the estimated function ζK for
different values of K (from top to bottom, K ∈ {128, 256, 512, 1024}) and for mk increasing
(left panels) versus mk = m = 30 for any k (right panels). The increasing dimension mk

leads to a smoother convergence, with intermediate iterations looking closer to a projection
of ζ? on the subspace spanned by a smaller number of basis functions. We conclude that, in
the case of Model 2 where the variance of the martingale increment is small or goes to 0, the
increasing mk feature plays a key role in the UQSA algorithm performance.

In Figure 4, we show that increasing mk is also key for an accurate determination of the
lower order coefficients (e.g. in the case where only the first few coefficients of the expansion
of ζ? are of interest to the user). In fact, as already mentioned in Section 2.3, the algorithm
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Figure 3. The functions ζ? and ζK are displayed in respective solid line and dashed lines, as a function of
θ ∈ [−π, π]. On the left, {mk, k ≥ 0} is increasing and on the right, it is constant and equal to m = 30. From
top to bottom, K ∈ {128, 256, 512, 1024}.

with fixed m does typically not converge to the first (m+ 1) coefficients of the decomposition
of ζ?. In Figure 4[left], the L2-error on the first 4 coefficients is displayed as a function of
the number of iterations K, for two strategies on mk (case of Model 2): the solid line is the
case mk = O(kb) with b = 0.45 and the dotted line is the case m = 3. In Figure 4[right], the
total error E and the truncation error Etr are displayed, resp. in dash-dot line and dashed
line in the case mk is the constant sequence equal to m = 3. These figures show that, when
mk → +∞, UQSA converges (which is the claim of Theorem 1), whereas, when mk = m for
any k, it does not: the total error does not reach the truncation error since there is a non
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Figure 4. Model 2: [left] in the case mk → ∞ (solid line) and mk = m = 3 (dotted line), the SA error(
E
∑3
i=0(uKi − u?i )2

)1/2
as a function of the number of iterations K; [right] in the case mk = m = 3, the

truncation error Etr (dashed line) and the total error E (dash-dot line) displayed as a function of K.

vanishing bias on the estimation of the first (m + 1) coefficients (the SA-error Esa does not
vanish when K → +∞).

For Model 1, similar effects (not reported here) are visible, even if a bit less obvious due
to the slower convergence of both versions (fixed and increasing dimension) of the algorithm
in this case.

5.5. Impact of the Design Parameters for the Increasing mk UQSA Algorithm. In this
section, we discuss the impact of the choice of a, b, and p on the performance on the UQSA
algorithm.

5.5.1. Impact of the increase rate b of mk → +∞. In this paragraph, we set a = 0.875,
p = 0, and we test different values for b. The range of admissible values of b is (0.125, 0.75).
We take b ∈ {0.2, 0.25, 0.3, 0.35, 0.4, 0.45} for Model 1 and b ∈ {0.3, 0.4, 0.5, 0.6, 0.7} for Model
2.

Figure 5 displays the evolution of the total error E as a function of the number of iterations
K for different values of b, and for both models of H. For Model 1, the variance increases
with the dimension, which makes the SA error larger as b increases. At the same time, the
truncation error decreases at the rate bδ, so that for too small values of b, the truncation
error dominates the SA error. Hence there is a trade-off between the two errors, with optimal
values of b somewhere in the range. This phenomenon is observed on Figure 5[left, center].
For b = 0.2, 0.25, 0.3, the total error is dominated by the truncation error, while from b = 0.35
the error is dominated by the SA error; as b increases further, the convergence becomes slower
due to additional variance which increases the SA error. For Model 2, since the variance of the
martingale increments goes to 0, the effect of additional variance due to a larger dimension is
not visible. We observe that larger values of b implies a better convergence, up to b = 0.70.
However, as we may see, the gain in the rate of convergence from taking larger b decreases
as it tends to the boundary of the admissible interval. In addition, this analysis in terms of
the number of iterations K does not take into account the higher computational cost due to
a dimension growing faster and each iteration becoming longer when b is larger. For example,

24



for b = 0.70, we made only K = 2500 iterations, because the computational effort becomes
too large beyond this. To conclude, we suggest that in this case optimal values of b (for given
a) in terms of both convergence and computational cost lie near the middle of the admissible
interval.

Figure 5. [left] Empirical L2 convergence rate for b ∈ {0.2, 0.25, 0.3, 0.35, 0.4, 0.45}, Model 1. To-
tal error E as a function of the number of iterations K, for different values of b; [middle] Model 1,
b ∈ {0.2, 0.25, 0.3, 0.35, 0.4, 0.45}; [right] Model 2, b ∈ {0.3, 0.4, 0.5, 0.6, 0.7}.

5.5.2. the decrease rate a of the learning rate γk. In this paragraph, again for p = 0,
taking b = 0.3 for Model 1 and b = 0.45 for Model 2 as in Section 5.4, we compare different
values of a.

Figure 6 displays the total error E as a function of the number of iterations K for different
values of a for both models. For Model 1, we see that the convergence rate is better for larger
values of a. This is in line with classical results for finite dimensional stochastic approximation,

whereby the mean square error is of order γ
1/2
k ∼ k−a/2 (see [10, Chapter 2]). For Model 2,

varying a does not produce much effect (except for a slight decline as a approaches 1), because
the step-size controls the variance of the corresponding martingale noise, but in the case of
Model 2, the variance of the martingale increments goes to 0 anyway.

Figure 6. The total error E as a function of the number of iterations, for different values of a in
{0.75, 0.80, 0.85, 0.9, 0.95, 1.0}: [left] Model 1 and [right] Model 2.
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5.5.3. Role of p. In this section we consider the case p > 0, i.e. the number of Monte
Carlo samples at each iteration increases along the UQSA iterations. One may check that all
the triples of the parameters (a, b, p) used below lie in the admissible set (cf. (5.3)).

In the analysis that follows, we want to keep track of the dependence of the error w.r.t.
a computational cost proxied by the total number of Monte Carlo draws of the pair (θ, v),
i.e., after K iterations,

∑K−1
k=0 Mk ≈ O(Kp+1). As we want to estimate the same number of

coefficients for a given computational budget, we take b = b̄(p+ 1), with b̄ = 0.3 for Model 1
and b̄ = 0.45 for Model 2.

Figure 7. Model 1, total error E of the UQSA algorithm for different values of p ∈ {0, 0.1, 0.2, 0.3} as a
function of the number of iterations [left] and of the total number of Monte Carlo draws [right]. Here a = 0.875
and b = 0.3(p+ 1).

We set a = 0.875 (as in Sections 5.4 and 5.5.1). Figure 7 displays for Model 1 the total
error E as a function of the number of iterations (left) and as a function of the total number
of Monte Carlo draws (right) for triples of the form (a, b̄(p+ 1), p) with various p. The results
show that, even though larger p yield a better convergence in terms of the number of iterations
K, there is no much difference when the computational cost is taken into account (i.e. in terms
of the number of Monte Carlo draws). The results are very similar for Model 2 and therefore
not reported here.

5.6. Conclusion. To summarize, we observed from our experiments, that the increasing
dimension feature of the UQSA algorithm is essential for the asymptotic convergence, as
well as for the lower order coefficients estimation; it also yields a milder burn-in phase. As
expected, the convergence is generally faster for Model 2 due to reduced variance effect. In
the more general setting of Model 1, the parameter b plays a crucial role in the performance of
the algorithm and a good rule of thumb (in the case p = 0) is b = (a− b)/δ. However, in the
special case where the variance of the martingale increments goes to 0, one should take larger
values of b. Convergence rates should be naturally bounded by a/2 for Model 1 (which is the
corresponding result for finite dimensional SA), while for Model 2 the convergence should be
faster. Taking p > 0 may potentially be useful for verifying the assumptions of Theorem 1 in
some cases, but it makes no real difference in terms of convergence speed when the latter is
assessed w.r.t. the total number of simulations.
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Appendix A. Truncation error for trigonometric basis.

Lemma A.1. Let ζ : R → R be 2π-periodic and piecewise continuously differentiable. Let
{ui, i ≥ 0} be the coefficients of its decomposition w.r.t. the normalized trigonometric basis
(cf. [7, Section 2.1]). Then, for some C > 0,

+∞∑
i=m+1

|ui|2 ≤ Cm−2.

Proof. Consider the Fourier decomposition of the function ζ ′ on [−π, π]:

ζ ′(x) = v0 +
∑
m≥1

(v2m−1 sin(mx) + v2m cos(mx)).

Using that ζ is 2π-periodic (i.e. ζ(−π) = ζ(π)), it is not hard to deduce via integration by
parts that, for any m ≥ 1, u2m−1 = v2m/m, and u2m = −v2m−1/m. Hence,

+∞∑
i=2m−1

|ui|2 ≤
1

m2

+∞∑
i=2m−1

|vi|2 ≤
‖ζ ′‖2π
m2

,

which implies the result.

Appendix B. Compact sets in l2. Let {an, n ≥ 0} be a positive sequence such that∑
i≥0 a

2
i < ∞ and {dn, n ≥ 0} be a strictly increasing sequence of non-negative integers.

Define

(B.1) A :=

u ∈ l2 :
∑

dn≤i<dn+1

|ui|2 ≤ a2
n ∀n ≥ 0


Note that A is closed and convex.

Lemma B.1. 1. Assume d0 = 0. Then A is compact.
2. For any constant B > 0, the set {u ∈ A : ‖u‖l2 < B} is convex and compact.

Proof. Proof of (1). First note that since d0 = 0 and
∑

n a
2
n < ∞, then A is bounded.

Since A is closed, we prove that A is relatively compact, and to that goal, we check the
sufficient condition given in [17, Theorem 3]: since l2 is spanned by a complete orthonormal
basis and A is bounded, A is relatively compact if and only if for any ε > 0, there exists Nε

such that for any u ∈ A,
∑

i≥Nε |ui|
2 ≤ ε. For any N and d`(N) such that d`(N) ≤ N , and for

any u ∈ A, it holds

(B.2)
∑
i≥N
|ui|2 ≤

∑
i≥d`(N)

|ui|2 ≤
∑

j≥`(N)

a2
j .

When N → ∞, we can choose `(N) so that `(N) → ∞ (since the sequence {dn, n ≥ 0} is
strictly increasing). Therefore, since

∑
n a

2
n <∞, the RHS in (B.2) tends to zero as N →∞.

Proof of (2). The result follows directly from the previous item, using that
∑

i<d0
|ui|2 ≤

B2 for any u ∈ A which implies (without assuming that d0 = 0) that the set is bounded.
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