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Abstract

An oriented graph is a directed graph without any directed cycle of length at
most 2. An oriented clique is an oriented graph whose non-adjacent vertices

are connected by a directed 2-path. To push a vertex v of a directed graph
−→
G

is to change the orientations of all the arcs incident to v. A push clique is an
oriented clique that remains an oriented clique even if one pushes any set of
vertices of it. We show that it is NP-complete to decide if an undirected graph
is the underlying graph of a push clique or not. We also prove that a planar
push clique can have at most 8 vertices and provide an exhaustive list of planar
push cliques.
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1. Introduction and main results

An oriented graph
−→
G is a directed graph with vertex set V (

−→
G) and arc set

A(
−→
G) having no directed cycle of length 1 or 2 with set of vertices. We denote

by G the underlying graph of
−→
G . An orientation of G is an oriented graph

obtained by assigning each edge uv of G one of the two possible orientations,
namely, −→uv or −→vu.

An oriented k-coloring of an oriented graph
−→
G is a mapping f from the

vertex set V (
−→
G) to a set of k colors such that (i) f(u) 6= f(v) whenever u and v

are adjacent and, (ii) if −→uv and −→wx are two arcs in
−→
G , then f(u) = f(x) implies

f(v) 6= f(w). The oriented chromatic number χo(
−→
G) of

−→
G is the smallest integer

k for which
−→
G admits an oriented k-coloring. Oriented coloring is a well studied

topic (see the latest survey [1] for details).

To push a vertex v of a directed graph
−→
G is to change the orientations of all

the arcs (that is, to replace an arc −→xy by −→yx) incident to v. The study of push
operation was introduced by Mosesain [2] and studied in [3, 4, 5, 6, 7, 8, 9].
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Two orientations
−→
G and

−→
G ′ of G are in a push relation if one can ob-

tain
−→
G′ by pushing a set of vertices of

−→
G . The pushable chromatic number

χp(
−→
G), introduced by Klostermeyer and MacGillivray [10], of an oriented graph

−→
G is the minimum oriented chromatic number taken over all oriented graphs

that are in push relation with
−→
G . Following the work of Klostermeyer and

MacGillivray [10], the pushable chromatic number of planar graphs was studied
by Sen [11].

An oriented clique, introduced by Klostermeyer and MacGillivray [12], is

an oriented graph
−→
C with χo(

−→
C ) = |V (

−→
C )|. In fact, an oriented clique is

characterized as an oriented graph in which each pair of non-adjacent vertices
are connected by a directed 2-path. Due to this characterization oriented cliques
can be viewed as natural objects. Moreover, they play a significant role in
studying oriented coloring as pointed out in [13]. An undirected simple graph is
called an underlying oriented clique if it is the underlying graph of an oriented
clique.

Let
−→
C be an oriented clique such that each oriented graph in a push relation

with
−→
C is also an oriented clique. We are interested in such oriented cliques.

Observe that
−→
C is such an oriented clique if and only if χp(

−→
C ) = |V (

−→
C )|.

Thus we define the following notion: an oriented graph
−→
C is a push clique if

χp(
−→
C ) = |V (

−→
C )|. Also an undirected simple graph is an underlying push clique

if it is the underlying graph of a push clique.
Given an undirected simple graph it is NP-hard to determine if it is an

underlying oriented clique [14]. We prove an analogous result for underlying
push cliques.

Theorem 1.1. It is NP-complete to decide whether a given graph is an under-
lying push clique.

Oriented cliques of planar and outerplanar graphs are studied in details,
see [13]. Settling a conjecture of Klostermeyer and MacGillivray [12], it is
proved in [13] that a planar oriented clique can have at most 15 vertices. Note
that there exists a planar oriented clique on 15 vertices which implies that the
above mentioned bound is tight. Here, we exhibit all planar push cliques, in
particular proving that any such clique has at most 8 vertices.

Theorem 1.2. A planar push clique can have at most 8 vertices. Moreover,
there exists a planar push clique on 8 vertices.

Klostermeyer and MacGillivray showed that an outerplanar oriented clique
can have at most 7 vertices and any outerplanar oriented clique must have a
particular oriented clique as a spanning subgraph [12]. Later this result was
extended by providing an explicit list of eleven outerplanar graphs and proving
that any outerplanar underlying oriented clique must have one of the eleven
outerplanar graphs as its spanning subgraph [13]. In the same article the fol-
lowing question was asked: “Characterize the set L of graphs such that any
planar graph is an underlying oriented clique if and only if it contains one of the
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−→
H 1

−→
H 2

−→
H 3

−→
H 4

−→
H 5

−→
H 6

−→
H 7

−→
H 8

−→
H 9

−→
H 10

−→
H 11

−→
H 12

−→
H 13

−→
H 14

−→
H 15

−→
H 16

Figure 1: A list of planar push cliques whose underlying graphs H1, H2, · · · , H16 is an ex-
haustive list of edge minimal planar underlying push cliques.
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graphs from L as a spanning subgraph.” Here we answer an analogous version
of this question for planar underlying push cliques.

Theorem 1.3. An undirected planar graph is an underlying push clique if and
only if it contains an underlying graph of one of the 16 planar graphs depicted
in Figure 1 as a spanning subgraph.

In Section 2 we introduce some basic definitions and notations. The proofs
of Theorems 1.1, 1.2 and 1.3 are given in Sections 3, 4 and 5, respectively.
Theorem 1.2 was published in EuroComb 2013 [15].

2. Preliminaries

For an (oriented) graph G every parameter we introduce below is denoted
using G as a subscript. In order to simplify the notations, this subscript will be
dropped whenever there is no chance of confusion.

The set of all adjacent vertices of a vertex v of an (oriented) graph G is called
its set of neighbors and is denoted by NG(v). If there is an arc −→uv, then u is an
in-neighbor of v and v is an out-neighbor of u. The set of all in-neighbors and the
set of all out-neighbors of v are denoted by N−G (v) and N+

G (v), respectively. The
degree of a vertex v of an (oriented) graph G, denoted by dG(v), is the number
of neighbors of v in G. Naturally, the in-degree (resp. out-degree) of a vertex
v of an oriented graph G, denoted by d−G(v) (resp. d+G(v)), is the number of
in-neighbors (resp. out-neighbors) of v in G. The order |V (G)| of an (oriented)
graph G is the cardinality of its set of vertices V (G).

Two vertices u and v of an oriented graph agree on a third vertex w of that
graph if w ∈ Nα(u) ∩Nα(v) for some α ∈ {+,−}. Two vertices u and v of an
oriented graph disagree on a third vertex w ∈ N(u) ∩ N(v) if u and v do not
agree on w.

A k-cycle is an undirected cycle having k vertices. Let
−→
C 4 be an oriented 4-

cycle with arcs ab, bc, cd, ad. A special 4-cycle is an oriented 4-cycle isomorphic

to
−→
C 4. Note that all the oriented graphs which are in push relation with a

special 4-cycle are isomorphic to it. Notice that the non-adjacent vertices of
a special 4-cycle always get different colors as they are always connected with
a 2-dipath, no matter which vertex of the graph you push. This is, in fact, a
necessary and sufficient condition for two non-adjacent vertices to receive two
distinct colors under any oriented coloring with respect to any push relation.

Lemma 2.1. An oriented graph
−→
G is a push clique if and only if any two

non-adjacent vertices of
−→
G are part of a special 4-cycle.

Due to Lemma 2.1 we know that a push clique is an oriented graph with each
pair of non-adjacent vertices agreeing on at least one vertex and disagreeing on
at least one vertex.

Corollary 2.2. Each pair of non-adjacent vertices of a push clique must have
at least two common neighbors.
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This implies the following observations.

Observation 2.3. Each pair of non-adjacent vertices of an underlying push
clique must have at least two common neighbors.

Observation 2.4. An underlying push clique has diameter at most 2.

Also if an underlying push clique is not a complete graph, then a pair of non-
adjacent vertices in it must have at least two common neighbors by Corollary 2.2.

Observation 2.5. Any underlying push clique that is not a complete graph
must contain a 4-cycle as a subgraph.

A dominating set of a graph G is a set of vertices D such that every vertex of
G is either in D or has a neighbor in D. The domination number γ(G) of a graph
G is the cardinality of its smallest dominating set. In this article, a dominating

set and the domination number of an oriented graph
−→
G will correspond to a

dominating set and the domination number of its underlying graph G.

3. On the proof of Theorem 1.1

Given an oriented graph one can check, in polynomial-time, if it is a push
clique or not using the characterization given in Lemma 2.1.

Let G be a graph. Define G∗ to be the graph obtained by adding a vertex
v∗ to G such that v∗ is adjacent to each vertex of G. Then the following holds.

Lemma 3.1. The graph G∗ is an underlying push clique if and only if G is an
underlying oriented clique.

Proof. Assume that G∗ is an underlying push clique. Let
−→
G∗ be an orientation

of G∗ such that
−→
G∗ is a push clique. Let

−→
G∗

′
be the orientation of G∗ obtained by

pushing all the in-neighbors of v∗. In
−→
G∗

′
the vertices of G are all out-neighbors

of v∗. As
−→
G∗

′
is a push clique, each pair of non-adjacent vertices of

−→
G∗

′
must

agree on at least one vertex and must disagree on at least one vertex. Note that
any pair of non-adjacent vertices must be vertices of G and they agree on v∗.
Thus, they must disagree on a vertex of G. Hence, the oriented graph induced

by the vertices of G obtained from
−→
G∗

′
is an oriented clique. It follows that G

is an underlying oriented clique.
On the other hand, assume that G is an underlying oriented clique. Let−→

G be an orientation of G such that
−→
G is an oriented clique. Now consider a

orientation
−→
G∗ of G∗ in which every vertex of G is an out-neighbor of v∗ and

the oriented graph induced by the vertices of G from
−→
G∗ is isomorphic to

−→
G .

Thus
−→
G∗ is a push clique due to Lemma 2.1.

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. It is known that determining if a graph is an underlying
oriented clique is NP-hard [14]. Therefore, the proof follows from Lemma 3.1.
�
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Figure 2: A planar push clique of order 8.

a

b

Figure 3: The unique diameter-2 planar
graph of domination number 3 [16].

4. On the proof of Theorem 1.2

Note that the oriented planar graph of order 8 depicted in Figure 2 is a push
clique due to Lemma 2.1. Thus:

Lemma 4.1. There exists a planar push clique on 8 vertices.

Now we will prove that a planar push clique cannot have more than 8 vertices.
Goddard and Henning [16] showed that every planar graph of diameter-2

has domination number at most 2 except for a particular graph on 9 vertices
(see Figure 3). Observe that the vertices a and b of this graph have exactly one
common neighbor. Therefore, it is not a push clique. Since a planar push clique
must have diameter at most 2 (by Observation 2.4), by the result of Goddard
and Henning, it also has domination number at most 2.

First we will handle the case when a planar push clique has domination
number 1.

Lemma 4.2. If
−→
B is a planar push clique of domination number 1, then

|V (
−→
B )| ≤ 8.

Proof. Let
−→
B be a planar push clique of domination number 1. Let {v} be a

dominating set of B. Then the induced graph B[V (B) \ {v}] is an outerplanar

underlying oriented clique by Lemma 2.1. Moreover, |V (
−→
B ) \ {v}| ≤ 7 due to

Nandy, Sen and Sopena (see Lemma 2.2 and Theorem 2.3 of [13]). Thus,
−→
B has

order at most 8.

A plane graph is a planar graph with a specific planar embedding. Note that
there exists a planar push clique of order at least 9 if and only if there exists
a plane push clique of order at least 9. Therefore, to prove Theorem 1.2 it is
enough to prove that any plane push clique of domination number 2 must have
order at most 8. To be precise, we need to prove the following lemma.

Lemma 4.3. If
−→
G is a plane push clique of domination number 2, then |V (

−→
G)| ≤

8.

Before proving the lemma we perform some preprocessing by definining cer-
tain notions and proving some claims.
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C−−

C−+

C++

C+−

S−x

S+
x

S−y

S+
y

x y

Figure 4: Neighbors of x and y in ~G.

We will frequently use the following notation: {α, β} = {+,−}. It means
either α = +, β = − or α = −, β = + as these are the only two solutions for
the above set-theoric equation.

Let
−→
G be a plane push clique with |V (

−→
G)| > 8. Assume that

−→
G is tri-

angulated and has domination number 2. Define the partial order ≺ for the

set of all dominating sets of order 2 of
−→
G as follows: for any two dominating

sets D = {x, y} and D′ = {x′, y′} of order 2 of
−→
G , D′ ≺ D if and only if

|N−→
G

(x′) ∩N−→
G

(y′)| < |N−→
G

(x) ∩N−→
G

(y)|.
Let D = {x, y} be a maximal dominating set of order 2 of

−→
G with respect

to ≺. Also for the rest of this proof, t, t′, α, α, β, β are variables satisfying
{t, t′} = {x, y} and {α, α} = {β, β} = {+,−}.

Now, we fix the following notations (see Figure 4):

C = N−→
G

(x) ∩N−→
G

(y), Cαβ = Nα−→
G

(x) ∩Nβ
−→
G

(y),

Ct = N−→
G

(t) ∩ C, Cαt = Nα−→
G

(t) ∩ C,

St = N−→
G

(t) \ C, Sαt = St ∩Nα−→
G

(t) and S = Sx ∪ Sy.

In the above notations, C denotes the common neighbors of x and y and S
denotes the neighbors of x or y that are not common neighbors. Also, the
subscripts refer to x or y suggesting that particular set deals with only neighbors
of the vertex/vertices mentioned in the subscript. The superscripts refer to the
corresponding orientations.

If necessary, by pushing some vertices, we assume that the plane oriented

graph
−→
G is such that Cx = C+

x , Sx = S+
x , Sy = S+

y and |C+
y | ≥ |C−y |. Note

that, it is possible to obtain an alternative orientation of G from any orientation−→
G′ that satisfies the above conditions by pushing some vertices of

−→
G′. That is

why our assumption is valid.
Hence we have,
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c2

ci
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ck−1

R0

R1

Rk−1

Figure 5: A planar embedding of H

9 ≤ |V (
−→
G)| = |D|+ |C|+ |S|. (1)

Let
−→
H be the plane oriented graph obtained from

−→
G by deleting all the

vertices in S and the arc of D and all the arcs between the vertices of C.
Assume that the vertices c0, c1, ..., ck−1 of C, which are also neighbors of x in
−→
H , are cyclically arranged around x in a clockwise order and are all adjacent to
y (see Figure 5).

Notice that H has k faces, namely the unbounded face F0 and the faces Fi
bounded by edges xci−1, ci−1y, yci, cix for i ∈ {1, ..., k − 1}. Geometrically, H

divides the plane into k connected components. The region Ri of
−→
G is the ith

connected component (corresponding to the face Fi) of the plane. The boundary
points of a region Ri are ci−1 and ci for i ∈ {1, ..., k − 1} and, c0 and ck−1 for
i = 0. Two regions are adjacent if their corresponding faces have at least one
common edge (hence, a region is adjacent to itself as well).

Now for different possible values of |C|, we want to show that H cannot be
extended to a plane push clique of order at least 9. Note that for extending H

to
−→
G we can add new vertices only from S. Any vertex v ∈ S will be inside one

of the regions Ri. If there is at least one vertex of S in a region Ri, then Ri is
non-empty and empty otherwise. In fact, when there is no chance of confusion,
Ri might represent the set of vertices of S contained in the region Ri.

We first prove the following lower bound on |C|.

Claim 1: |C| ≥ 2.
Proof of the claim. We know that x and y are either connected by two distinct
2-paths or by an arc. So, if x and y are non-adjacent, then we have |C| ≥ 2. If

x and y are adjacent, then the triangulation of
−→
G implies |C| ≥ 2. �

Next we will show that |C| 6= 2. Before that we will prove two more claims
to facilitate the proof.
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Claim 2: If |C| = 2 and both Sx ∩ Ri and Sy ∩ Rj are non-empty for some
i 6= j, then (Sx ∩Ri) ∪ (Sy ∩Rj) ⊆ N(c0) ∩N(c1).
Proof of the claim. Suppose that both Sx ∩ R0 and Sy ∩ R1 are non-empty.
Assume u ∈ Sx ∩ R0 and v ∈ Sy ∩ R1. Note that u and v are non-adjacent as
they are separated by the cycle xc0yc1x. Thus to have at least two common
neighbors due to Observation 2.3, u and v must be both adjacent to at least
two vertices of xc0yc1x. Notice that y is non-adjacent to u as u belongs to Sx
and x is non-adjacent to v as v belongs to Sy. Thus the two common neighbors
of u and v must be c0 and c1. �

Claim 3: If |C| = 2 and both Sx ∩ Ri and Sy ∩ Rj are non-empty for some
i 6= j, then |Sx ∩Ri|, |Sy ∩Rj | ≤ 1.
Proof of the claim. If |Sx ∩ Ri| ≥ 2, then there are at least two vertices in Ri
that are adjacent to x, c0 and c1 due to Claim 2. This is not possible as G is a
plane graph. Thus |Sx ∩Ri| ≤ 1. Similarly, |Sy ∩Rj | ≤ 1. �

We are now ready to analyze the case |C| = 2.

Claim 4: If |C| = 2, then exactly two sets among the four sets St ∩ Ri for all
(t, i) ∈ {x, y} × {0, 1} are non-empty.
Proof of the claim. We consider three cases.
Case (i): If St = ∅, then t′ is a dominating vertex. This is not possible due to
Lemma 4.2. Hence we do not have St = ∅ for any t ∈ {x, y}. ◦
Case (ii): If all the four sets St ∩ Ri 6= ∅ for all (t, i) ∈ {x, y} × {0, 1}, then
|S| ≤ 4 due to Claim 3. ◦
Case (iii): If there are exactly three non-empty sets Sx∩R0, Sx∩R1 and Sy∩R0

among the four sets St∩Ri for all (t, i) ∈ {x, y}×{0, 1}, then by triangulation we
have the edge c0c1 inside R1. At least one vertex of Sx∩R0 must be adjacent to
c0 because of triangulation. Recall that, c0 is adjacent to y and all the vertices
of Sy = Sy∩R0 by Claim 2. Thus we have a dominating set {x, c0} with at least
three common neighbors (c1, a vertex from Sx ∩R0 and a vertex from Sx ∩R1)
contradicting the maximality of D. ◦

Thus exactly two sets among the four sets St∩Ri for all (t, i) ∈ {x, y}×{0, 1}
are non-empty. �

Claim 5: |C| 6= 2.
Proof of the claim. Assume that the claim is false, that is, |C| = 2.

By Claim 4, exactly two sets among the four sets St ∩ Ri for all (t, i) ∈
{x, y} × {0, 1} are non-empty. Therefore, Sx ∩ Ri and Sy ∩ Rj are non-empty
sets for some i, j ∈ {0, 1} as Sx, Sy 6= ∅ by Case (i) of Claim 4.

If i 6= j, then |S| ≤ 2 by Claim 3. Thus i = j and without loss of generality
we can assume that Sx ∩R1 and Sy ∩R1 are the two non-empty sets.

Assume that Sx = {x1, x2, ... , xnx
} and Sy = {y1, y2, ..., yny

}. Suppose the
vertices x1, x2, ..., xnx are cyclically arranged around x in a clockwise order and
the vertices y1, y2, ..., yny are cyclically arranged around y in an anti-clockwise
order. Therefore we have the edges c0x1, x1x2, .. ., xnx−1xnx

, xnx
c1 and the edges

c0y1, y1y2, ..., yny−1yny
, yny

c1 by triangulation. Furthermore, we can assume
nx ≥ ny without loss of generality.
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Assume ny = 1. So, to have |S| ≥ 5 we should have nx ≥ 4. Note that
we cannot have the edge xy as otherwise {y1, x} would be a dominating set
with at least three common neighbors {c0, c1, y} contradicting the maximality
of D. Hence we have the edge c0c1 inside R1 by triangulation. Note that the
vertex x2 ∈ Sx must be adjacent to either c0 or c1 or y1 to have at least two
common neighbors with y by Observation 2.3. This will create a dominating set
{c0, x} or {c1, x} or {y1, x} with at least three common neighbors {x1, x2, c1}
or {xnx

, x2, c0} or {x2, c0, c1} respectively. This will contradict the maximality
of D. Therefore, ny ≥ 2.

Now assume that we have the edge x2c0. Then to have two distinct 2-paths
connecting a vertex w ∈ Sy and x1 we need to have w adjacent to both x2 and
c0. That means, each vertex of Sy is adjacent to both x2 and c0. But this is
not possible keeping the graph plane as ny ≥ 2. So, there is no edge between
c0 and x2. By similar arguments, we can show that every ti is non-adjacent to
c0 for i ∈ {2, 3, ..., nt} and every tj is non-adjacent to c1 for i ∈ {1, 2, ..., nt− 1}
for all t ∈ {x, y}. A similar argument also proves that the edge titi+k for
1 ≤ i < i+ k ≤ nt does not exist unless k = 1 for any t ∈ {x, y}.

Now notice that nx ≥ 3 by Equation (1) and the assumption that nx ≥ ny.
By triangulation we must have the edge x2yi for some i ∈ {1, 2, ..., ny}. Then
to have two distinct 2-paths connecting x1 and yj for j ∈ {i + 1, ..., ny} and
to have two distinct 2-paths connecting x3 and yl for l ∈ {1, ..., i− 1} we must
have every vertex of Sy adjacent to x2.

If ny ≥ 3, then we cannot have two distinct 2-paths connecting the non-
adjacent vertices x1 and y3. So we must have ny = 2.

Now to have two distinct 2-paths connecting the non-adjacent vertices x1
and y2 we must have the edge x1y1. This creates the dominating set {x, y1}
with at least three common neighbors {c0, x1, x2} contradicting the maximality
of D. �

We now prove upper bounds on |C|.

Claim 6: If |C| ≥ 3, then any two non-empty regions must be adjacent.
Proof of the claim. If two non-empty regions Ri and Rj are not adjacent then
they do not share any common boundary points. Thus a vertex of Ri and
a vertex of Rj are non-adjacent and can have at most one common neighbor
(either x or y). This is not possible due to Observation 2.3. �

Claim 7: If |C| ≥ 3, then both Sx ∩Ri and Sy ∩Rj cannot be non-empty for
i 6= j.
Proof of the claim. Suppose both Sx ∩Ri and Sy ∩Rj are non-empty for some
i 6= j. By Claim 5, Ri and Rj are adjacent. Note that a vertex of Sx ∩ Ri
must have at least two common neighbors with a vertex of Sy ∩ Rj due to
Observation 2.3. That is not possible as |C| ≥ 3. �

Claim 8: |C| ≤ 4.
Proof of the claim. First assume that S = ∅. Then |C| = k ≥ 7 and there
are at least four vertices in C++ (recall our basic assumptions: C = C+

x and
|C+
y | ≥ |C−y |). Among those four vertices, two must be such that they are
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non-adjacent and the only common neighbors they have are x and y. Thus,
those two non-adjacent vertices do not disagree on any vertex, a contradiction
to Corollary 2.2.

Now assume that 5 ≤ |C| = k ≤ 6. Then S 6= ∅. Without loss of generality
assume that there exists a vertex v ∈ Sx ∩ R1. Note that it is not possible for
v and c3 to have any common neighbor other than x. Thus |C| ≤ 4. �

Thus the only possible values for |C| are 3 and 4. First we show that it is
not possible to have |C| = 4.

Claim 9: |C| 6= 4.
Proof of the claim. If |C| = 4, then |S| ≥ 3 by Equation (1). Without loss of
generality assume that there exists a vertex v ∈ Sx ∩ R0. Note that v must be
adjacent to c0 and c3 in order to have at least two common neighbors with c1
and c2, respectively, by Observation 2.3. So |Sx∩R0| ≤ 1 as G is a plane graph.
Similarly,

|St ∩Ri| ≤ 1 for all (t, i) ∈ {x, y} × {0, 1, ..., k − 1}. (2)

Also note that if we have a vertex v ∈ Sx∩R0, then it is not possible to have
any vertex in Sy ∩Ri for all i ∈ {1, 2, ..., k−1} by Claim 7 and in Sx∩Rj for all
j ∈ {2, ..., k− 2} by Claim 6. Thus, if Sx ∩R0 is non-empty, then only Sx ∩R1,
Sx ∩ Rk−1 and Sy ∩ R0 can be non-empty. Note that among these three sets,
at most one can be non-empty due to Claims 6 and 7. Hence, at most two of
the sets St ∩ Ri for all (t, i) ∈ {x, y} × {0, 1, ...k − 1} can be non-empty. Then
Equation (2) implies |S| ≤ 2 and by Equation (1) we have

9 ≤ |V (G)| ≤ 2 + 4 + 2 = 8.

This is a contradiction. �

Claim 10: The graph W (depicted in Figure 6) is not an underlying push
clique.
Proof of the claim. Suppose W is an underlying push clique. Also let an

orientation
−→
W ′ of W be a push clique. Push (if necessary) some of the vertices

x, c0, y1, x2 of
−→
W ′ to obtain the arcs−−→x1x,−−→x1c0,−−→x1y1 and−−→x1x2. Furthermore, push

(if necessary) some of the vertices c1, c2, y, y2 to obtain the arcs −→xc2,−→c0y,−−→y2y1
and −−→c1x2. Let this so obtained orientation of W be

−→
W . Note that

−→
W is also a

push clique as it is in a push relation with
−→
W ′.

Note that the arc −−→c2c0 must belong to
−→
W by Corollary 2.2 as the non-adjacent

vertices x1 and c2 have exactly two common neighbors x and c0. Similarly, the
pair {x1, y} of non-adjacent vertices implies the existence of the arc −→yy1, the
pair {x1, y2} of non-adjacent vertices implies the existence of the arc −−→x2y2 and
the pair {x1, c1} of non-adjacent vertices implies the existence of the arc −→xc1.

We now consider the following two cases.
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Figure 6: The graph W .

Case (i): If the arc −−→c0y1 is present in
−→
W , then the non-adjacent pairs of vertices

c2, y1 and y2, c0 imply the existence of the arcs −→yc2 and −→yy2, respectively, due
to Corollary 2.2.

Moreover, for satisfying Corollary 2.2 for c2 and y2, the 2-path c2c1y2 must
be a 2-dipath (in either directions). That makes it impossible to satisfy Corol-
lary 2.2 for the non-adjacent pairs of vertices x, y2 and x2, c2. ◦
Case (ii): If the arc −−→y1c0 is present in

−→
W , then the non-adjacent pairs of vertices

c2, y1 and y2, c0 imply the existence of the arcs −→c2y and −→y2y, respectively, due
to Corollary 2.2.

The rest of the arguments are similar to Case (i). ◦
Therefore, W is not an underlying push clique. �

Therefore, the only possible value for |C| is 3. In the next claim we will show
that |C| = 3 is actually not possible.

Claim 11: If St = ∅, then |C| 6= 3.
I do not understand why we may assume ”Sy = ∅”. But having assumed

that, |Sx| ≥ |Sy| = 0 is a given and need not to be stated.
Proof of the claim. We will prove this claim by contradiction. So, assume that
|C| = 3. Also, without loss of generality, assume that |Sx| ≥ |Sy| = 0. Hence we
do not have the edge xy as otherwise x would dominate the whole graph. Now
note that any two regions are adjacent for |C| = 3. The vertices from different
regions must be adjacent to their unique common boundary point to have two
distinct 2-paths connecting them.

Hence, if all regions are non-empty, then remove the vertices of each region
adjacent to both the boundary points of that region. This implies

|Sx ∩Ri| ≤ 1 for all i ∈ {0, 1, 2}.

Which would imply |S| ≤ 3, a contradiction to our assumption. Hence, it is
not possible to have all the three regions non-empty when Sy = ∅.
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If we have exactly two regions, say R0 and R1, non-empty, then every vertex
of Sx must be adjacent to c0 to create two distinct 2-paths connecting the
vertices of Sx ∩ R0 and the vertices of Sx ∩ R1. This will create a dominating
set {c0, x} with at least four common neighbors contradicting the maximality
of D. Hence, we can have at most one region non-empty when Sy = ∅.

Now assume that exactly one region, say R1, is non-empty. Then each vertex
of Sx must be adjacent to either c0 or c1 to have two distinct 2-paths connecting
it to c2. Then, without loss of generality, we will have at least three vertices of
Sx adjacent to c0 by pigeonhole principle and triangulation. This will create a
dominating set {c0, x} with at least four common neighbors (three vertices from
Sx and c2 because of triangulation) contradicting the maximality of D. �

Claim 12: |C| 6= 3.
Proof of the claim. We prove this claim by contradiction. So, assume that
|C| = 3. Also, without loss of generality, assume that |Sx| ≥ |Sy|. Note that by
Equation (1) we have |S| ≥ 4. Hence |Sx| ≥ 2.

By Claim 11 we know that Sy 6= ∅. Now assume, without loss of generality,
that Sx ∩ R0 6= ∅. This implies Sy ∩ R1 = ∅ and Sy ∩ R2 = ∅ by Claim 6. But
we also know that Sy 6= ∅. Hence we must have Sy ∩ R0 6= ∅. This implies
Sx ∩R1 = ∅ and Sx ∩R2 = ∅ by Claim 7.

Now assume that Sx = {x1, x2, ... , xnx
} and Sy = {y1, y2, ..., yny

}. Suppose
that the vertices x1, x2, ..., xnx are cyclically arranged around x in a clockwise
order and the vertices y1, y2, ..., yny are cyclically arranged around y in an anti-
clockwise order. Thus we have the edges c0x1, x1x2, .., xnx−1xnx

, xnx
c1 and the

edges c0y1, y1y2, ..., yny−1yny
, yny

c1 due to triangulation.
If we have the edge xy (say, inside region R2), then each vertex of Sx must

be adjacent to c0 to have two distinct 2-paths connecting it to c1 creating the
dominating set {c0, x} with at least four common neighbors (the vertices of
Sx) contradicting the maximality of D. Hence we do not have the edge xy.
Therefore, we have the edges coc1 and c1c2.

Each vertex of S is adjacent to either c0 or c2 to have two distinct 2-paths
connecting it to c1. This implies that {c0, c2} is a dominating set with common
neighbors x, y, c1. If ny = 1, then y1 is also a common neighbor of c0 and c2,
contradicting the maximality of D. Hence ny ≥ 2.

Suppose, nx ≥ 3. Now x2 must be adjacent to either c0 or c2 for having two
distinct 2-paths connecting x2 and c1. Without loss of generality assume that
x2 is adjacent to c0. Now each vertex of Sy must be adjacent to both x2 and c0
to have two distinct 2-paths connecting it to x1. But this contradicts the fact

that
−→
G is a plane graph. Thus nx ≤ 3.

So we have nx ≥ ny by assumption, and nx ≤ 2, ny ≥ 2. Therefore, nx =
ny = 2. Also note that c0 and c2 cannot have any common neighbor other than
x, y, c1 as otherwise this would contradict the maximality of D. So, x1, y1 are
adjacent to c2 and x2, y2 are adjacent to c0. Due to triangulation, we can have
only one other edge in G: either x1y2 or y1x2. Due to symmetry of the graph,
we can assume without loss of generality, that G has the edge y1x2. Therefore,
G is the graph W depicted in Figure 6 which is not an underlying push clique
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by Claim 10. �

The above claims prove that for no value of |C| it is possible to have a planar
push clique of domination number 2 and order at least 9.

Proof of Lemma 4.3. The proof follows from Claims 1, 5, 8, 9 and 12. �

Finally we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. The proof follows from Lemmas 4.1, 4.2 and 4.3. �

5. On the proof of Theorem 1.3

We want to show that any planar underlying push clique must contain the
underlying graph of one of the graphs listed in Figure 1 as a spanning subgraph.
Observe that each graph listed in Figure 1 is planar (we provided a planar
drawing) and is a push clique (using the characterization given by Lemma 2.1).

Note that by adding edges to a push clique one obtains another push clique.

So to prove our result it is enough to show that if
−→
G is a planar push clique

on k vertices then its underlying graph G must contain one of the underlying
graphs on k vertices listed in Figure 1 as its subgraph. From now on in this
section whenever we mention a graph Hi for any i ∈ {1, 2, · · · , 16}, we mean
the underlying graph of the ith graph depicted in Figure 1. Moreover, G will
refer to an underlying push clique in this section.

Before starting the analysis, we want to define the following terminology.
Let u, v be a pair of vertices of an undirected simple graph G. We say that
u reaches v if either u and v are adjacent or u and v have at least 2 common
neighbors. Furthermore, by u reaches v through w, we will mean that w is a
common neighbor of u and v. Also if each pair of vertices of G reaches each
other, then we say that G is reach-complete.

First we will handle the case |V (G)| ≤ 4.

Lemma 5.1. If G is an underlying push clique having |V (G)| ≤ 4, then G
contains H1, H2, H3 or H4 as its spanning subgraph.

Proof. The statement follows from Observation 2.5.

We will also set the following conventions for this section. The graph Ck =
a0a1 · · · ak−1a0 denotes the k-cycle for all k ≥ 5. For all k ≥ 5, a short chord of
Ck is a chord joining vertices at distance 2 and is denoted by si = aiai+2 where
the + operation is taken modulo k. For all k ≥ 6, a medium chord of Ck is a
chord joining vertices at distance 3 and is denoted by mi = aiai+3 where the +
operation is taken modulo k. For all k ≥ 8, a long chord of Ck is a chord joining
vertices at distance 4 and is denoted by li = aiai+4 where the + operation is
taken modulo k.

Now we will consider the case |V (G)| = 5.

Lemma 5.2. If G is an underlying push clique having |V (G)| = 5, then G
contains H5 as its spanning subgraph.
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Proof. If |V (G)| = 5, G cannot be a complete graph as G is planar. Thus G
must contain a 4-cycle by Lemma 2.1. The fifth vertex of G must be adjacent
to at least two vertices of the 4-cycle. Thus, G either contains a K2,3 or must
contain a 5-cycle.

Note that K2,3 is not an underlying push clique. If we replace the partite
set containing two vertices with an edge, then also the graph obtained is not an
underlying push clique. But if we add an edge in the other partite set, a 5-cycle
is created. Thus, G must contain a 5-cycle C5.

Note that C5 with two incident chords s0 and s2 is not an underlying push
clique as s1 does not reach s3. A 5-cycle and a 5-cycle with a single chord is a
subgraph of the above mentioned graph, thus are not underlying push cliques.
Therefore, to obtain an underlying push clique from C5 we need at least two
non-incident short chords. The graph we get is H5.

Nandy, Sen and Sopena [13] provided a list of edge-minimal outerplanar
underlying oriented cliques (see Figure 2 of [13]). If a planar underlying push
clique G has a dominating vertex v, then Lemma 2.1 implies that the graph
G[V (G) \ {v}] obtained by deleting the vertex v from G is an outerplanar un-
derlying oriented clique. Thus it must contain one of the graphs depicted in
Figure 2 of [13] as a spanning subgraph.

Let Gx be the graph obtained by adding a dominating vertex to the graph
depicted in Figure 2(x) of [17] where x ∈ {a, b, · · · , k}. By the previous argu-
ments, the following observation holds:

Observation 5.3. If v denotes spanning subgraph inclusion, then H2 v Ga,
H3 v Gb, H4 v Gc, H5 v Gd, H5 v Ge, H8 v Gf , H9 v Gg, H6 v Gh,
H10 v Gi, H11 v Gj, H14 v Gk.

Then we prove a general result to show that every planar underlying push
clique with at least 6 vertices must have minimum degree at least 3 unless it
contains H6 as a spanning subgraph.

Lemma 5.4. If G is an underlying planar push clique having |V (G)| ≥ 6 and
has minimum degree 2, then G contains H6 as a spanning subgraph.

Proof. Let G be an underlying planar push clique having |V (G)| ≥ 6 with
minimum degree 2. Let v be a vertex of G having exactly two neighbors x and
y. Then each non-neighbor of v must be adjacent to both x and y, resulting in a
K2,|V (G)|−2. Given any orientation of G we can push x and y in such a way that
we have the arcs −→xv and −→vy. Thus, for being a push clique, x and y must agree
on each non-neighbor of v by Corollary 2.2. Therefore, it is possible to push
the non-neighbors of v (if necessary) to obtain an orientation of G such that
all non-neighbors of v are out-neighbors of both x and y. Let this so-obtained

orientation of G be
−→
G . Now note that the only way for

−→
G to be a planar

push clique is to have the non-neighbors of v induce a 2-dipath. In that case,

|V (G)| − 2 = 4 and the underlying graph of
−→
G contains H6 as a subgraph.

After this we prove a useful lemma.
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Lemma 5.5. If G is a planar underlying push clique having |V (G)| = 6, then
G has a Hamiltonian cycle.

Proof. If |V (G)| = 6, then G has minimum degree at least 2 due to Observa-
tion 2.3. If G has minimum degree 2, then G contains H6 as a subgraph and
hence has a Hamiltonian cycle. If G has minimum degree at least 3, then also
G has a Hamiltonian cycle due to Dirac’s Theorem [18].

After that we characterize all edge-minimal planar underlying push cliques
having minimum degree at least 3 on 6 vertices.

Lemma 5.6. If G is an underlying push clique having |V (G)| = 6 and the
minimum degree of G is at least 3, then G contains H6, H7, H8 or H9 as its
spanning subgraph.

Proof. Now we will try to construct a Hamiltonian planar reach-complete graph
G on 6 vertices, without any dominating vertex, with minimum degree 3, and
not containing H6, H7, H8 or H9 as a subgraph. If such a graph G does not
exist, then we are done due to Lemma 5.5, Observation 5.3, Lemma 5.4 and
Observation 2.3. We show the non-existence of G through a case analysis.

Assume that G is C6 having m medium chords and s short chords.
If m = 0, then we need to have s ≥ 4 so that G does not have any vertex of

degree at most 2. Furthermore, if s ≥ 4, then either G has at least one vertex
of degree 2 or H7 v G or H9 v G.

If m = 1, then without loss of generality assume that the medium chord is
m0. Now to have d(a2), d(a4) ≥ 3, we must either have s0 and s4 or have s2.
But the edges s0 and s4 create a dominating vertex a0. Thus we must have the
edge s2. Similarly, to have d(a1), d(a5) ≥ 3 and to avoid creating a dominating
vertex a3, we must have the edge s1. This implies H7 v G.

If m = 2, then without loss of generality assume that the medium chords are
m0 and m1. Note that to have d(a5) ≥ 3, without loss of generality we must
have the edge s5. Also to have d(a2) ≥ 3, we must either have the edge s0 or
s2. In either case H7 v G.

If m = 3, then G is not planar as it contains a K3,3.

After that we continue with the following observation.

Observation 5.7. Each edge of the graphs H6, H7, H8, H9 is part of a Hamil-
tonian cycle.

Using Observation 5.7 we will show that every planar underlying push clique
on 7 vertices must be Hamiltonian.

Lemma 5.8. If G is a planar underlying push clique having |V (G)| = 7, then
G has a Hamiltonian cycle.

Proof. If |V (G)| = 7, then each vertex of G must have degree at least 3 by
Lemma 5.4. If G has minimum degree 4 then G is Hamiltonian by Dirac’s
Theorem [18].
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Assume the contrary, and let v be a degree 3 vertex of G. Delete the vertex v
from G and add the edges among its neighbors to obtain a graph G′. Note that
as G is an underlying planar push clique on 7 vertices, G′ must be an underlying
planar push clique on 6 vertices.

Thus, by Lemma 5.6 G′ must contain one of H6, H7, H8, H9 as its spanning
subgraph. If that spanning underlying push clique of G′ contains one of the
edges among the neighbors of v, then G is Hamiltonian using Observation 5.7.

As the graphs H7, H8, H9 have independence number 2, we will be done if
G′ has one of these graphs as a spanning subgraph.

The graph H6 has independence number 3 and has exactly one independent
set of cardinality 3. If we add a vertex to the graph and make it adjacent to
those three vertices, then a K3,3 is created and thus the so-obtained graph is
not planar.

Therefore, we can conclude that G is Hamiltonian.

Using Lemma 5.8 we now prove the following:

Lemma 5.9. If G is an underlying push clique having |V (G)| = 7, then G
contains H10, H11 or H12 as its spanning subgraph.

Proof. We will try to construct a Hamiltonian planar reach-complete graph
G on 7 vertices, without any dominating vertex, with minimum degree 3, not
containing H10, H11 or H12 as a subgraph. If such a graph G does not exist, then
we are done due to Lemma 5.8, Observation 5.3, Lemma 5.4 and Observation 2.3.
We will show that such a graph G does not exist through a case analysis.

Assume that G is C7 having m medium chords and s short chords.
If m = 0, then to make G reach-complete we need to have all the short

chords, thus a K5-minor.
If m = 1, then without loss of generality assume that the medium chord is

m0. Now we must add s2 and s6 to make G reach-complete. Also we add s5
without loss of generality to have d(a5) ≥ 3. This graph has a Hamiltonian
cycle a0a3a4a2a1a6a5a0 with 2 medium chords a0a1 and a4a5. Thus this case
gets reduced to the case m ≥ 2.

If m = 2, then without loss of generality assume that one of the medium
chords is m0. The second medium chord can be chosen in three ways (up to
symmetry):

• The second medium chord is m4. Observe that it is not possible to make
this graph reach-complete by adding short chords without creating a dom-
inating vertex or a K5-minor.

• The second medium chord is m5. Thus we must have s2 for a2 to reach a4
and s4 for a4 to reach a6. This graph has a Hamiltonian cycle a0a3a4a2a1a5
a6a0 with 3 long chords a0a1, a4a5 and a4a6. Thus this case gets reduced
to the case m ≥ 3.

• The second medium chord is m1. Without loss of generality we may add
the short chord s0 for having d(a2) ≥ 3. Observe that there are exactly 4
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ways to make this graph reach-complete by adding short chords without
creating a dominating vertex or a K5-minor: (i) by adding s0, s2, s3 and
s6 implying H12 v G, (ii) by adding s0, s2, s4 and s5 implying H11 v G,
(iii) by adding s0, s3, s4 and s5 implying H10 v G, (iv) by adding s0, s3, s5
and s6 implying H12 v G.

If m = 3, then three non incident medium chords will create a K3,3-minor.
Thus we can assume that G has two incident medium chords m0 and m4. With-
out loss of generality the choice of the third chord gives us 3 subcases.

• The third medium chord is m1. Observe that it is not possible to make
this graph reach-complete by adding short chords without creating a dom-
inating vertex or a K5-minor.

• The third medium chord is m2. Observe that there are exactly 2 ways to
make this graph reach-complete by adding short chords without creating
a dominating vertex or a K5-minor: (i) by adding s2 and s6 implying
H12 v G, (ii) by adding s4 and s6 implying H12 v G.

• The third medium chord is m5. Observe that there are exactly 2 ways to
make this graph reach-complete by adding short chords without creating
a dominating vertex or a K5-minor: (i) by adding s0, s1 and s2 implying
H10 v G, (ii) by adding s1, s2 and s6 implying H11 v G.

If m = 4, then three non-incident medium chords will create a K3,3-minor.
Thus barring those cases, without loss of generality we have two cases.

• Suppose the four medium chords are m0,m1,m4 and m5. To have d(a2),
d(a6) ≥ 3 we must add a matching of size 2 in the set {a1a6, a4a6, a0a2, a4a2}
of short chords. Note that s5 implies a dominating vertex a0 and the edge
s1 implies a dominating vertex a1. Suppose that we have s6 and s0. Then
a3 must reach a5 by being adjacent s3, creating a K5-minor.

• Suppose the four medium chords are m0,m2,m5,m6. To have d(a1) ≥ 3
without loss of generality we have the edge s6. Also if we add either s1 or
s4, then H12 v G. Thus a1 reaches a4 through a2 implying the edge s2
and H10 v G.

If l ≥ 5, then G is not planar as it contains a K3,3.

Finally we turn our attention to the case |V (G)| = 8. We start with two
important observations.

Observation 5.10. Each edge of the graphs H10, H12 is part of a Hamiltonian
cycle.

Before stating the next observation, recall the graph H11 depicted in Fig-
ure 1. Note that H11 has exactly 2 vertices of degree 5 and one vertex of degree
4. Without loss of generality call the two vertices of degree 5 as x and z. Fur-
thermore, call the vertex of degree 4 as y. Based on these names, we have the
following:
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Observation 5.11. Each edge, except xy and yz, of the graph H11 is part of a
Hamiltonian cycle.

Using the above observations we will show that every planar underlying push
clique on 8 vertices must be Hamiltonian.

Lemma 5.12. If G is a planar underlying push clique having |V (G)| = 8, then
G has a Hamiltonian cycle.

Proof. If |V (G)| = 8, then each vertex of G must have degree at least 3 by
Lemma 5.4. If G has minimum degree 4 then G is Hamiltonian by Dirac’s
Theorem [18].

Otherwise, let v be a degree 3 vertex of G. Delete the vertex v from G and
add the edges among its neighbors to obtain the graph G′. Note that as G is an
underlying planar push clique on 8 vertices, G′ must be an underlying planar
push clique on 7 vertices.

Thus, by Lemma 5.9 G′ must contain one of H10, H11 or H12 as its span-
ning subgraph. If that spanning underlying push clique of G′ contains one of
the edges, other than xy or yz of H11, among the neighbors of v, then G is
Hamiltonian using Observation 5.7.

The graphs H10, H12 has independence number 3 and has exactly one in-
dependent set of cardinality 3. If we add a vertex to the graph and make it
adjacent to those three vertices, then a K3,3 is created and thus the so-obtained
graph is not planar. Thus we will be done if G′ contains one of H10, H12 as a
spanning subgraph.

The graph H11 has independence number 3 and has exactly two independent
sets of cardinality 3. If we add a vertex to the graph and make it adjacent to
the vertices of one of its independent sets of cardinality 3, then a K3,3-minor is
created and thus the so-obtained graph is not planar.

Now assume that G′ contains H11 as a spanning subgraph. If N(v) contains
an edge of H11 other than xy and yz, then by Observation 5.11 we are done.
Otherwise, we must have N(v) = {x, y, z} as x and z are adjacent to all vertices
from V (H11)\{x, z}. In that case, we have a K3,3 in G′. Thus N(v) = {x, y, z}
is not possible.

Therefore, we can conclude that G is Hamiltonian.

Now we prove another result regarding the two graphs A and B depicted in
Figure 7.

Lemma 5.13. The two graphs A and B (depicted in Figure 7) are not under-
lying push cliques.

Proof. Note that A and B are both planar graphs. Also A is a subgraph of B.
The vertex a (see Figure 7) of B is a degree-3 vertex whose neighbors are

pairwise adjacent. Therefore, if B is an underlying push clique, then the graph
B′ obtained by deleting the vertex a from B is also an underlying push clique.

However, B′ is a planar graph on 7 vertices. Thus due to Lemma 5.9 B′

must contain H10, H11 or H12 as a spanning subgraph. This is not possible as
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B

Figure 7: Two graphs: A and B.

B′ contains a vertex of degree 2 while the minimum degree vertex of H10, H11

and H12 is at least 3.
Therefore, B is not an underlying push clique. As A is a subgraph of B, the

graph A is also not an underlying push clique.

Using Lemma 5.12 we will prove the following:

Lemma 5.14. If G is an underlying push clique having |V (G)| = 8, then G
contains H13, H14, H15 or H16 as its spanning subgraph.

Proof. Now we will try to construct a Hamiltonian planar reach-complete graph
G on 8 vertices, without any dominating vertex, with minimum degree 3, not
containingH10, H11 orH12 as a subgraph, and non-isomorphic to A or B. If such
a graph G does not exist, then we are done due to Lemma 5.12, Observation 5.3,
Lemma 5.4 and Observation 2.3. We will show that such a graph G does not
exist through a case analysis.

Assume that G is C8 having l long chords, m medium chords and s short
chords. Let X

i1i2···ip
j1j2···jq be the graph obtained by adding li1 , li2 , · · · , lip and

mj1 ,mj2 , · · · ,mjq to C8 where i1 < i2 < · · · < ip and j1 < j2 < · · · < jq.

Moreover X̂
i1i2···ip
j1j2···jq will denote a reach-complete graph obtained from X

i1i2···ip
j1j2···jq

by adding short chords having no dominating vertex. Note that X̂
i1i2···ip
j1j2···jq may

not be unique for a particular X
i1i2···ip
j1j2···jq . In particular, X is nothing but the

graph C8. Similarly, if X does not have a superscript/subscript, then it denotes
a graph without any long/medium chords, respectively.

We want to do an exhaustive case analysis with respect to the number of
long and medium chords in G and consider only the cases which are distinct
up to reflectional/rotational symmetry (denoted by ∼=). The first long/medium
chord can be assumed to be l0/m0 without loss of generality. First we will list
out the distinct cases to be considered in the following.

For l + m ≤ 1, the cases to consider are X,X0, X0. From this we will
recursively build the other cases by adding a medium or a long chord and present
the cases in Table 1.

In Table 1 the GRAY entries contain a K3,3-minor and thus are not planar.
On the other hand, let B be the set of the BOLDFACE entries of the table.
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l : m Add a chord Cases
0 : 2 medium to X0 X01 (∼= X07), X02 (∼= X06), X03 (∼= X05), X04.
0 : 3 medium X012 (∼= X017), X013 (∼= X016, X023, X027),

to case (0, 2) X014 (∼= X015,X034,X037,X045,X047),
X024 (∼= X026,X046), X025 (∼= X035,X036).

0 : 4 medium X0134, X0135 (∼= X0146,X0245,X0247,X0256),
to case (0, 3) X0136 (∼= X0235,X0257), X0137, X0145, X0147, X0246.

1 : 1 long to X0 X0
0 , X1

0 .
1 : 2 long to X0

01, X1
01 (∼= X3

01), X2
01, X0

02 (∼= X1
02), X2

02 (∼= X3
02),

case (0, 2) X0
03 (∼= X2

03), X1
03, X3

03, X0
04 (∼= X3

04), X1
04 (∼= X2

04).
1 : 3 long to X0

013, X1
013, X2

013, X3
013, X0

014, X1
014, X2

014, X3
014,

case (0, 3) X0
024 (∼= X3

024), X1
024 (∼= X2

024),
X0

025 (∼= X1
025), X2

025 (∼= X3
025).

1 : 4 long to X0
0134 (∼= X3

0134), X1
0134 (∼= X2

0134), X0
0135, X1

0135,
case (0, 4) X2

0135, X3
0135, X0

0136, X1
0136 (∼= X3

0136), X2
0136,

X0
0145, X1

0145 (∼= X3
0145), X2

0145,
X0

0246 (∼= X1
0246, X

2
0246, X

3
0246).

2 : 0 long to X0 X01 (∼= X03), X02.
2 : 1 long to X01

0 , X02
0 (∼= X13

0 ),
case (1, 1) X03

0 , X12
0 .

2 : 2 long to X01
01 , X02

01 , X03
01 , X12

01 , X13
01 , X01

02 , X02
02 , X03

02 , X12
02 , X23

02 ,
case (1, 2) X01

03 , X02
03 , X03

03 (∼= X23
03 ), X12

03 , X13
03 , X01

04 ,
X02

04 (∼= X13
04 ), X03

04 , X12
04 .

2 : 3 long to X01
013, X02

013, X03
013, X12

013, X13
013, X23

013, X01
014, X02

014,
case (1, 3) X03

014, X12
014, X13

014, X23
014, X01

024, X02
024 (∼= X13

024), X03
024,

X12
024, X01

025, X02
025, X03

025, X12
025, X23

025.
2 : 4 long to X01

0134, X02
0134, X03

0134, X01
0135, X02

0135, X03
0135, X12

0135,
case (1, 4) X13

0135, X23
0135, X01

0136, X12
0136, X13

0136, X01
0145 (∼= X03

0145),
X12

0145, X13
0145, X02

0145, X01
0246, X02

0246, X03
0246.

Table 1: Exhaustiveness of the case analysis of the graph X
i1i2···ip
j1j2···jq obtained by adding long

and medium chords.

Observe that, if Y ∈ B, then Ŷ contains either a dominating vertex, or a K5-
minor, or a K3,3-minor.

For any of the other entries, say Z, Ẑ can be obtained in number of ways. We
have observed that for a particular Z, its associated Ẑ’s can contain a number
of structures proving our result. We have clubbed the same types together and
have described the remaining cases below:

• Each of X̂, X̂0, X̂02, X̂04, X̂013, X̂
0, X̂0

0 , X̂
0
03, X̂

01, X̂13
03 , X̂

02
024, X̂

13
0135 contain

a K5-minor or H13.
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• Each of X̂0145, X̂
0
0145, X̂

1
0145, X̂

03
0134, X̂

13
0136, X̂

01
0145, X̂

13
0145 contain a K5-minor

or H14.

• Each of X̂0134, X̂
1
0136, X̂

23
02 , X̂

13
013 contain a K5-minor or H13 or H15.

• Each of X̂0246, X̂
0
0246, X̂

02
0246 contain a K5-minor or H13 or H16.

• Each of X̂01
02 , X̂

01
024 is either isomorphic to A, or contain a K5-minor or

H14.

• Each of X̂01
025, X̂

03
0135 is either isomorphic to B, or contain a K5-minor or

H14.

• The graph X̂01
0246 is either isomorphic to A, or contains K5-minor, H13, H14

or H15.

If m ≥ 5 or l ≥ 3, G contains a K3,3-minor.

Proof of Theorem 1.3. The proof directly follows from Lemmas 5.1, 5.2, 5.6, 5.9
and 5.14. �

6. Conclusions

We listed all minimal planar underlying push cliques upto spanning subgraph
inclusion. One can notice that there are 4 distinct minimal planar underlying
push cliques of maximum order (eight vertices). This result is unlike the case
of planar underlying oriented clique where there is a unique planar underlying
oriented clique of maximum order [13].

Moreover, we would like to report that there are total 55 non-isomorphic
planar underlying push cliques (1 on 1 vertex, 1 on 2 vertices, 1 on 3 vertices,
3 on 4 vertices, 4 on 5 vertices, 11 on 6 vertices, 21 on 7 vertices and 13 on 8
vertices). See the lists in [19] for details.

The planar oriented cliques were instrumental in improving the bound of
oriented chromatic number of planar graphs. Thus we hope that our list will
help studies related to pushable chromatic number of oriented planar graphs.

Acknowledgement: The authors would like to thank the anonymous reviewer
for the constructive comments towards improvement of the content, clarity and
conciseness of the manuscript.
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