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An oriented graph is a directed graph without any directed cycle of length at most 2. An oriented clique is an oriented graph whose non-adjacent vertices are connected by a directed 2-path. To push a vertex v of a directed graph -→ G is to change the orientations of all the arcs incident to v. A push clique is an oriented clique that remains an oriented clique even if one pushes any set of vertices of it. We show that it is NP-complete to decide if an undirected graph is the underlying graph of a push clique or not. We also prove that a planar push clique can have at most 8 vertices and provide an exhaustive list of planar push cliques.

Introduction and main results

An oriented graph -→ G is a directed graph with vertex set V ( -→ G ) and arc set A( -→ G ) having no directed cycle of length 1 or 2 with set of vertices. We denote by G the underlying graph of -→ G . An orientation of G is an oriented graph obtained by assigning each edge uv of G one of the two possible orientations, namely, -→ uv or -→ vu. An oriented k-coloring of an oriented graph -→ G is a mapping f from the vertex set V ( -→ G ) to a set of k colors such that (i) f (u) = f (v) whenever u and v are adjacent and, (ii) if -→ uv and -→ wx are two arcs in

- → G , then f (u) = f (x) implies f (v) = f (w). The oriented chromatic number χ o ( - → G ) of - → G is the smallest integer k for which - →
G admits an oriented k-coloring. Oriented coloring is a well studied topic (see the latest survey [START_REF] Sopena | Homomorphisms and colourings of oriented graphs: An updated survey[END_REF] for details).

To push a vertex v of a directed graph -→ G is to change the orientations of all the arcs (that is, to replace an arc -→ xy by -→ yx) incident to v. The study of push operation was introduced by Mosesain [START_REF] Mosesian | Strongly basable graphs (russian)[END_REF] and studied in [START_REF] Pretzel | Orientations and edge functions on graphs, Surveys in Combinatorics[END_REF][START_REF] Pretzel | On reordering graphs by pushing down maximal vertices[END_REF][START_REF] Pretzel | On graphs that can be oriented as diagrams of ordered sets[END_REF][START_REF] Macgillivray | Re-orienting tournaments by pushing vertices[END_REF][START_REF] Fisher | Tournament games and positive tournaments[END_REF][START_REF] Klostermeyer | Hamiltonicity and reversing arcs in digraphs[END_REF][START_REF] Klostermeyer | Pushing vertices and orienting edges[END_REF]. [START_REF] Klostermeyer | Homomorphisms and oriented colorings of equivalence classes of oriented graphs[END_REF], of an oriented graph -→ G is the minimum oriented chromatic number taken over all oriented graphs that are in push relation with -→ G . Following the work of Klostermeyer and MacGillivray [START_REF] Klostermeyer | Homomorphisms and oriented colorings of equivalence classes of oriented graphs[END_REF], the pushable chromatic number of planar graphs was studied by Sen [START_REF] Sen | On homomorphisms of oriented graphs with respect to the push operation[END_REF].

An oriented clique, introduced by Klostermeyer and MacGillivray [START_REF] Klostermeyer | Analogs of cliques for oriented coloring[END_REF], is an oriented graph

- → C with χ o ( - → C ) = |V ( - → C )|.
In fact, an oriented clique is characterized as an oriented graph in which each pair of non-adjacent vertices are connected by a directed 2-path. Due to this characterization oriented cliques can be viewed as natural objects. Moreover, they play a significant role in studying oriented coloring as pointed out in [START_REF] Nandy | Outerplanar and planar oriented cliques[END_REF]. An undirected simple graph is called an underlying oriented clique if it is the underlying graph of an oriented clique.

Let -→ C be an oriented clique such that each oriented graph in a push relation with -→ C is also an oriented clique. We are interested in such oriented cliques. Observe that -→ C is such an oriented clique if and only if χ p (

- → C ) = |V ( - → C )|.
Thus we define the following notion: an oriented graph

- → C is a push clique if χ p ( - → C ) = |V ( - → C )|
. Also an undirected simple graph is an underlying push clique if it is the underlying graph of a push clique.

Given an undirected simple graph it is NP-hard to determine if it is an underlying oriented clique [START_REF] Bensmail | The complexity of deciding whether a graph admits an orientation with fixed weak diameter[END_REF]. We prove an analogous result for underlying push cliques.

Theorem 1.1. It is NP-complete to decide whether a given graph is an underlying push clique.

Oriented cliques of planar and outerplanar graphs are studied in details, see [START_REF] Nandy | Outerplanar and planar oriented cliques[END_REF]. Settling a conjecture of Klostermeyer and MacGillivray [START_REF] Klostermeyer | Analogs of cliques for oriented coloring[END_REF], it is proved in [START_REF] Nandy | Outerplanar and planar oriented cliques[END_REF] that a planar oriented clique can have at most 15 vertices. Note that there exists a planar oriented clique on 15 vertices which implies that the above mentioned bound is tight. Here, we exhibit all planar push cliques, in particular proving that any such clique has at most 8 vertices.

Theorem 1.2. A planar push clique can have at most 8 vertices. Moreover, there exists a planar push clique on 8 vertices.

Klostermeyer and MacGillivray showed that an outerplanar oriented clique can have at most 7 vertices and any outerplanar oriented clique must have a particular oriented clique as a spanning subgraph [START_REF] Klostermeyer | Analogs of cliques for oriented coloring[END_REF]. Later this result was extended by providing an explicit list of eleven outerplanar graphs and proving that any outerplanar underlying oriented clique must have one of the eleven outerplanar graphs as its spanning subgraph [START_REF] Nandy | Outerplanar and planar oriented cliques[END_REF]. In the same article the following question was asked: "Characterize the set L of graphs such that any planar graph is an underlying oriented clique if and only if it contains one of the graphs from L as a spanning subgraph." Here we answer an analogous version of this question for planar underlying push cliques.

- → H 1 - → H 2 - → H 3 - → H 4 - → H 5 - → H 6 - → H 7 - → H 8 - → H 9 - → H 10 - → H 11 - → H 12 - → H 13 - → H 14 - → H 15 - → H 16
Theorem 1.3. An undirected planar graph is an underlying push clique if and only if it contains an underlying graph of one of the 16 planar graphs depicted in Figure 1 as a spanning subgraph.

In Section 2 we introduce some basic definitions and notations. The proofs of Theorems 1.1, 1.2 and 1.3 are given in Sections 3, 4 and 5, respectively. Theorem 1.2 was published in EuroComb 2013 [START_REF] Sen | On push chromatic number of planar graphs and planar p-cliques[END_REF].

Preliminaries

For an (oriented) graph G every parameter we introduce below is denoted using G as a subscript. In order to simplify the notations, this subscript will be dropped whenever there is no chance of confusion.

The set of all adjacent vertices of a vertex v of an (oriented) graph G is called its set of neighbors and is denoted by N G (v). If there is an arc -→ uv, then u is an in-neighbor of v and v is an out-neighbor of u. The set of all in-neighbors and the set of all out-neighbors of v are denoted by N - G (v) and N + G (v), respectively. The degree of a vertex v of an (oriented) graph G, denoted by d G (v), is the number of neighbors of v in G. Naturally, the in-degree (resp. out-degree) of a vertex v of an oriented graph G, denoted by

d - G (v) (resp. d + G (v))
, is the number of in-neighbors (resp. out-neighbors) of v in G. The order |V (G)| of an (oriented) graph G is the cardinality of its set of vertices V (G).

Two vertices u and v of an oriented graph agree on a third vertex w of that graph if w ∈ N α (u) ∩ N α (v) for some α ∈ {+, -}. Two vertices u and v of an oriented graph disagree on a third vertex w ∈ N (u) ∩ N (v) if u and v do not agree on w.

A k-cycle is an undirected cycle having k vertices. Let -→ C 4 be an oriented 4cycle with arcs ab, bc, cd, ad. A special 4-cycle is an oriented 4-cycle isomorphic to -→ C 4 . Note that all the oriented graphs which are in push relation with a special 4-cycle are isomorphic to it. Notice that the non-adjacent vertices of a special 4-cycle always get different colors as they are always connected with a 2-dipath, no matter which vertex of the graph you push. This is, in fact, a necessary and sufficient condition for two non-adjacent vertices to receive two distinct colors under any oriented coloring with respect to any push relation. Due to Lemma 2.1 we know that a push clique is an oriented graph with each pair of non-adjacent vertices agreeing on at least one vertex and disagreeing on at least one vertex.

Corollary 2.2. Each pair of non-adjacent vertices of a push clique must have at least two common neighbors. This implies the following observations. Observation 2.3. Each pair of non-adjacent vertices of an underlying push clique must have at least two common neighbors.

Observation 2.4. An underlying push clique has diameter at most 2.

Also if an underlying push clique is not a complete graph, then a pair of nonadjacent vertices in it must have at least two common neighbors by Corollary 2.2.

Observation 2.5. Any underlying push clique that is not a complete graph must contain a 4-cycle as a subgraph.

A dominating set of a graph G is a set of vertices D such that every vertex of G is either in D or has a neighbor in D. The domination number γ(G) of a graph G is the cardinality of its smallest dominating set. In this article, a dominating set and the domination number of an oriented graph -→ G will correspond to a dominating set and the domination number of its underlying graph G.

On the proof of Theorem 1.1

Given an oriented graph one can check, in polynomial-time, if it is a push clique or not using the characterization given in Lemma 2.1.

Let G be a graph. Define G * to be the graph obtained by adding a vertex v * to G such that v * is adjacent to each vertex of G. Then the following holds. Proof of Theorem 1.1. It is known that determining if a graph is an underlying oriented clique is NP-hard [START_REF] Bensmail | The complexity of deciding whether a graph admits an orientation with fixed weak diameter[END_REF]. Therefore, the proof follows from Lemma 3.1. 4. On the proof of Theorem 1.2

Note that the oriented planar graph of order 8 depicted in Figure 2 is a push clique due to Lemma 2.1. Thus: Lemma 4.1. There exists a planar push clique on 8 vertices. Now we will prove that a planar push clique cannot have more than 8 vertices. Goddard and Henning [START_REF] Goddard | Domination in planar graphs with small diameter[END_REF] showed that every planar graph of diameter-2 has domination number at most 2 except for a particular graph on 9 vertices (see Figure 3). Observe that the vertices a and b of this graph have exactly one common neighbor. Therefore, it is not a push clique. Since a planar push clique must have diameter at most 2 (by Observation 2.4), by the result of Goddard and Henning, it also has domination number at most 2.

First we will handle the case when a planar push clique has domination number 1. A plane graph is a planar graph with a specific planar embedding. Note that there exists a planar push clique of order at least 9 if and only if there exists a plane push clique of order at least 9. Therefore, to prove Theorem 1.2 it is enough to prove that any plane push clique of domination number 2 must have order at most 8. To be precise, we need to prove the following lemma.

Lemma 4.3. If - → G is a plane push clique of domination number 2, then |V ( - → G )| ≤ 8.
Before proving the lemma we perform some preprocessing by definining certain notions and proving some claims. We will frequently use the following notation: {α, β} = {+, -}. It means either α = +, β = -or α = -, β = + as these are the only two solutions for the above set-theoric equation.

C -- C -+ C ++ C +- S - x S + x S - y S + y x y
Let

- → G be a plane push clique with |V ( - → G )| > 8. Assume that - →
G is triangulated and has domination number 2. Define the partial order ≺ for the set of all dominating sets of order 2 of -→ G as follows: for any two dominating sets D = {x, y} and

D = {x , y } of order 2 of - → G , D ≺ D if and only if |N-→ G (x ) ∩ N-→ G (y )| < |N-→ G (x) ∩ N-→ G (y)|. Let D = {x,
y} be a maximal dominating set of order 2 of -→ G with respect to ≺. Also for the rest of this proof, t, t , α, α, β, β are variables satisfying {t, t } = {x, y} and {α, α} = {β, β} = {+, -}. Now, we fix the following notations (see Figure 4):

C = N-→ G (x) ∩ N-→ G (y), C αβ = N α - → G (x) ∩ N β - → G (y), C t = N-→ G (t) ∩ C, C α t = N α - → G (t) ∩ C, S t = N-→ G (t) \ C, S α t = S t ∩ N α - → G (t) and S = S x ∪ S y .
In the above notations, C denotes the common neighbors of x and y and S denotes the neighbors of x or y that are not common neighbors. Also, the subscripts refer to x or y suggesting that particular set deals with only neighbors of the vertex/vertices mentioned in the subscript. The superscripts refer to the corresponding orientations.

If necessary, by pushing some vertices, we assume that the plane oriented graph

- → G is such that C x = C + x , S x = S + x , S y = S + y and |C + y | ≥ |C - y |.
Note that, it is possible to obtain an alternative orientation of G from any orientation -→ G that satisfies the above conditions by pushing some vertices of -→ G . That is why our assumption is valid.

Hence we have,

x y c 0 c 1 c 2 c i c k-2 c k-1 R 0 R 1 R k-1 Figure 5: A planar embedding of H 9 ≤ |V ( - → G )| = |D| + |C| + |S|. (1) 
Let -→ H be the plane oriented graph obtained from -→ G by deleting all the vertices in S and the arc of D and all the arcs between the vertices of C. Assume that the vertices c 0 , c 1 , ..., c k-1 of C, which are also neighbors of x in -→ H , are cyclically arranged around x in a clockwise order and are all adjacent to y (see Figure 5).

Notice that H has k faces, namely the unbounded face F 0 and the faces F i bounded by edges xc i-1 , c i-1 y, yc i , c i x for i ∈ {1, ..., k -1}. Geometrically, H divides the plane into k connected components. The region R i of -→ G is the i th connected component (corresponding to the face F i ) of the plane. The boundary points of a region R i are c i-1 and c i for i ∈ {1, ..., k -1} and, c 0 and c k-1 for i = 0. Two regions are adjacent if their corresponding faces have at least one common edge (hence, a region is adjacent to itself as well). Now for different possible values of |C|, we want to show that H cannot be extended to a plane push clique of order at least 9. Note that for extending H to -→ G we can add new vertices only from S. Any vertex v ∈ S will be inside one of the regions R i . If there is at least one vertex of S in a region R i , then R i is non-empty and empty otherwise. In fact, when there is no chance of confusion, R i might represent the set of vertices of S contained in the region R i .

We first prove the following lower bound on |C|.

Claim 1: |C| ≥ 2.
Proof of the claim. We know that x and y are either connected by two distinct 2-paths or by an arc. So, if x and y are non-adjacent, then we have |C| ≥ 2. If x and y are adjacent, then the triangulation of

- → G implies |C| ≥ 2.
Next we will show that |C| = 2. Before that we will prove two more claims to facilitate the proof.

Claim 2: If |C| = 2 and both S x ∩ R i and S y ∩ R j are non-empty for some

i = j, then (S x ∩ R i ) ∪ (S y ∩ R j ) ⊆ N (c 0 ) ∩ N (c 1 ).
Proof of the claim. Suppose that both S x ∩ R 0 and S y ∩ R 1 are non-empty. Assume u ∈ S x ∩ R 0 and v ∈ S y ∩ R 1 . Note that u and v are non-adjacent as they are separated by the cycle xc 0 yc 1 x. Thus to have at least two common neighbors due to Observation 2.3, u and v must be both adjacent to at least two vertices of xc 0 yc 1 x. Notice that y is non-adjacent to u as u belongs to S x and x is non-adjacent to v as v belongs to S y . Thus the two common neighbors of u and v must be c 0 and c 1 .

Claim 3: If |C| = 2 and both S x ∩ R i and S y ∩ R j are non-empty for some i = j, then |S x ∩ R i |, |S y ∩ R j | ≤ 1. Proof of the claim. If |S x ∩ R i | ≥ 2,
then there are at least two vertices in R i that are adjacent to x, c 0 and c 1 due to Claim 2. This is not possible as G is a plane graph. Thus

|S x ∩ R i | ≤ 1. Similarly, |S y ∩ R j | ≤ 1.
We are now ready to analyze the case |C| = 2.

Claim 4: If |C| = 2, then exactly two sets among the four sets S t ∩ R i for all (t, i) ∈ {x, y} × {0, 1} are non-empty. Proof of the claim. We consider three cases. Case (i): If S t = ∅, then t is a dominating vertex. This is not possible due to Lemma 4.2. Hence we do not have S t = ∅ for any t ∈ {x, y}. • Case (ii): If all the four sets S t ∩ R i = ∅ for all (t, i) ∈ {x, y} × {0, 1}, then |S| ≤ 4 due to Claim 3. • Case (iii): If there are exactly three non-empty sets S x ∩R 0 , S x ∩R 1 and S y ∩R 0 among the four sets S t ∩R i for all (t, i) ∈ {x, y}×{0, 1}, then by triangulation we have the edge c 0 c 1 inside R 1 . At least one vertex of S x ∩ R 0 must be adjacent to c 0 because of triangulation. Recall that, c 0 is adjacent to y and all the vertices of S y = S y ∩R 0 by Claim 2. Thus we have a dominating set {x, c 0 } with at least three common neighbors (c 1 , a vertex from S x ∩ R 0 and a vertex from S x ∩ R 1 ) contradicting the maximality of D. • Thus exactly two sets among the four sets S t ∩R i for all (t, i) ∈ {x, y}×{0, 1} are non-empty.

Claim 5: |C| = 2. Proof of the claim. Assume that the claim is false, that is, |C| = 2.
By Claim 4, exactly two sets among the four sets S t ∩ R i for all (t, i) ∈ {x, y} × {0, 1} are non-empty. Therefore, S x ∩ R i and S y ∩ R j are non-empty sets for some i, j ∈ {0, 1} as S x , S y = ∅ by Case (i) of Claim 4.

If i = j, then |S| ≤ 2 by Claim 3. Thus i = j and without loss of generality we can assume that S x ∩ R 1 and S y ∩ R 1 are the two non-empty sets.

Assume that S x = {x 1 , x 2 , ... , x nx } and S y = {y 1 , y 2 , ..., y ny }. Suppose the vertices x 1 , x 2 , ..., x nx are cyclically arranged around x in a clockwise order and the vertices y 1 , y 2 , ..., y ny are cyclically arranged around y in an anti-clockwise order. Therefore we have the edges c 0 x 1 , x 1 x 2 , .. ., x nx-1 x nx , x nx c 1 and the edges c 0 y 1 , y 1 y 2 , ..., y ny-1 y ny , y ny c 1 by triangulation. Furthermore, we can assume n x ≥ n y without loss of generality.

Assume n y = 1. So, to have |S| ≥ 5 we should have n x ≥ 4. Note that we cannot have the edge xy as otherwise {y 1 , x} would be a dominating set with at least three common neighbors {c 0 , c 1 , y} contradicting the maximality of D. Hence we have the edge c 0 c 1 inside R 1 by triangulation. Note that the vertex x 2 ∈ S x must be adjacent to either c 0 or c 1 or y 1 to have at least two common neighbors with y by Observation 2.3. This will create a dominating set {c 0 , x} or {c 1 , x} or {y 1 , x} with at least three common neighbors {x 1 , x 2 , c 1 } or {x nx , x 2 , c 0 } or {x 2 , c 0 , c 1 } respectively. This will contradict the maximality of D. Therefore, n y ≥ 2.

Now assume that we have the edge x 2 c 0 . Then to have two distinct 2-paths connecting a vertex w ∈ S y and x 1 we need to have w adjacent to both x 2 and c 0 . That means, each vertex of S y is adjacent to both x 2 and c 0 . But this is not possible keeping the graph plane as n y ≥ 2. So, there is no edge between c 0 and x 2 . By similar arguments, we can show that every t i is non-adjacent to c 0 for i ∈ {2, 3, ..., n t } and every t j is non-adjacent to c 1 for i ∈ {1, 2, ..., n t -1} for all t ∈ {x, y}. A similar argument also proves that the edge t i t i+k for 1 ≤ i < i + k ≤ n t does not exist unless k = 1 for any t ∈ {x, y}. Now notice that n x ≥ 3 by Equation ( 1) and the assumption that n x ≥ n y . By triangulation we must have the edge x 2 y i for some i ∈ {1, 2, ..., n y }. Then to have two distinct 2-paths connecting x 1 and y j for j ∈ {i + 1, ..., n y } and to have two distinct 2-paths connecting x 3 and y l for l ∈ {1, ..., i -1} we must have every vertex of S y adjacent to x 2 .

If n y ≥ 3, then we cannot have two distinct 2-paths connecting the nonadjacent vertices x 1 and y 3 . So we must have n y = 2. Now to have two distinct 2-paths connecting the non-adjacent vertices x 1 and y 2 we must have the edge x 1 y 1 . This creates the dominating set {x, y 1 } with at least three common neighbors {c 0 , x 1 , x 2 } contradicting the maximality of D.

We now prove upper bounds on |C|.

Claim 6: If |C| ≥ 3, then any two non-empty regions must be adjacent. Proof of the claim. If two non-empty regions R i and R j are not adjacent then they do not share any common boundary points. Thus a vertex of R i and a vertex of R j are non-adjacent and can have at most one common neighbor (either x or y). This is not possible due to Observation 2.3.

Claim 7: If |C| ≥ 3, then both S x ∩ R i and S y ∩ R j cannot be non-empty for i = j. Proof of the claim. Suppose both S x ∩ R i and S y ∩ R j are non-empty for some i = j. By Claim 5, R i and R j are adjacent. Note that a vertex of S x ∩ R i must have at least two common neighbors with a vertex of S y ∩ R j due to Observation 2.3. That is not possible as |C| ≥ 3. 1). Without loss of generality assume that there exists a vertex v ∈ S x ∩ R 0 . Note that v must be adjacent to c 0 and c 3 in order to have at least two common neighbors with c 1 and c 2 , respectively, by Observation 2.3.

So |S x ∩ R 0 | ≤ 1 as G is a plane graph. Similarly, |S t ∩ R i | ≤ 1 for all (t, i) ∈ {x, y} × {0, 1, ..., k -1}. ( 2 
)
Also note that if we have a vertex v ∈ S x ∩ R 0 , then it is not possible to have any vertex in S y ∩ R i for all i ∈ {1, 2, ..., k -1} by Claim 7 and in S x ∩ R j for all j ∈ {2, ..., k -2} by Claim 6. Thus, if S x ∩ R 0 is non-empty, then only S x ∩ R 1 , S x ∩ R k-1 and S y ∩ R 0 can be non-empty. Note that among these three sets, at most one can be non-empty due to Claims 6 and 7. Hence, at most two of the sets S t ∩ R i for all (t, i) ∈ {x, y} × {0, 1, ...k -1} can be non-empty. Then Equation (2) implies |S| ≤ 2 and by Equation (1) we have

9 ≤ |V (G)| ≤ 2 + 4 + 2 = 8.
This is a contradiction.

Claim 10: The graph W (depicted in Figure 6) is not an underlying push clique. Proof of the claim. Suppose W is an underlying push clique. Also let an orientation -→ W of W be a push clique. Push (if necessary) some of the vertices x, c 0 , y 1 , x 2 of -→ W to obtain the arcs --→ x 1 x, --→ x 1 c 0 , --→ x 1 y 1 and --→ x 1 x 2 . Furthermore, push (if necessary) some of the vertices c 1 , c 2 , y, y 2 to obtain the arcs -→ xc 2 , -→ c 0 y, --→ y 2 y 1 and --→ c 1 x 2 . Let this so obtained orientation of W be -→ W . Note that -→ W is also a push clique as it is in a push relation with -→ W . Note that the arc --→ c 2 c 0 must belong to -→ W by Corollary 2.2 as the non-adjacent vertices x 1 and c 2 have exactly two common neighbors x and c 0 . Similarly, the pair {x 1 , y} of non-adjacent vertices implies the existence of the arc -→ yy 1 , the pair {x 1 , y 2 } of non-adjacent vertices implies the existence of the arc --→ x 2 y 2 and the pair {x 1 , c 1 } of non-adjacent vertices implies the existence of the arc -→ xc 1 . We now consider the following two cases. 

Case (i): If the arc --→

c 0 y 1 is present in -→ W , then the non-adjacent pairs of vertices c 2 , y 1 and y 2 , c 0 imply the existence of the arcs -→ yc 2 and -→ yy 2 , respectively, due to Corollary 2.2.

Moreover, for satisfying Corollary 2.2 for c 2 and y 2 , the 2-path c 2 c 1 y 2 must be a 2-dipath (in either directions). That makes it impossible to satisfy Corollary 2.2 for the non-adjacent pairs of vertices x, y 2 and x 2 , c 2 . • Case (ii): If the arc --→ y 1 c 0 is present in -→ W , then the non-adjacent pairs of vertices c 2 , y 1 and y 2 , c 0 imply the existence of the arcs -→ c 2 y and -→ y 2 y, respectively, due to Corollary 2.2.

The rest of the arguments are similar to Case (i). • Therefore, W is not an underlying push clique.

Therefore, the only possible value for |C| is 3. In the next claim we will show that |C| = 3 is actually not possible. I do not understand why we may assume "S y = ∅". But having assumed that, |S x | ≥ |S y | = 0 is a given and need not to be stated. Proof of the claim. We will prove this claim by contradiction. So, assume that |C| = 3. Also, without loss of generality, assume that |S x | ≥ |S y | = 0. Hence we do not have the edge xy as otherwise x would dominate the whole graph. Now note that any two regions are adjacent for |C| = 3. The vertices from different regions must be adjacent to their unique common boundary point to have two distinct 2-paths connecting them.

Hence, if all regions are non-empty, then remove the vertices of each region adjacent to both the boundary points of that region. This implies

|S x ∩ R i | ≤ 1 for all i ∈ {0, 1, 2}.
Which would imply |S| ≤ 3, a contradiction to our assumption. Hence, it is not possible to have all the three regions non-empty when S y = ∅.

If we have exactly two regions, say R 0 and R 1 , non-empty, then every vertex of S x must be adjacent to c 0 to create two distinct 2-paths connecting the vertices of S x ∩ R 0 and the vertices of S x ∩ R 1 . This will create a dominating set {c 0 , x} with at least four common neighbors contradicting the maximality of D. Hence, we can have at most one region non-empty when S y = ∅.

Now assume that exactly one region, say R 1 , is non-empty. Then each vertex of S x must be adjacent to either c 0 or c 1 to have two distinct 2-paths connecting it to c 2 . Then, without loss of generality, we will have at least three vertices of S x adjacent to c 0 by pigeonhole principle and triangulation. This will create a dominating set {c 0 , x} with at least four common neighbors (three vertices from S x and c 2 because of triangulation) contradicting the maximality of D. By Claim 11 we know that S y = ∅. Now assume, without loss of generality, that S x ∩ R 0 = ∅. This implies S y ∩ R 1 = ∅ and S y ∩ R 2 = ∅ by Claim 6. But we also know that S y = ∅. Hence we must have S y ∩ R 0 = ∅. This implies

S x ∩ R 1 = ∅ and S x ∩ R 2 = ∅ by Claim 7.
Now assume that S x = {x 1 , x 2 , ... , x nx } and S y = {y 1 , y 2 , ..., y ny }. Suppose that the vertices x 1 , x 2 , ..., x nx are cyclically arranged around x in a clockwise order and the vertices y 1 , y 2 , ..., y ny are cyclically arranged around y in an anticlockwise order. Thus we have the edges c 0 x 1 , x 1 x 2 , .., x nx-1 x nx , x nx c 1 and the edges c 0 y 1 , y 1 y 2 , ..., y ny-1 y ny , y ny c 1 due to triangulation.

If we have the edge xy (say, inside region R 2 ), then each vertex of S x must be adjacent to c 0 to have two distinct 2-paths connecting it to c 1 creating the dominating set {c 0 , x} with at least four common neighbors (the vertices of S x ) contradicting the maximality of D. Hence we do not have the edge xy. Therefore, we have the edges c o c 1 and c 1 c 2 .

Each vertex of S is adjacent to either c 0 or c 2 to have two distinct 2-paths connecting it to c 1 . This implies that {c 0 , c 2 } is a dominating set with common neighbors x, y, c 1 . If n y = 1, then y 1 is also a common neighbor of c 0 and c 2 , contradicting the maximality of D. Hence n y ≥ 2.

Suppose, n x ≥ 3. Now x 2 must be adjacent to either c 0 or c 2 for having two distinct 2-paths connecting x 2 and c 1 . Without loss of generality assume that x 2 is adjacent to c 0 . Now each vertex of S y must be adjacent to both x 2 and c 0 to have two distinct 2-paths connecting it to x 1 . But this contradicts the fact that -→ G is a plane graph. Thus n x ≤ 3. So we have n x ≥ n y by assumption, and n x ≤ 2, n y ≥ 2. Therefore, n x = n y = 2. Also note that c 0 and c 2 cannot have any common neighbor other than x, y, c 1 as otherwise this would contradict the maximality of D. So, x 1 , y 1 are adjacent to c 2 and x 2 , y 2 are adjacent to c 0 . Due to triangulation, we can have only one other edge in G: either x 1 y 2 or y 1 x 2 . Due to symmetry of the graph, we can assume without loss of generality, that G has the edge y 1 x 2 . Therefore, G is the graph W depicted in Figure 6 which is not an underlying push clique by Claim 10.

The above claims prove that for no value of |C| it is possible to have a planar push clique of domination number 2 and order at least 9.

Proof of Lemma 4.3. The proof follows from Claims 1, 5, 8, 9 and 12.

Finally we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. The proof follows from Lemmas 4.1, 4.2 and 4.3.

On the proof of Theorem 1.3

We want to show that any planar underlying push clique must contain the underlying graph of one of the graphs listed in Figure 1 as a spanning subgraph. Observe that each graph listed in Figure 1 is planar (we provided a planar drawing) and is a push clique (using the characterization given by Lemma 2.1).

Note that by adding edges to a push clique one obtains another push clique. So to prove our result it is enough to show that if -→ G is a planar push clique on k vertices then its underlying graph G must contain one of the underlying graphs on k vertices listed in Figure 1 as its subgraph. From now on in this section whenever we mention a graph H i for any i ∈ {1, 2, • • • , 16}, we mean the underlying graph of the ith graph depicted in Figure 1. Moreover, G will refer to an underlying push clique in this section.

Before starting the analysis, we want to define the following terminology. Let u, v be a pair of vertices of an undirected simple graph G. We say that u reaches v if either u and v are adjacent or u and v have at least 2 common neighbors. Furthermore, by u reaches v through w, we will mean that w is a common neighbor of u and v. Also if each pair of vertices of G reaches each other, then we say that G is reach-complete.

First we will handle the case

|V (G)| ≤ 4. Lemma 5.1. If G is an underlying push clique having |V (G)| ≤ 4, then G contains H 1 , H 2 , H 3 or H 4 as its spanning subgraph.
Proof. The statement follows from Observation 2.5.

We will also set the following conventions for this section. The graph C k = a 0 a 1 • • • a k-1 a 0 denotes the k-cycle for all k ≥ 5. For all k ≥ 5, a short chord of C k is a chord joining vertices at distance 2 and is denoted by s i = a i a i+2 where the + operation is taken modulo k. For all k ≥ 6, a medium chord of C k is a chord joining vertices at distance 3 and is denoted by m i = a i a i+3 where the + operation is taken modulo k. For all k ≥ 8, a long chord of C k is a chord joining vertices at distance 4 and is denoted by l i = a i a i+4 where the + operation is taken modulo k. Now we will consider the case |V (G)| = 5. Note that K 2,3 is not an underlying push clique. If we replace the partite set containing two vertices with an edge, then also the graph obtained is not an underlying push clique. But if we add an edge in the other partite set, a 5-cycle is created. Thus, G must contain a 5-cycle C 5 .

Note that C 5 with two incident chords s 0 and s 2 is not an underlying push clique as s 1 does not reach s 3 . A 5-cycle and a 5-cycle with a single chord is a subgraph of the above mentioned graph, thus are not underlying push cliques. Therefore, to obtain an underlying push clique from C 5 we need at least two non-incident short chords. The graph we get is H 5 .

Nandy, Sen and Sopena [START_REF] Nandy | Outerplanar and planar oriented cliques[END_REF] provided a list of edge-minimal outerplanar underlying oriented cliques (see Figure 2 of [START_REF] Nandy | Outerplanar and planar oriented cliques[END_REF]). If a planar underlying push clique G has a dominating vertex v, then Lemma 2.1 implies that the graph G[V (G) \ {v}] obtained by deleting the vertex v from G is an outerplanar underlying oriented clique. Thus it must contain one of the graphs depicted in Figure 2 of [START_REF] Nandy | Outerplanar and planar oriented cliques[END_REF] as a spanning subgraph.

Let G x be the graph obtained by adding a dominating vertex to the graph depicted in Figure 2(x) of [START_REF] Sen | Maximum order of a planar oclique is 15[END_REF] where x ∈ {a, b, • • • , k}. By the previous arguments, the following observation holds:

Observation 5.3. If denotes spanning subgraph inclusion, then H 2 G a , H 3 G b , H 4 G c , H 5 G d , H 5 G e , H 8 G f , H 9 G g , H 6 G h , H 10 G i , H 11 G j , H 14 G k .
Then we prove a general result to show that every planar underlying push clique with at least 6 vertices must have minimum degree at least 3 unless it contains H 6 as a spanning subgraph. Proof. Let G be an underlying planar push clique having |V (G)| ≥ 6 with minimum degree 2. Let v be a vertex of G having exactly two neighbors x and y. Then each non-neighbor of v must be adjacent to both x and y, resulting in a K 2,|V (G)|-2 . Given any orientation of G we can push x and y in such a way that we have the arcs -→ xv and -→ vy. Thus, for being a push clique, x and y must agree on each non-neighbor of v by Corollary 2.2. Therefore, it is possible to push the non-neighbors of v (if necessary) to obtain an orientation of G such that all non-neighbors of v are out-neighbors of both x and y. Let this so-obtained orientation of G be -→ G . Now note that the only way for -→ G to be a planar push clique is to have the non-neighbors of v induce a 2-dipath. In that case, |V (G)| -2 = 4 and the underlying graph of -→ G contains H 6 as a subgraph.

After this we prove a useful lemma. If G has minimum degree at least 3, then also G has a Hamiltonian cycle due to Dirac's Theorem [START_REF] West | Introduction to Graph Theory[END_REF].

After that we characterize all edge-minimal planar underlying push cliques having minimum degree at least 3 on 6 vertices. Lemma 5.6. If G is an underlying push clique having |V (G)| = 6 and the minimum degree of G is at least 3, then G contains H 6 , H 7 , H 8 or H 9 as its spanning subgraph.

Proof. Now we will try to construct a Hamiltonian planar reach-complete graph G on 6 vertices, without any dominating vertex, with minimum degree 3, and not containing H 6 , H 7 , H 8 or H 9 as a subgraph. If such a graph G does not exist, then we are done due to Lemma 5.5, Observation 5.3, Lemma 5.4 and Observation 2.3. We show the non-existence of G through a case analysis.

Assume that G is C 6 having m medium chords and s short chords. If m = 0, then we need to have s ≥ 4 so that G does not have any vertex of degree at most 2. Furthermore, if s ≥ 4, then either G has at least one vertex of degree 2 or H 7 G or H 9 G.

If m = 1, then without loss of generality assume that the medium chord is m 0 . Now to have d(a 2 ), d(a 4 ) ≥ 3, we must either have s 0 and s 4 or have s 2 . But the edges s 0 and s 4 create a dominating vertex a 0 . Thus we must have the edge s 2 . Similarly, to have d(a 1 ), d(a 5 ) ≥ 3 and to avoid creating a dominating vertex a 3 , we must have the edge s 1 . This implies H 7 G.

If m = 2, then without loss of generality assume that the medium chords are m 0 and m 1 . Note that to have d(a 5 ) ≥ 3, without loss of generality we must have the edge s 5 . Also to have d(a 2 ) ≥ 3, we must either have the edge s 0 or s 2 . In either case H 7 G.

If m = 3, then G is not planar as it contains a K 3,3 .

After that we continue with the following observation.

Observation 5.7. Each edge of the graphs H 6 , H 7 , H 8 , H 9 is part of a Hamiltonian cycle.

Using Observation 5.7 we will show that every planar underlying push clique on 7 vertices must be Hamiltonian. Assume the contrary, and let v be a degree 3 vertex of G. Delete the vertex v from G and add the edges among its neighbors to obtain a graph G . Note that as G is an underlying planar push clique on 7 vertices, G must be an underlying planar push clique on 6 vertices. Thus, by Lemma 5.6 G must contain one of H 6 , H 7 , H 8 , H 9 as its spanning subgraph. If that spanning underlying push clique of G contains one of the edges among the neighbors of v, then G is Hamiltonian using Observation 5.7.

As the graphs H 7 , H 8 , H 9 have independence number 2, we will be done if G has one of these graphs as a spanning subgraph.

The graph H 6 has independence number 3 and has exactly one independent set of cardinality 3. If we add a vertex to the graph and make it adjacent to those three vertices, then a K 3,3 is created and thus the so-obtained graph is not planar.

Therefore, we can conclude that G is Hamiltonian. If m = 0, then to make G reach-complete we need to have all the short chords, thus a K 5 -minor.

If m = 1, then without loss of generality assume that the medium chord is m 0 . Now we must add s 2 and s 6 to make G reach-complete. Also we add s 5 without loss of generality to have d(a 5 ) ≥ 3. This graph has a Hamiltonian cycle a 0 a 3 a 4 a 2 a 1 a 6 a 5 a 0 with 2 medium chords a 0 a 1 and a 4 a 5 . Thus this case gets reduced to the case m ≥ 2.

If m = 2, then without loss of generality assume that one of the medium chords is m 0 . The second medium chord can be chosen in three ways (up to symmetry):

• The second medium chord is m 4 . Observe that it is not possible to make this graph reach-complete by adding short chords without creating a dominating vertex or a K 5 -minor.

• The second medium chord is m 5 . Thus we must have s 2 for a 2 to reach a 4 and s 4 for a 4 to reach a 6 . This graph has a Hamiltonian cycle a 0 a 3 a 4 a 2 a 1 a 5 a 6 a 0 with 3 long chords a 0 a 1 , a 4 a 5 and a 4 a 6 . Thus this case gets reduced to the case m ≥ 3.

• The second medium chord is m 1 . Without loss of generality we may add the short chord s 0 for having d(a 2 ) ≥ 3. Observe that there are exactly 4 ways to make this graph reach-complete by adding short chords without creating a dominating vertex or a K 5 -minor: (i) by adding s 0 , s If m = 3, then three non incident medium chords will create a K 3,3 -minor. Thus we can assume that G has two incident medium chords m 0 and m 4 . Without loss of generality the choice of the third chord gives us 3 subcases.

• The third medium chord is m 1 . Observe that it is not possible to make this graph reach-complete by adding short chords without creating a dominating vertex or a K 5 -minor.

• The third medium chord is m 2 . Observe that there are exactly 2 ways to make this graph reach-complete by adding short chords without creating a dominating vertex or a K 5 -minor: (i) by adding s 2 and s 6 implying H 12 G, (ii) by adding s 4 and s 6 implying H 12 G.

• The third medium chord is m 5 . Observe that there are exactly 2 ways to make this graph reach-complete by adding short chords without creating a dominating vertex or a K 5 -minor: (i) by adding s 0 , s 1 and s 2 implying H 10 G, (ii) by adding s 1 , s 2 and s 6 implying H 11 G.

If m = 4, then three non-incident medium chords will create a K 3,3 -minor. Thus barring those cases, without loss of generality we have two cases.

• Suppose the four medium chords are m 0 , m 1 , m 4 and m 5 . To have d(a 2 ), d(a 6 ) ≥ 3 we must add a matching of size 2 in the set {a 1 a 6 , a 4 a 6 , a 0 a 2 , a 4 a 2 } of short chords. Note that s 5 implies a dominating vertex a 0 and the edge s 1 implies a dominating vertex a 1 . Suppose that we have s 6 and s 0 . Then a 3 must reach a 5 by being adjacent s 3 , creating a K 5 -minor.

• Suppose the four medium chords are m 0 , m 2 , m 5 , m 6 . To have d(a 1 ) ≥ 3 without loss of generality we have the edge s 6 . Also if we add either s 1 or s 4 , then H 12 G. Thus a 1 reaches a 4 through a 2 implying the edge s 2 and H 10 G.

If l ≥ 5, then G is not planar as it contains a K 3,3 .

Finally we turn our attention to the case |V (G)| = 8. We start with two important observations. Observation 5.10. Each edge of the graphs H 10 , H 12 is part of a Hamiltonian cycle.

Before stating the next observation, recall the graph H 11 depicted in Figure 1. Note that H 11 has exactly 2 vertices of degree 5 and one vertex of degree 4. Without loss of generality call the two vertices of degree 5 as x and z. Furthermore, call the vertex of degree 4 as y. Based on these names, we have the following: • Each of X01 02 , X01 024 is either isomorphic to A, or contain a K 5 -minor or H 14 .

• Each of X01 025 , X03 0135 is either isomorphic to B, or contain a K 5 -minor or H 14 .

• The graph X01

0246 is either isomorphic to A, or contains K 5 -minor, H 13 , H 14 or H 15 .

If m ≥ 5 or l ≥ 3, G contains a K 3,3 -minor.

Proof of Theorem 1.3. The proof directly follows from Lemmas 5.1, 5.2, 5.6, 5.9 and 5.14.

Conclusions

We listed all minimal planar underlying push cliques upto spanning subgraph inclusion. One can notice that there are 4 distinct minimal planar underlying push cliques of maximum order (eight vertices). This result is unlike the case of planar underlying oriented clique where there is a unique planar underlying oriented clique of maximum order [START_REF] Nandy | Outerplanar and planar oriented cliques[END_REF].

Moreover, we would like to report that there are total 55 non-isomorphic planar underlying push cliques (1 on 1 vertex, 1 on 2 vertices, 1 on 3 vertices, 3 on 4 vertices, 4 on 5 vertices, 11 on 6 vertices, 21 on 7 vertices and 13 on 8 vertices). See the lists in [19] for details.

The planar oriented cliques were instrumental in improving the bound of oriented chromatic number of planar graphs. Thus we hope that our list will help studies related to pushable chromatic number of oriented planar graphs.
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 1 Figure 1: A list of planar push cliques whose underlying graphs H 1 , H 2 , • • • , H 16 is an exhaustive list of edge minimal planar underlying push cliques.
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 21 An oriented graph -→ G is a push clique if and only if any two non-adjacent vertices of -→ G are part of a special 4-cycle.
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 23 Figure 2: A planar push clique of order 8.
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 4 Figure 4: Neighbors of x and y in G.
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 8 |C| ≤ 4. Proof of the claim. First assume that S = ∅. Then |C| = k ≥ 7 and there are at least four vertices in C ++ (recall our basic assumptions: C = C + x and |C + y | ≥ |C - y |). Among those four vertices, two must be such that they are non-adjacent and the only common neighbors they have are x and y. Thus, those two non-adjacent vertices do not disagree on any vertex, a contradiction to Corollary 2.2. Now assume that 5 ≤ |C| = k ≤ 6. Then S = ∅. Without loss of generality assume that there exists a vertex v ∈ S x ∩ R 1 . Note that it is not possible for v and c 3 to have any common neighbor other than x. Thus |C| ≤ 4. Thus the only possible values for |C| are 3 and 4. First we show that it is not possible to have |C| = 4. Claim 9: |C| = 4. Proof of the claim. If |C| = 4, then |S| ≥ 3 by Equation (

2 Figure 6 :

 26 Figure 6: The graph W .

Claim 11 :

 11 If S t = ∅, then |C| = 3.

Claim 12 :

 12 |C| = 3. Proof of the claim. We prove this claim by contradiction. So, assume that |C| = 3. Also, without loss of generality, assume that |S x | ≥ |S y |. Note that by Equation (1) we have |S| ≥ 4. Hence |S x | ≥ 2.

Lemma 5 . 2 .

 52 If G is an underlying push clique having |V (G)| = 5, then G contains H 5 as its spanning subgraph. Proof. If |V (G)| = 5, G cannot be a complete graph as G is planar. Thus G must contain a 4-cycle by Lemma 2.1. The fifth vertex of G must be adjacent to at least two vertices of the 4-cycle. Thus, G either contains a K 2,3 or must contain a 5-cycle.

Lemma 5 . 4 .

 54 If G is an underlying planar push clique having |V (G)| ≥ 6 and has minimum degree 2, then G contains H 6 as a spanning subgraph.

Lemma 5 . 5 .

 55 If G is a planar underlying push clique having |V (G)| = 6, then G has a Hamiltonian cycle. Proof. If |V (G)| = 6, then G has minimum degree at least 2 due to Observation 2.3. If G has minimum degree 2, then G contains H 6 as a subgraph and hence has a Hamiltonian cycle.

Lemma 5 . 8 .

 58 If G is a planar underlying push clique having |V (G)| = 7, then G has a Hamiltonian cycle. Proof. If |V (G)| = 7, then each vertex of G must have degree at least 3 by Lemma 5.4. If G has minimum degree 4 then G is Hamiltonian by Dirac's Theorem [18].

least one vertex and must disagree on at least one vertex. Note that any pair of non-adjacent vertices must be vertices of G and they agree on v * .

  

	Lemma 3.1. The graph G * is an underlying push clique if and only if G is an
	underlying oriented clique.
	Proof. Assume that G * is an underlying push clique. Let of G * such that -→ G * is a push clique. Let -→ G * be the orientation of G * obtained by -→ G * be an orientation pushing all the in-neighbors of v * . In -→ G * the vertices of G are all out-neighbors of v * . As -→ G * is a push clique, each pair of non-adjacent vertices of -→ G * must
	agree on at Thus, they must disagree on a vertex of G. Hence, the oriented graph induced by the vertices of G obtained from -→ G * is an oriented clique. It follows that G
	is an underlying oriented clique.
	On the other hand, assume that G is an underlying oriented clique. Let G be an orientation of G such that -→ -→ G is an oriented clique. Now consider a orientation -→ G * of G * in which every vertex of G is an out-neighbor of v * and the oriented graph induced by the vertices of G from -→ G * is isomorphic to -→ G . Thus -→ G * is a push clique due to Lemma 2.1.
	Now we are ready to prove Theorem 1.1.

  2 , s 3 and s 6 implying H 12 G, (ii) by adding s 0 , s 2 , s 4 and s 5 implying H 11 G, (iii) by adding s 0 , s 3 , s 4 and s 5 implying H 10 G, (iv) by adding s 0 , s 3 , s 5 and s 6 implying H 12 G.

•

  Each of X0145 , X0 0145 , X1 0145 , X03 0134 , X13 0136 , X01 0145 , X13 0145 contain a K 5 -minor or H 14 . • Each of X0134 , X1 0136 , X23 02 , X13 013 contain a K 5 -minor or H 13 or H 15 . • Each of X0246 , X0 0246 , X02 0246 contain a K 5 -minor or H 13 or H 16 .
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Observation 5.11. Each edge, except xy and yz, of the graph H 11 is part of a Hamiltonian cycle.

Using the above observations we will show that every planar underlying push clique on 8 vertices must be Hamiltonian. [START_REF] West | Introduction to Graph Theory[END_REF].

Otherwise, let v be a degree 3 vertex of G. Delete the vertex v from G and add the edges among its neighbors to obtain the graph G . Note that as G is an underlying planar push clique on 8 vertices, G must be an underlying planar push clique on 7 vertices. Thus, by Lemma 5.9 G must contain one of H 10 , H 11 or H 12 as its spanning subgraph. If that spanning underlying push clique of G contains one of the edges, other than xy or yz of H 11 , among the neighbors of v, then G is Hamiltonian using Observation 5.7.

The graphs H 10 , H 12 has independence number 3 and has exactly one independent set of cardinality 3. If we add a vertex to the graph and make it adjacent to those three vertices, then a K 3,3 is created and thus the so-obtained graph is not planar. Thus we will be done if G contains one of H 10 , H 12 as a spanning subgraph.

The graph H 11 has independence number 3 and has exactly two independent sets of cardinality 3. If we add a vertex to the graph and make it adjacent to the vertices of one of its independent sets of cardinality 3, then a K 3,3 -minor is created and thus the so-obtained graph is not planar. Now assume that G contains H 11 as a spanning subgraph. If N (v) contains an edge of H 11 other than xy and yz, then by Observation 5.11 we are done. Otherwise, we must have N (v) = {x, y, z} as x and z are adjacent to all vertices from V (H 11 ) \ {x, z}. In that case, we have a K 3,3 in G . Thus N (v) = {x, y, z} is not possible.

Therefore, we can conclude that G is Hamiltonian. Now we prove another result regarding the two graphs A and B depicted in Figure 7.

Lemma 5.13. The two graphs A and B (depicted in Figure 7) are not underlying push cliques.

Proof. Note that A and B are both planar graphs. Also A is a subgraph of B.

The vertex a (see Figure 7) of B is a degree-3 vertex whose neighbors are pairwise adjacent. Therefore, if B is an underlying push clique, then the graph B obtained by deleting the vertex a from B is also an underlying push clique.

However, B is a planar graph on 7 vertices. Thus due to Lemma 5.9 B must contain H 10 , H 11 or H 12 as a spanning subgraph. This is not possible as B contains a vertex of degree 2 while the minimum degree vertex of H 10 , H 11 and H 12 is at least 3.

Therefore, B is not an underlying push clique. As A is a subgraph of B, the graph A is also not an underlying push clique.

Using Lemma 5.12 we will prove the following: Lemma 5.14. If G is an underlying push clique having |V (G)| = 8, then G contains H 13 , H 14 , H 15 or H 16 as its spanning subgraph.

Proof. Now we will try to construct a Hamiltonian planar reach-complete graph G on 8 vertices, without any dominating vertex, with minimum degree 3, not containing H 10 , H 11 or H 12 as a subgraph, and non-isomorphic to A or B. If such a graph G does not exist, then we are done due to Lemma 5.12, Observation 5.3, Lemma 5.4 and Observation 2.3. We will show that such a graph G does not exist through a case analysis.

Assume that G is C 8 having l long chords, m medium chords and s short chords. Let

by adding short chords having no dominating vertex. Note that Xi1i2

In particular, X is nothing but the graph C 8 . Similarly, if X does not have a superscript/subscript, then it denotes a graph without any long/medium chords, respectively.

We want to do an exhaustive case analysis with respect to the number of long and medium chords in G and consider only the cases which are distinct up to reflectional/rotational symmetry (denoted by ∼ =). The first long/medium chord can be assumed to be l 0 /m 0 without loss of generality. First we will list out the distinct cases to be considered in the following.

For l + m ≤ 1, the cases to consider are X, X 0 , X 0 . From this we will recursively build the other cases by adding a medium or a long chord and present the cases in Table 1.

In Table 1 the GRAY entries contain a K 3,3 -minor and thus are not planar. On the other hand, let B be the set of the BOLDFACE entries of the table. Observe that, if Y ∈ B, then Ŷ contains either a dominating vertex, or a K 5minor, or a K 3,3 -minor.

For any of the other entries, say Z, Ẑ can be obtained in number of ways. We have observed that for a particular Z, its associated Ẑ's can contain a number of structures proving our result. We have clubbed the same types together and have described the remaining cases below:

• Each of X, X0 , X02 , X04 , X013 , X0 , X0 0 , X0 03 , X01 , X13 03 , X02 024 , X13 0135 contain a K 5 -minor or H 13 .