A Proof of the Barát–Thomassen Conjecture - Archive ouverte HAL Access content directly
Journal Articles Journal of Combinatorial Theory, Series B Year : 2017

A Proof of the Barát–Thomassen Conjecture

Abstract

The Barát-Thomassen conjecture asserts that for every tree T on m edges, there exists a constant k T such that every k T-edge-connected graph with size divisible by m can be edge-decomposed into copies of T. So far this conjecture has only been verified when T is a path or when T has diameter at most 4. Here we prove the full statement of the conjecture.
Fichier principal
Vignette du fichier
RevisedVersion.pdf (310.22 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01629943 , version 1 (07-11-2017)

Identifiers

Cite

Julien Bensmail, Ararat Harutyunyan, Tien-Nam Le, Martin Merker, Stéphan Thomassé. A Proof of the Barát–Thomassen Conjecture. Journal of Combinatorial Theory, Series B, 2017, 124, pp.39 - 55. ⟨10.1016/j.jctb.2016.12.006⟩. ⟨hal-01629943⟩
509 View
126 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More