A Proof of the Barát–Thomassen Conjecture - Archive ouverte HAL
Journal Articles Journal of Combinatorial Theory, Series B Year : 2017

A Proof of the Barát–Thomassen Conjecture

Abstract

The Barát-Thomassen conjecture asserts that for every tree T on m edges, there exists a constant k T such that every k T-edge-connected graph with size divisible by m can be edge-decomposed into copies of T. So far this conjecture has only been verified when T is a path or when T has diameter at most 4. Here we prove the full statement of the conjecture.
Fichier principal
Vignette du fichier
RevisedVersion.pdf (310.22 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01629943 , version 1 (07-11-2017)

Identifiers

Cite

Julien Bensmail, Ararat Harutyunyan, Tien-Nam Le, Martin Merker, Stéphan Thomassé. A Proof of the Barát–Thomassen Conjecture. Journal of Combinatorial Theory, Series B, 2017, 124, pp.39 - 55. ⟨10.1016/j.jctb.2016.12.006⟩. ⟨hal-01629943⟩
553 View
166 Download

Altmetric

Share

More