Journal Articles Discussiones Mathematicae Graph Theory Year : 2017

On q-power cycles in cubic graphs

Abstract

In the context of a conjecture of Erdős and Gyárfás, we consider, for any $q ≥ 2$, the existence of q-power cycles (i.e. with length a power of q) in cubic graphs. We exhibit constructions showing that, for every $q ≥ 3$, there exist arbitrarily large cubic graphs with no q-power cycles. Concerning the remaining case $q = 2$ (which corresponds to the conjecture of Erdős and Gyárfás), we show that there exist arbitrarily large cubic graphs whose only 2-power cycles have length 4 only, or 8 only.
Fichier principal
Vignette du fichier
qpower-orbit.pdf (357.17 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01629942 , version 1 (07-11-2017)

Identifiers

Cite

Julien Bensmail. On q-power cycles in cubic graphs. Discussiones Mathematicae Graph Theory, 2017, 37 (1), pp.211 - 220. ⟨10.7151/dmgt.1926⟩. ⟨hal-01629942⟩
114 View
221 Download

Altmetric

Share

More